首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The luminal surface of mammalian urothelium is covered with numerous plaques (also known as the asymmetric unit membrane or AUM) composed of semi-crystalline, hexagonal arrays of 12-nm protein particles. Despite the presumed importance of these plaques in stabilizing the urothelial surface during bladder distention, relatively little is known about their protein composition. Using a mouse mAb, AE31, we have identified a 27-kD protein that is urothelium-specific and is differentially expressed in superficial umbrella cells. This protein (pI approximately 5.8) partitions into the detergent phase during Triton X-114 phase separation. Pulse-chase experiments using cultured bovine urothelial cells showed that this protein is synthesized as a 32-kD precursor that is processed through a 30-kD intermediate, to the mature 27-kD form. In cytoplasmic vesicles containing immature AUM, the AE31 epitope is detected in patches on the cytoplasmic side, but in mature, apical AUM it is detected exclusively on the luminal side. This suggests an unusual translocation of the AE31 epitope during AUM maturation; more data are required, however, to substantiate this interpretation. Immunoaffinity purification of the 27-kD protein results in the copurification in approximately molar ratio of a 15-kD protein, as well as a small and variable amount of a 47-kD protein. Immunoblotting data indicate that these three proteins are immunologically distinguishable. This copurified 15-kD protein is relative basic (pI approximately 8.0). Like the 27-kD protein, it is urothelium-specific and is present mainly in the umbrella cells. Together, our data indicate that a 27-kD protein is urothelial plaque-associated (uroplakin I). Based on complex formation data, we provisionally name the 15-kD protein uroplakin II; additional data will be required to determine whether this and the 47-kD protein are integral parts of AUM. The identification of these AUM-associated and -related proteins, plus the availability of a culture system capable of synthesizing and processing some of these molecules, offer new opportunities for studying the detailed structure, assembly, and function of asymmetrical unit membrane.  相似文献   

2.
Recognition of the importance of glial cells in nervous system functioning is increasing, specifically regarding the modulation of neural activity. This brief review focuses on some of the morphological and functional interactions that take place between astroglia and neurons. Astrocyte-neuron interactions are of special interest because this glia cell type has intimate and dynamic associations with all parts of neurons, i.e., somata, dendrites, axons, and terminals. Activation of certain receptors on astrocytes produces morphological changes that result in new contacts between neurons, along with physiological and functional changes brought about by the new contacts. In response to activation of other receptors or changes in the extracellular microenvironment, astrocytes release neuroactive substances that directly excite or inhibit nearby neurons and may modulate synaptic transmission. Although some of these glial-neuronal interactions have been known for many years, others have been quite recently revealed, but together they are forming a compelling story of how these two major cell types in the brain carry out the complex tasks that mammalian nervous systems perform.  相似文献   

3.
Rabbit zygotes were tested for their ability to sequester radiolabeled acetate, oleate, and arachidonate in intracellular lipid. Radiolabeled arachidonic acid was concentrated 170 ± 28-fold (mean ± SEM) and oleic acid was concentrated 105 ± 26-fold in zygotic lipids during 6 hr of culture when compared with the initial concentrations in culture medium. Acetate was not concentrated into lipids by cultured zygotes. Both long chain fatty acids were incorporated mainly as triglyceride. Polydimethylsiloxane fluid, used to cover the microdroplets of medium during culture, demonstrated lipophilic properties. This characteristic was utilized to indirectly transfer lipids to culture medium, permitting examination only of lipoidal properties of test extracts on embryonal development. For rabbit zygotes, blood plasma extract was detrimental and whole blood extract was beneficial for embryonal cleavage rates during the first 24 hr of culture. A higher proportion of mouse zygotes developed to blastocysts when cultured in modified Ham's F-10 medium compared to BMOC medium, and this difference was negated by inclusion of a lipid extract prepared from rabbit oviductal fluid in the culture system. Comparison of fatty acid analyses of the lipid extracts with development rates of zygotes suggests that modified rates of embryo development may be associated with ratios of individual fatty acids presented to the culture medium rather than with the presence of any single fatty acid.  相似文献   

