首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Summary Incubation of rat liver mitochondria in the presence of either [32P] Pi or 32 y -P] ATP resulted in a phosphorylation of four proteins with Mr 50, 47, 44 and 36 kDa, respectively. The endogenous phosphorylation of these proteins in the presence of [32P] Pi was markedly influenced by the osmolarity of the incubation medium and differentially affected by various effectors of mitochondrial functions, such as Ca2+, oligomycin, FCCP, arsenite and dichloroacetate. In particular, the 36 kDa protein, unlike the other proteins, appears to be phosphorylated also by direct incorporation of [32P], independently of respiratory chain-linked ATP synthesis. The four proteins, located in the mitoplasts, seem to be phosphorylated by diiferent protein kinases, as suggested by the observation that the endogenous phosphorylation of 36 kDa protein resulted selectively increased by addition of exogenous protein kinases, such as casein kinases S and TS. A tentative identification of these phosphorylatable protein is discussed.  相似文献   

2.
We have investigated the possible role of plasma membrane oxidoreductases in the Ca2+ export mechanisms in rat brain synaptic membranes. Ca2+ efflux in nerve terminals is controlled both by a high-affinity/low capacity Mg-dependent ATP-stimulated Ca2+ pump and by a low affinity/high capacity ATP-independent Na+-Ca2+ exchanger. Both Ca2+ efflux mechanisms were strongly inhibited by pyridine nucleotides, in the order NADP>NAD>NADPH>NADH with IC50 values of ca. 10 mM for NADP and ca. 3 mM for the other agents in the case of the ATP-driven Ca2+ pump and with IC50 values between 8 and 10 mM for the Na+-Ca2+ exchanger. Oxidizing agents such as DCIP and ferricyanide inhibited the ATP-driven Ca2+ efflux mechanism but not the Na+-Ca2+ exchanger. In addition, full activation of plasma membrane oxidoreductases requires both an acceptor and an electron donor; therefore the combined effects of both substrates added together were also studied. When plasma membrane oxidoreductases of the synaptic plasma membrane were activated in the presence of both NADH (or NADPH) and DCIP or ferricyanide, the inhibition of the ATP-driven Ca2+ pump was optimal; by contrast, the pyridine nucleotide-mediated inhibition of the Na+-Ca2+ exchanger was partially released when both substrates of the plasma membrane oxidoreductases were present together. Furthermore, the activation of plasma membrane oxidoreductases also strongly inhibited intracellular protein phosphorylation in intact synaptosomes, mediated by eithercAMP-dependent protein kinase, Ca2+ calmodulin-dependent protein kinases, or protein kinase C.Abbreviations Hepes 4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid - SDS sodium dodecyl sulfate - EGTA ethylenglycol-bis(-aminoethylether)-N,N,N,N-tetraacetic acid - DCIP dichlorophenol-indophenol  相似文献   

3.
The temporal relationship between Ca2+-induced contraction and phosphorylation of 20 kDa myosin light chain (MLC) during a step increase in Ca2+ was investigated using permeabilized phasic smooth muscle from rabbit portal vein and guinea-pig ileum at 25°C. We describe here a Ca2+-induced Ca2+ desensitization phenomenon in which a transient rise in MLC phosphorylation is followed by a transient rise in contractile force. During and after the peak contraction, the force to phosphorylation ratio remained constant. Further treatment with cytochalasin D, an actin fragmenting agent, did not affect the transient increase in phosphorylation, but blocked force development. Together, these results indicate that the transient phosphorylation causes the transient contraction and that neither inhomogeneous contractility nor reduced thin filament integrity effects the transient phosphorylation. Lastly, we show that known inhibitors to MLC kinase kinases and to a Ca2+-dependent protein phosphatase did not eliminate the desensitized contractile force. This study suggests that the Ca2+-induced Ca2+ desensitization phenomenon in phasic smooth muscle does not result from any of the known intrinsic mechanisms involved with other aspects of smooth muscle contractility.  相似文献   

