首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The Ras superfamily of small GTPases is a large family of switch-like proteins that control diverse cellular functions, and their deregulation is associated with multiple disease processes. When bound to GTP they adopt a conformation that interacts with effector proteins, whereas the GDP-bound state is generally biologically inactive. GTPase activating proteins (GAPs) promote hydrolysis of GTP, thus impeding the biological activity of GTPases, whereas guanine nucleotide exchange factors (GEFs) promote exchange of GDP for GTP and activate GTPase proteins. A number of methods have been developed to assay GTPase nucleotide hydrolysis and exchange, as well as the activity of GAPs and GEFs. The kinetics of these reactions are often studied with purified proteins and fluorescent nucleotide analogs, which have been shown to non-specifically impact hydrolysis and exchange. Most GAPs and GEFs are large multidomain proteins subject to complex regulation that is challenging to reconstitute in vitro. In cells, the activities of full-length GAPs or GEFs are typically assayed indirectly on the basis of nucleotide loading of the cognate GTPase, or by exploiting their interaction with effector proteins. Here, we describe a recently developed real-time NMR method to assay kinetics of nucleotide exchange and hydrolysis reactions by direct monitoring of nucleotide-dependent structural changes in an isotopically labeled GTPase. The unambiguous readout of this method makes it possible to precisely measure GAP and GEF activities from extracts of mammalian cells, enabling studies of their catalytic and regulatory mechanisms. We present examples of NMR-based assays of full-length GAPs and GEFs overexpressed in mammalian cells.  相似文献   

2.
The development of novel fluorescence methods for the detection of key biomolecules is of great interest, both in basic research and in drug discovery. Particularly relevant and widespread molecules in cells are ADP and GDP, which are the products of a large number of cellular reactions, including reactions catalysed by nucleoside triphosphatases and kinases. Previously, biosensors for ADP were developed in this laboratory, based on fluorophore adducts with the bacterial actin homologue ParM. It is shown in the present study that one of these biosensors, tetramethylrhodamine-ParM, can also monitor GDP. The biosensor can be used to measure micromolar concentrations of GDP on the background of millimolar concentrations of GTP. The fluorescence response of the biosensor is fast, the response time being <0.2 s. Thus the biosensor allows real-time measurements of GTPase and GTP-dependent kinase reactions. Applications of the GDP biosensor are exemplified with two different GTPases, measuring the rates of GTP hydrolysis and nucleotide exchange.  相似文献   

3.
Leucine rich repeat kinase 2 (LRRK2) is a Parkinson's disease (PD) gene that encodes a large multidomain protein including both a GTPase and a kinase domain. GTPases often regulate kinases within signal transduction cascades, where GTPases act as molecular switches cycling between a GTP bound "on" state and a GDP bound "off" state. It has been proposed that LRRK2 kinase activity may be increased upon GTP binding at the LRRK2 Ras of complex proteins (ROC) GTPase domain. Here we extensively test this hypothesis by measuring LRRK2 phosphorylation activity under influence of GDP, GTP or non-hydrolyzable GTP analogues GTPγS or GMPPCP. We show that autophosphorylation and lrrktide phosphorylation activity of recombinant LRRK2 protein is unaltered by guanine nucleotides, when co-incubated with LRRK2 during phosphorylation reactions. Also phosphorylation activity of LRRK2 is unchanged when the LRRK2 guanine nucleotide binding pocket is previously saturated with various nucleotides, in contrast to the greatly reduced activity measured for the guanine nucleotide binding site mutant T1348N. Interestingly, when nucleotides were incubated with cell lysates prior to purification of LRRK2, kinase activity was slightly enhanced by GTPγS or GMPPCP compared to GDP, pointing to an upstream guanine nucleotide binding protein that may activate LRRK2 in a GTP-dependent manner. Using metabolic labeling, we also found that cellular phosphorylation of LRRK2 was not significantly modulated by nucleotides, although labeling is significantly reduced by guanine nucleotide binding site mutants. We conclude that while kinase activity of LRRK2 requires an intact ROC-GTPase domain, it is independent of GDP or GTP binding to ROC.  相似文献   

4.
GTPase domain crystal structures of Rab5a wild type and five variants with mutations in the phosphate-binding loop are reported here at resolutions up to 1.5 A. Of particular interest, the A30P mutant was crystallized in complexes with GDP, GDP+AlF(3), and authentic GTP, respectively. The other variant crystals were obtained in complexes with a non-hydrolyzable GTP analog, GppNHp. All structures were solved in the same crystal form, providing an unusual opportunity to compare structures of small GTPases with different catalytic rates. The A30P mutant exhibits dramatically reduced GTPase activity and forms a GTP-bound complex stable enough for crystallographic analysis. Importantly, the A30P structure with bound GDP plus AlF(3) has been solved in the absence of a GTPase-activating protein, and it may resemble that of a transition state intermediate. Conformational changes are observed between the GTP-bound form and the transition state intermediate, mainly in the switch II region containing the catalytic Gln(79) residue and independent of A30P mutation-induced local alterations in the P-loop. The structures suggest an important catalytic role for a P-loop backbone amide group, which is eliminated in the A30P mutant, and support the notion that the transition state of GTPase-mediated GTP hydrolysis is of considerable dissociative character.  相似文献   