4.
Adipose tissue develops in and/or around most lymphoid tissues in mammals and birds. Early reports of this widespread association and hypotheses for its functional basis were long ignored in the planning of in vitro studies and the interpretation of in vivo results. Biochemical studies on rodent tissues reveal many site-specific properties of adipocytes anatomically associated with lymph nodes and omental milky spots that equip them to interact locally with lymphoid cells. The paracrine interactions are strongest for the most readily activated lymph nodes and are modulated by dietary lipids. Perinodal adipocytes contribute less than those in the large nodeless depots to whole-body lipid supplies during fasting. Observations on wild animals show that perinodal adipose tissue is selectively conserved even in starvation but does not enlarge greatly in natural obesity. Such paracrine provisioning of peripheral immune responses improves their efficiency and emancipates activated lymphocytes from competition with other tissues for blood-borne nutrients. The relationship is found in extant protherians and metatherians, so it almost certainly arose early in the evolution of mammals, possibly as part of the metabolic reorganisation associated with homeothermy, viviparity, and lactation. Prolonged disruption to paracrine interactions between lymphoid and adipose tissue may contribute to the HIV-associated adipose redistribution syndrome, causing selective hypertrophy of the mesentery, omentum, and other adipose depots that contain much activated lymphoid tissue. Skeletal and cardiac muscle may also have paracrine relationships with anatomically associated adipose tissue, but interactions between contiguous tissues have not been demonstrated directly.  相似文献   

5.
Mammalian embryogenesis is a dynamic process involving gene expression and mechanical forces between proliferating cells. The exact nature of these interactions, which determine the lineage patterning of the trophectoderm and endoderm tissues occurring in a highly regulated manner at precise periods during the embryonic development, is an area of debate. We have developed a computational modeling framework for studying this process, by which the combined effects of mechanical and genetic interactions are analyzed within the context of proliferating cells. At a purely mechanical level, we demonstrate that the perpendicular alignment of the animal-vegetal (a-v) and embryonic-abembryonic (eb-ab) axes is a result of minimizing the total elastic conformational energy of the entire collection of cells, which are constrained by the zona pellucida. The coupling of gene expression with the mechanics of cell movement is important for formation of both the trophectoderm and the endoderm. In studying the formation of the trophectoderm, we contrast and compare quantitatively two hypotheses: (1) The position determines gene expression, and (2) the gene expression determines the position. Our model, which couples gene expression with mechanics, suggests that differential adhesion between different cell types is a critical determinant in the robust endoderm formation. In addition to differential adhesion, two different testable hypotheses emerge when considering endoderm formation: (1) A directional force acts on certain cells and moves them into forming the endoderm layer, which separates the blastocoel and the cells of the inner cell mass (ICM). In this case the blastocoel simply acts as a static boundary. (2) The blastocoel dynamically applies pressure upon the cells in contact with it, such that cell segregation in the presence of differential adhesion leads to the endoderm formation. To our knowledge, this is the first attempt to combine cell-based spatial mechanical simulations with genetic networks to explain mammalian embryogenesis. Such a framework provides the means to test hypotheses in a controlled in silico environment.  相似文献   

6.
Background: Checkpoint pathways prevent cell-cycle progression in the event of DNA lesions. Checkpoints are well defined in mitosis, where lesions can be the result of extrinsic damage, and they are critical in meiosis, where DNA breaks are a programmed step in meiotic recombination. In mitotic yeast cells, the Chk1 protein couples DNA repair to the cell-cycle machinery. The Atm and Atr proteins are mitotic cell-cycle proteins that also associate with chromatin during meiotic prophase I. The genetic and regulatory interaction between Atm and mammalian Chk1 appears to be important for integrating DNA-damage repair with cell-cycle arrest.Results: We have identified structural homologs of yeast Chk1 in human and mouse. Chk1Hu/Mo has protein kinase activity and is expressed in the testis. Chk1 accumulates in late zygotene and pachytene spermatocytes and is present along synapsed meiotic chromosomes. Chk1 localizes along the unsynapsed axes of X and Y chromosomes in pachytene spermatocytes. The association of Chk1 with meiotic chromosomes and levels of Chk1 protein depend upon a functional Atm gene product, but Chk1 is not dependent upon p53 for meiosis I functions. Mapping of CHK1 to human chromosomes indicates that the gene is located at 11q22–23, a region marked by frequent deletions and loss of heterozygosity in human tumors.Conclusions: The Atm-dependent presence of Chk1 in mouse cells and along meiotic chromosomes, and the late pachynema co-localization of Atr and Chk1 on the unsynapsed axes of the paired X and Y chromosomes, suggest that Chk1 acts as an integrator for Atm and Atr signals and may be involved in monitoring the processing of meiotic recombination. Furthermore, mapping of the CHK1 gene to a region of frequent loss of heterozygosity in human tumors at 11q22–23 indicates that the CHK1 gene is a candidate tumor suppressor gene.  相似文献   