4.
Calcium channels in the heart play a major role in cardiac function. These channels are modulated in a variety of ways, including protein phosphorylation. Cyclic AMP-mediated phosphorylation is the best understood phosphorylation mechanism which regulates calcium influx into cardiac cells. Binding of an agonist (e.g., a catecholamine) to the appropriate receptor stimulates production of cyclic AMP by adenylate cyclase. The cyclic AMP may subsequently bind to and activate a cyclic AMP-dependent protein kinase, which then can phosphorylate a number of substrates, including the calcium channel (or a closely-associated regulatory protein). This results in stimulation of the calcium channels, greater calcium influx, and increased contractility. The cyclic AMP system is not the only protein kinase system in the heart. Thus, the possibility exists that other protein kinases may also regulate the calcium channels and, hence, cardiac function. Recent evidence suggests that cyclic GMP-mediated phosphorylation may play a role opposite to cyclic AMP-mediated phosphorylation, i.e., inhibition of the calcium current rather than stimulation. Other recent evidence also suggests that a calcium/calmodulin-dependent protein kinase and calcium/phospholipid-dependent protein kinase (protein kinase C) may also regulate the myocardial calcium channels. Thus, protein phosphorylation may be a general mechanism whereby calcium channels and cardiac function are modulated under a variety of conditions.  相似文献   

5.
A single type of reversible protein-phosphorylating system, the ATP-dependent protein kinase/phosphatase system, is employed in signal transduction in eukaryotes. By contrast, recent work has revealed that three types of protein-phosphorylating systems mediate signal transduction in bacteria. These systems are (1) classical protein kinase/phosphatase systems, (2) sensor-kinase/response-regulator systems, and (3) the multifaceted phosphoenolpyruvate-dependent phosphotransferase system. Physiological, structural, and mechanistic aspects of these three evolutionarily distinct systems are discussed in the papers of this written symposium. © 1993 Wiley-Liss, Inc.  相似文献   

6.
Mg2+ binds to calmodulin without inducing the changes in secondary structure that are characteristic of Ca2+ binding, or the exposure of hydrophobic surfaces that are involved in typical Ca2+-dependent target interactions. The binding of Mg2+ does, however, produce significant spectroscopic changes in residues located in the Ca2+-binding loops, and the Mg-calmodulin complex is significantly different from apo-calmodulin in loop conformation. Direct measurement of Mg2+ binding constants, and the effects of Mg2+ on Ca2+ binding to calmodulin, are consistent with specific binding of Mg2+, in competition with Ca2+. Mg2+ increases the thermodynamic stability of calmodulin, and we conclude that under resting, nonstimulated conditions, cellular Mg2+ has a direct role in conferring stability on both domains of apo-calmodulin. Apo-calmodulin binds typical target sequences from skeletal muscle myosin light chain kinase and neuromodulin with Kd approximately 70-90 nM (at low ionic strength). These affinities are virtually unchanged by 5 mM Mg2+, in marked contrast to the strong enhancement of peptide affinity induced by Ca2+. Under conditions of stimulation and increased [Ca2+], Mg2+ has a role in directing the mode of initial target binding preferentially to the C-domain of calmodulin, due to the opposite relative affinities for binding of Ca2+ and Mg2+ to the two domains. Mg2+ thus amplifies the intrinsic differences of the domains, in a target specific manner. It also contributes to setting the Ca2+ threshold for enzyme activation and increases the importance of a partially Ca2+-saturated calmodulin-target complex that can act as a regulatory kinetic and equilibrium intermediate in Ca2+-dependent target interactions.  相似文献   