7.
The Plasmodium liver forms are bridgehead stages between the mosquito sporozoite stages and mammalian blood stages that instigate the malaria disease. In hepatocytes, Plasmodium achieves one of the fastest growth rates among eukaryotic cells. However, nothing is known about host hepatic cell interactions, e.g. nutrient scavenging and/or subversion of cellular functions necessary for Plasmodium development and replication. Plasmodium usually invades hepatocytes by establishing a parasitophorous vacuole wherein it undergoes multiple nuclear division cycles. We show that Plasmodium preferentially develops in the host juxtanuclear region. By comparison with the parasitophorous vacuole of other apicomplexan parasites which associate with diverse host organelles, the Plasmodium parasitophorous vacuole only forms an association with the host endoplasmic reticulum. Intrahepatic Plasmodium actively modifies the permeability of its vacuole to allow the transfer of a large variety of molecules from the host cytosol to the vacuolar space through open channels. In contrast with malaria blood stages, the pores within the parasitophorous vacuole membrane of the liver stage display a smaller size as they restrict the passage of solutes to less than 855Da. These pores are stably maintained during parasite karyokinesis until complete cellularisation. Host-derived cholesterol accumulated at the parasitophorous vacuole membrane may modulate the channel activity. These observations define the parasitophorous vacuole of the Plasmodium liver stage as a dynamic and highly permeable compartment that can ensure the sustained supply of host molecules to support parasite growth in the nutrient-rich environment of liver cells.  相似文献   

8.
Tissue origins and interactions in the mammalian skull vault.   总被引:19,自引:0,他引:19  
During mammalian evolution, expansion of the cerebral hemispheres was accompanied by expansion of the frontal and parietal bones of the skull vault and deployment of the coronal (fronto-parietal) and sagittal (parietal-parietal) sutures as major growth centres. Using a transgenic mouse with a permanent neural crest cell lineage marker, Wnt1-Cre/R26R, we show that both sutures are formed at a neural crest-mesoderm interface: the frontal bones are neural crest-derived and the parietal bones mesodermal, with a tongue of neural crest between the two parietal bones. By detailed analysis of neural crest migration pathways using X-gal staining, and mesodermal tracing by DiI labelling, we show that the neural crest-mesodermal tissue juxtaposition that later forms the coronal suture is established at E9.5 as the caudal boundary of the frontonasal mesenchyme. As the cerebral hemispheres expand, they extend caudally, passing beneath the neural crest-mesodermal interface within the dermis, carrying with them a layer of neural crest cells that forms their meningeal covering. Exposure of embryos to retinoic acid at E10.0 reduces this meningeal neural crest and inhibits parietal ossification, suggesting that intramembranous ossification of this mesodermal bone requires interaction with neural crest-derived meninges, whereas ossification of the neural crest-derived frontal bone is autonomous. These observations provide new perspectives on skull evolution and on human genetic abnormalities of skull growth and ossification.  相似文献   

9.
Although colistin’s clinical use is limited due to its nephrotoxicity, colistin is considered to be an antibiotic of last resort because it is used to treat patients infected with multidrug-resistant bacteria. In an effort to provide molecular details about colistin’s ability to kill Gram-negative (G(?)) but not Gram-positive (G(+)) bacteria, we investigated the biophysics of the interaction between colistin and lipid mixtures mimicking the cytoplasmic membrane of G(+), G(?) bacteria as well as eukaryotic cells. Two different models of the G(?) outer membrane (OM) were assayed: lipid A with two deoxy-manno-octulosonyl sugar residues, and Escherichia coli lipopolysaccharide mixed with dilaurylphosphatidylglycerol. We used circular dichroism and x-ray diffuse scattering at low and wide angle in stacked multilayered samples, and neutron reflectivity of single, tethered bilayers mixed with colistin. We found no differences in secondary structure when colistin was bound to G(?) versus G(+) membrane mimics, ruling out a protein conformational change as the cause of this difference. However, bending modulus KC perturbation was quite irregular for the G(?) inner membrane, where colistin produced a softening of the membranes at an intermediate lipid/peptide molar ratio but stiffening at lower and higher peptide concentrations, whereas in G(+) and eukaryotic mimics there was only a slight softening. Acyl chain order in G(?) was perturbed similarly to KC. In G(+), there was only a slight softening and disordering effect, whereas in OM mimics, there was a slight stiffening and ordering of both membranes with increasing colistin. X-ray and neutron reflectivity structural results reveal colistin partitions deepest to reach the hydrocarbon interior in G(?) membranes, but remains in the headgroup region in G(+), OM, and eukaryotic mimics. It is possible that domain formation is responsible for the erratic response of G(?) inner membranes to colistin and for its deeper penetration, which could increase membrane permeability.  相似文献   