7.
Tyrosine hydroxylase phosphorylation: regulation and consequences   总被引:7,自引:0,他引:7  
The rate-limiting enzyme in catecholamine synthesis is tyrosine hydroxylase. It is phosphorylated at serine (Ser) residues Ser8, Ser19, Ser31 and Ser40 in vitro, in situ and in vivo. A range of protein kinases and protein phosphatases are able to phosphorylate or dephosphorylate these sites in vitro. Some of these enzymes are able to regulate tyrosine hydroxylase phosphorylation in situ and in vivo but the identity of the kinases and phosphatases is incomplete, especially for physiologically relevant stimuli. The stoichiometry of tyrosine hydroxylase phosphorylation in situ and in vivo is low. The phosphorylation of tyrosine hydroxylase at Ser40 increases the enzyme's activity in vitro, in situ and in vivo. Phosphorylation at Ser31 also increases the activity but to a much lesser extent than for Ser40 phosphorylation. The phosphorylation of tyrosine hydroxylase at Ser19 or Ser8 has no direct effect on tyrosine hydroxylase activity. Hierarchical phosphorylation of tyrosine hydroxylase occurs both in vitro and in situ, whereby the phosphorylation at Ser19 increases the rate of Ser40 phosphorylation leading to an increase in enzyme activity. Hierarchical phosphorylation depends on the state of the substrate providing a novel form of control of tyrosine hydroxylase activation.  相似文献   

8.
Ca(2+)-ATPases are P-type ATPases that use the energy of ATP hydrolysis to pump Ca(2+) from the cytoplasm into intracellular compartments or into the apoplast. Plant cells possess two types of Ca(2+) -pumping ATPase, named ECAs (for ER-type Ca(2+)-ATPase) and ACAs (for auto-inhibited Ca(2+)-ATPase). Each type comprises different isoforms, localised on different membranes. Here, we summarise available knowledge of the biochemical characteristics and the physiological role of plant Ca(2+)-ATPases, greatly improved after gene identification, which allows both biochemical analysis of single isoforms through heterologous expression in yeast and expression profiling and phenotypic analysis of single isoform knock-out mutants.  相似文献   

9.
The contribution of Ca2+ entry through different voltage-activated Ca2+ channel (VACC) subtypes to the phosphorylation of extracellular signal regulated kinase (ERK) was examined in bovine adrenal-medullary chromaffin cells. High K+ depolarization (40 mM, 3 min) induced ERK phosphorylation, an effect that was inhibited by specific mitogen-activated protein kinase kinase inhibitors. By using selective inhibitors, we observed that depolarization-induced ERK phosphorylation completely depended on protein kinase C-alpha (PKC-alpha), but not on Ca2+/calmodulin-dependent protein kinase nor cyclic AMP-dependent protein kinase. Blockade of L-type Ca2+ channels by 3 microm furnidipine, or blockade of N channels by 1 micromomega-conotoxin GVIA reduced ERK phosphorylation by 70%, while the inhibition of P/Q channels by 1 micromomega-agatoxin IVA only caused a 40% reduction. The simultaneous blockade of L and N, or P/Q and N channels completely abolished this response, yet 23% ERK phosphorylation remained when L and P/Q channels were simultaneously blocked. Confocal imaging of cytosolic Ca2+ elevations elicited by 40 mm K+, showed that Ca2+ levels increased throughout the entire cytosol, both in the presence and the absence of Ca2+ channel blockers. Fifty-eight percent of the fluorescence rise depended on Ca2+ entering through N channels. Thus, ERK phosphorylation seems to depend on a critical level of Ca2+ in the cytosol rather than on activation of a given Ca2+ channel subtype.  相似文献   