10.
11.
Protein-protein interactions are essential for almost all cellular processes, hence understanding these processes mainly depends on the identification and characterization of the relevant protein-protein interactions. In the present paper, we introduce the concept of TRS (trans-SUMOylation), a new method developed to identify and verify protein-protein interactions in mammalian cells in vivo. TRS utilizes Ubc9-fusion proteins that trans-SUMOylate co-expressed interacting proteins. Using TRS, we analysed interactions of 65 protein pairs co-expressed in HEK (human embryonic kidney)-293 cells. We identified seven new and confirmed 16 known protein interactions, which were determined via endogenous SUMOylation sites of the binding partners or by using SUMOylation-site tags respectively. Four of the new protein interactions were confirmed by GST (glutathione transferase) pull-down and the p38α-Edr2 interaction was verified by co-localization analysis. Functionally, this p38α-Edr2 interaction could possibly be involved in the recruitment of p38α to the polycomb chromatin-remodelling complex to phosphorylate Bmi1. We also used TRS to characterize protein-interaction domains of the protein kinase pairs p38α-MK2 [MK is MAPK (mitogen-activated protein kinase)-activated protein kinase] and ERK3 (extracellular-signal-regulated kinase 3)-MK5 and of the p38α-p53 complex. The ability of TRS to monitor protein interactions in mammalian cells in vivo at levels similar to endogenous expression makes it an excellent new tool that can help in defining the protein interactome of mammalian cells.  相似文献   

12.
Ko YG  Park H  Kim S 《Proteomics》2002,2(9):1304-1310
Aminoacyl-tRNA synthetases (ARSs) catalyze the attachment of specific amino acids to their cognate tRNAs, thereby ensuring the faithful translation of genetic code. In addition to their enzymatic function, these enzymes have been discovered to regulate various cellular functions such as tRNA export, ribosomal RNA synthesis, apoptosis, inflammation and angiogenesis in mammalian. The insights into the noncanonical activities of these enzymes have been obtained from their unique cellular localization, interacting partners, isoform generation and expression control. Mammalian ARSs also form a macromolecular protein complex with a few auxiliary factors. Although the physiological significance of this complex is poorly understood, it also supports the potential of mammalian ARSs as sophisticated multifunctional proteins for regulating various cellular procedures. In this review, the novel regulatory activities of mammalian ARSs will be discussed in different biological processes.  相似文献   

13.
Towards Understanding MCR-like Colistin Resistance   总被引:1,自引:0,他引:1  
  相似文献   

14.
Abstract.  The shift in emphasis from single species to ecosystem conservation is revealing how community interactions can potentially influence single species viability and conservation. Although there is much theory and empirical data concerning the dynamic consequences of exploitative interactions, there is still a very poor understanding of the effects of interference interactions. Recent studies, as shown in this review, have documented widespread effects of such interactions among mammalian carnivores. Harassment, loss of kills and intraguild predation have been documented in a wide range of species. The demonstrated effects also include avoidance of larger carnivores in both time and space and reductions in one species density or even total exclusion from certain habitats or regions. Our review of the literature thus provides a range of empirical examples that together demonstrate that these interactions have very important implications on carnivore demography. We believe that the effects of interference might differ strongly from the effects of exploitative competition. This is because interference might have the potential to affect population growth in an inverse density-dependent manner and thereby also reduce population growth at low densities, therefore increasing extinction probabilities. These factors need to be considered when planning future multi-species conservation. Further research into the temporal and spatial aspects of co-existence are required if diverse guilds and communities are to be conserved.  相似文献   

15.
  • 1 In predator–prey theory, habitat heterogeneity can affect the relationship between kill rates and prey or predator density through its effect on the predator's ability to search for, encounter, kill and consume its prey. Many studies of predator–prey interactions include the effect of spatial heterogeneity, but these are mostly based on species with restricted mobility or conducted in experimental settings.
  • 2 Here, we aim to identify the patterns through which spatial heterogeneity affects predator–prey dynamics and to review the literature on the effect of spatial heterogeneity on predator–prey interactions in terrestrial mammalian systems, i.e. in freely moving species with high mobility, in non‐experimental settings. We also review current methodologies that allow the study of the predation process within a spatial context.
  • 3 When the functional response includes the effect of spatial heterogeneity, it usually takes the form of predator‐dependent or ratio‐dependent models and has wide applicability.
  • 4 The analysis of the predation process through its different stages may further contribute towards identifying the spatial scale of interest and the specific spatial mechanism affecting predator–prey interactions.
  • 5 Analyzing the predation process based on the functional response theory, but separating the stages of predation and applying a multiscale approach, is likely to increase our insight into how spatial heterogeneity affects predator–prey dynamics. This may increase our ability to forecast the consequences of landscape transformations on predator–prey dynamics.
  相似文献   