10.
Summary Pulses of some Ca2+ channel blockers (dantrolene, Co2+, nifedipine) and calmodulin inhibitors (chlorpromazine) lead to medium (maximally 5–9 h) phase shifts of the circadian conidiation rhythm ofNeurospora crassa. Pulses of high Ca2+, or of low Ca2+, a Ca2+ ionophore (A23187) together with Ca2+, and other Ca2+ channel blockers (La3+, diltiazem), however, caused only minor phase shifts. The effect of these substances (A 23187) and of different temperatures on the Ca2+ release from isolated vacuoles was analyzed by using the fluorescent dye Fura-2. A 23187 and higher temperatures increased the release drastically, whereas dantrolene decreased the permeation of Ca2+ (Cornelius et al., 1989).Pulses of 8-PCTP-cAMP, IBMX and of the cAMP antagonist RP-cAMPS, also caused medium (maximally 6–9 h) phase shifts of the conidiation rhythm. The phase response curve of the agonist was almost 180° out of phase with the antagonist PRC. In spite of some variability in the PRCs of these series of experiments all showed maximal shifts during ct 0–12. The variability of the response may be due to circadian changes in the activity of phosphodiesterases: After adding cAMP to mycelial extracts HPLC analysis of cAMP metabolites showed significant differences during a circadian period with a maximum at ct 0.Protein phosphorylation was tested mainly in an in vitro phosphorylation system (with35S-thio -ATP). The results showed circadian rhythmic changes predominantly in proteins of 47/48 kDa. Substances and treatments causing phase-shifts of the conidiation rhythm also caused changes in the phosphorylation of these proteins: an increase was observed when Ca2+ or cAMP were added, whereas a decrease occurred upon addition of a calmodulin inhibitor (TFP) or pretreatment of the mycelia with higher (42° C) temperatures.Altogether, the results indicate that Ca2+-calmodulin-dependent and cAMP-dependent processes play an important, but perhaps not essential, role in the clock mechanism ofNeurospora. Ca2+ calmodulin and the phosphorylation state of the 47/48-kDa proteins may have controlling or essential functions for this mechanism.  相似文献   

11.
Capacitation is a mandatory process for the acquisition of mammalian sperm fertilization competence and involves the activation of a complex and still not fully understood system of signaling pathways. Under in vitro conditions, there is an increase in both protein tyrosine phosphorylation (pTyr) and intracellular Ca2+ levels in several species. In human sperm, results from our group revealed that pTyr signaling can be blocked by inhibiting proline-rich tyrosine kinase 2 (PYK2). Based on the role of PYK2 in other cell types, we investigated whether the PYK2-dependent pTyr cascade serves as a sensor for Ca 2+ signaling during human sperm capacitation. Flow cytometry studies showed that exposure of sperm to the PYK2 inhibitor N-[2-[[[2-[(2,3-dihydro-2-oxo-1 H-indol-5-yl)amino]-5-(trifluoromethyl)-4-pyrimidinyl]amino]methyl]phenyl]- N-methyl-methanesulfonamide hydrate (PF431396) produced a significant and concentration-dependent reduction in intracellular Ca 2+ levels during capacitation. Further studies revealed that PF431396-treated sperm exhibited a decrease in the activity of CatSper, a key sperm Ca 2+ channel. In addition, time course studies during capacitation in the presence of PF431396 showed a significant and sustained decrease in both intracellular Ca 2+ and pH levels after 2 hr of incubation, temporarily coincident with the activation of PYK2 during capacitation. Interestingly, decreases in Ca 2+ levels and progressive motility caused by PF431396 were reverted by inducing intracellular alkalinization with NH 4Cl, without affecting the pTyr blockage. Altogether, these observations support pTyr as an intracellular sensor for Ca 2+ entry in human sperm through regulation of cytoplasmic pH. These results contribute to a better understanding of the modulation of the polymodal CatSper and signaling pathways involved in human sperm capacitation.  相似文献   

12.
13.
14.
15.
Summary The regulation of cellular volume upon exposure to hypoosmotic stress is accomplished by specific plasma membrane permeability changes that allow the efflux of certain intracellular solutes (osmolytes). The mechanism of this membrane permeability regulation is not understood; however, previous data implicate Ca2+ as an important component in the response. The regulation of protein phosphorylation is a pervasive aspect of celllular physiology that is often Ca2+ dependent. Therefore, we tested for osmotically induced protein phosphorylation as a possible mechanism by which Ca2+ may mediate osmotically dependent osmolyte efflux. We have found a rapid increase in32Pi incorporation into two proteins in clam blood cell ghosts after exposure of the intact cells to a hypoosmotic medium. The osmotic component of the stress, not the ionic dilution, was the stimulus for the phosphorylations. The osmotically induced phosphorylation of both proteins was significantly inhibited when Ca2+ was omitted from the medium, or by the calmodulin antagonist. chlorpromazine. These results correlate temporally with cell volume recovery and osmolyte (specifically free amino acid) efflux. The two proteins that become phosphorylated in response to hypoosmotic stress may be involved in the regulation of plasma membrane permeability to organic solutes, and thus. contribute to hypoosmotic cell volume regulation.  相似文献   

16.
Regulation of protein tyrosine phosphorylation is required for sperm capacitation and oocyte fertilization. The objective of the present work was to study the role of the calcium‐sensing receptor (CaSR) on protein tyrosine phosphorylation in boar spermatozoa under capacitating conditions. To do this, boar spermatozoa were incubated in Tyrode's complete medium for 4 hr and the specific inhibitor of the CaSR, NPS2143, was used. Also, to study the possible mechanism(s) by which this receptor exerts its function, spermatozoa were incubated in the presence of specific inhibitors of the 3‐phosphoinositide dependent protein kinase 1 (PDK1) and protein kinase A (PKA). Treatment with NPS2143, GSK2334470, an inhibitor of PDK1 and H‐89, an inhibitor of PKA separately induced an increase in tyrosine phosphorylation of 18 and 32 kDa proteins, a decrease in the serine/threonine phosphorylation of the PKA substrates together with a drop in sperm motility and viability. The present work proposes a new signalling pathway of the CaSR, mediated by PDK1 and PKA in boar spermatozoa under capacitating conditions. Our results show that the inhibition of the CaSR induces the inhibition of PDK1 that blocks PKA activity resulting in a rise in tyrosine phosphorylation of p18 and p32 proteins. This novel signalling pathway has not been described before and could be crucial to understand boar sperm capacitation within the female reproductive tract.  相似文献   

17.
Thylakoids and Photosystem II particles prepared from the cyanobacterium Synechococcus PCC 7942 washed with a HEPES/glycerol buffer exhibited low rates of light-induced oxygen evolution. Addition of either Ca2+ or Mg2+ to both thylakoids and Photosystem II particles increased oxygen evolution independently, maximal rates being obtained by addition of both ions. If either preparation was washed with NaCl, light induced O2 evolution was completely inhibited, but re-activated in the same manner by Ca2+ and Mg2+ but to a lower level. In the presence of Mg2+, the reactivation of O2 evolution by Ca2+ allowed sigmoid kinetics, implying co-operative binding. The results are interpreted as indicating that not only Ca2+, but also Mg2+, is essential for light-induced oxygen evolution in thylakoids and Photosystem II particles from Synechococcus PC 7942. The significance of the reactivation kinetics is discussed. Reactivation by Ca2+ was inhibited by antibodies to mammalian calmodulin, indicating that the binding site in Photosystem II may be analogous to that of this protein.Abbreviation HEPES n-2-Hydroxyethylpiperazine--2-ethane sulphonic acid  相似文献   

18.
19.
In non-excitable cells, the inositol 1,4,5-trisphosphate receptor (IP(3)R), a ligand-gated Ca(2+) channel, plays an important role in the control of intracellular Ca(2+). There are three subtypes of IP(3)R that are differentially distributed among cell types. AR4-2J cells express almost exclusively the IP(3)R-2 subtype. The purpose of this study was to investigate the effect of cAMP-dependent protein kinase (PKA) on the activity of IP(3)R-2 in AR4-2J cells. We showed that immunoprecipitated IP(3)R-2 is a good substrate for PKA. Using a back-phosphorylation approach, we showed that endogenous PKA phosphorylates IP(3)R-2 in intact AR4-2J cells. Pretreatment with PKA enhanced IP(3)-induced Ca(2+) release in permeabilized AR4-2J cells. Pretreatment with the cAMP generating agent's forskolin and vasoactive intestinal peptide (VIP) enhanced carbachol (Cch)-induced and epidermal growth factor (EGF)-induced Ca(2+) responses in intact AR4-2J cells. Our results are consistent with an enhancing effect of PKA on IP(3)R-2 activity. This conclusion supports the emerging concept of crosstalk between Ca(2+) signaling and cAMP pathways and thus provides another way by which Ca(2+) signals are finely encoded within non-excitable cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号