16.
17.
PAZ PIWI domain (PPD) proteins, together with the RNA cleavage products of Dicer, form ribonucleoprotein complexes called RNA-induced silencing complexes (RISCs). RISCs mediate gene silencing through targeted messenger RNA cleavage and translational suppression. The PAZ domains of PPD and Dicer proteins were originally thought to mediate binding between PPD proteins and Dicer, although no evidence exists to support this theory. Here we show that PAZ domains are not required for PPD protein–Dicer interactions. Rather, a subregion of the PIWI domain in PPD proteins, the PIWI-box, binds directly to the Dicer RNase III domain. Stable binding between PPD proteins and Dicer was dependent on the activity of Hsp90. Unexpectedly, binding of PPD proteins to Dicer inhibits the RNase activity of this enzyme in vitro. Lastly, we show that PPD proteins and Dicer are present in soluble and membrane-associated fractions, indicating that interactions between these two types of proteins may occur in multiple compartments.  相似文献   

18.
A period of electrical activity in unmyelinated nerve fibers is followed by a post-tetanic hyperpolarization (PTH), generated by the hyperactivity of the electrogenic Na(+)-K(+) pump. In order to protect the membrane potential against these strong hyperpolarizations, different types of axonal inward currents are activated during the PTH. We investigated in the rabbit vagus nerve one of these currents, which was activated by carbamylcholine (CCh). We observed that the effect of CCh on the PTH amplitude could be blocked or reversed with scopolamine. Moreover, the PTH amplitude increased when scopolamine alone was added to the perfusate, indicating that an endogenous muscarinic agonist was liberated in the preparation during the period of electrical activity. This CCh-activated current was TEA but not Ba(2+) or Cs(+) sensitive. It has been shown previously that muscarinic acetylcholine receptors (mAChRs) in the rabbit vagus nerve are located on the axonal but not glial membrane and that Schwann cells express several types of purinergic receptors, which activation evoke Ca(2+) transients in Schwann cells. We hypothesise that during electrical activity axons release a transmitter, presumably ATP. This transmitter evoke in the neighbouring Schwann cells a Ca(2+)-dependent liberation of a endogenous muscarinic agonist, which in turn activates a TEA-sensitive inward current in axons. We suggest that the major purpose of this mechanism is the control of the membrane potential during and after a period of intense electrical activity when the Na(+)-K(+) pump generates a robust PTH.  相似文献   

19.
An assay was developed to measure the hydrophobic interactions of commonly used mammalian cell lines grown in culture. The assay depends on the loss of cells from an aqueous suspension following vortexing with a hydrophobic oil phase. This allowed the determination of a hydrophobicity index, which was significantly higher for Chinese Hamster Ovary (CHO) cells than either a murine hybridoma (CC9C10) or a myeloma (SP2/0). This suggests that CHO cells may have a higher intrinsic cell surface hydrophobicity. The assay was also used to study the effect of different additives on the hydrophobic interactions of the cells. A dose-dependent effect was shown for the non-ionic surfactant, Pluronic F68, in reducing the hydrophobic interaction of the CHO cells. However, the pattern of the decrease due to Pluronic F68 was different for each cell line. A higher concentration of Pluronic F68 (0.2%) was required to eliminate the hydrophobic interactions of CHO cells compared to either myelomas or hybridomas, where only 0.05% was required to reduce these interactions to a similar level. Several oils were found suitable for this assay although canola oil maximized the sensitivity of the measured changes. The assay may be useful in monitoring changes in the hydrophobic interactions of mammalian cells during growth in bioreactors. This may be important in optimizing the concentration of cell protectants such as Pluronic F68 in agitated cultures.  相似文献   

20.
The cellular prion protein (PrPC), which is present ubiquitously in all mammalian neurons, is normally found to be linked to the cell membrane through a glycosylphosphatidylinositol (GPI) anchor. The conformational conversion of PrPC into misfolded and aggregated forms is associated with transmissible neurodegenerative diseases known as prion diseases. The importance of different misfolded conformations in prion diseases, and the mechanism by which prion aggregates induce neurotoxicity remain poorly understood. Multiple studies have been shown that the toxicity of misfolded prion protein is directly correlated with its ability to interact with and perturb membranes. This review describes the current progress toward understanding prion protein misfolding and aggregation, as well as the interaction of prion protein aggregates with lipid membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号