5.
6.
The Ras family of small GTPases control diverse signaling pathways through a conserved “switch” mechanism, which is turned on by binding of GTP and turned off by GTP hydrolysis to GDP. Full understanding of GTPase switch functions requires reliable, quantitative assays for nucleotide binding and hydrolysis. Fluorescently labeled guanine nucleotides, such as 2′(3′)-O-(N-methylanthraniloyl) (mant)-substituted GTP and GDP analogs, have been widely used to investigate the molecular properties of small GTPases, including Ras and Rho. Using a recently developed NMR method, we show that the kinetics of nucleotide hydrolysis and exchange by three small GTPases, alone and in the presence of their cognate GTPase-activating proteins (GAPs) and guanine nucleotide exchange factors, are affected by the presence of the fluorescent mant moiety. Intrinsic hydrolysis of mantGTP by Ras homolog enriched in brain (Rheb) is ∼10 times faster than that of GTP, whereas it is 3.4 times slower with RhoA. On the other hand, the mant tag inhibits TSC2GAP-catalyzed GTP hydrolysis by Rheb but promotes p120 RasGAP-catalyzed GTP hydrolysis by H-Ras. Guanine nucleotide exchange factor-catalyzed nucleotide exchange for both H-Ras and RhoA was inhibited by mant-substituted nucleotides, and the degree of inhibition depends highly on the GTPase and whether the assay measures association of mantGTP with, or dissociation of mantGDP from the GTPase. These results indicate that the mant moiety has significant and unpredictable effects on GTPase reaction kinetics and underscore the importance of validating its use in each assay.  相似文献   

7.
The small GTPase Rheb displays unique biological and biochemical properties different from other small GTPases and functions as an important mediator between the tumor suppressor proteins TSC1 and TSC2 and the mammalian target of rapamycin to stimulate cell growth. We report here the three-dimensional structures of human Rheb in complexes with GDP, GTP, and GppNHp (5'-(beta,gamma-imide)triphosphate), which reveal novel structural features of Rheb and provide a molecular basis for its distinct properties. During GTP/GDP cycling, switch I of Rheb undergoes conformational change while switch II maintains a stable, unusually extended conformation, which is substantially different from the alpha-helical conformation seen in other small GTPases. The unique switch II conformation results in a displacement of Gln64 (equivalent to the catalytic Gln61 of Ras), making it incapable of participating in GTP hydrolysis and thus accounting for the low intrinsic GTPase activity of Rheb. This rearrangement also creates space to accommodate the side chain of Arg15, avoiding its steric hindrance with the catalytic residue and explaining its noninvolvement in GTP hydrolysis. Unlike Ras, the phosphate moiety of GTP in Rheb is shielded by the conserved Tyr35 of switch I, leading to the closure of the GTP-binding site, which appears to prohibit the insertion of a potential arginine finger from its GTPase-activating protein. Taking the genetic, biochemical, biological, and structural data together, we propose that Rheb forms a new group of the Ras/Rap subfamily and uses a novel GTP hydrolysis mechanism that utilizes Asn1643 of the tuberous sclerosis complex 2 GTPase-activating protein domain instead of Gln64 of Rheb as the catalytic residue.  相似文献   

8.
Goody RS 《Biophysical chemistry》2003,100(1-3):535-544
A large number of GTP/GDP binding proteins, which in general have intrinsic and/or stimulatable GTPase activity, have been identified in recent years and are involved in a wide range of cellular regulatory and signal transducing processes. A common property of these proteins is that they exist in what is generally described as an active form when GTP is bound and an inactive (resting) form when GDP is present. Thus, the intrinsic or stimulated GTPase activity of these ‘enzymes’ serves to turn off a signal or to terminate a regulated process. It has been suggested that these proteins, together with ATPases whose prime function is to convert the free energy of ATP hydrolysis into another form of energy or into energy-requiring chemical reactions should be grouped together under the heading of ‘energyases’. In this article, this suggestion is examined from the point of view of identifying the role of the free-energy of hydrolysis of GTP in the signal-transducing or regulatory process of the GTPases. It is concluded that there is a qualitative difference between ATPases and classical GTPases, in the sense that a quantitative relationship between the free-energy of GTP hydrolysis and the appearance of this energy in a different form cannot be directly defined. The significance of the high free energy of hydrolysis is that it allows efficient transition from the active to the inactive state of GTPases in spite of the tendency of the strong interaction of the GTP-bound form with a partner molecule (‘effector’), an essential feature of their mode of action, to stabilize the GTP-bound form.  相似文献   

9.
BACKGROUND: The signal recognition particle (SRP) is a phylogenetically conserved ribonucleoprotein that mediates cotranslational targeting of secreted and membrane proteins to the membrane. Targeting is regulated by GTP binding and hydrolysis events that require direct interaction between structurally homologous "NG" GTPase domains of the SRP signal recognition subunit and its membrane-associated receptor, SR alpha. Structures of both the apo and GDP bound NG domains of the prokaryotic SRP54 homolog, Ffh, and the prokaryotic receptor homolog, FtsY, have been determined. The structural basis for the GTP-dependent interaction between the two proteins, however, remains unknown. RESULTS: We report here two structures of the NG GTPase of Ffh from Thermus aquaticus bound to the nonhydrolyzable GTP analog GMPPNP. Both structures reveal an unexpected binding mode in which the beta-phosphate is kinked away from the binding site and magnesium is not bound. Binding of the GTP analog in the canonical conformation found in other GTPase structures is precluded by constriction of the phosphate binding P loop. The structural difference between the Ffh complex and other GTPases suggests a specific conformational change that must accompany movement of the nucleotide from an "inactive" to an "active" binding mode. CONCLUSIONS: Conserved side chains of the GTPase sequence motifs unique to the SRP subfamily may function to gate formation of the active GTP bound conformation. Exposed hydrophobic residues provide an interaction surface that may allow regulation of the GTP binding conformation, and thus activation of the GTPase, during the association of SRP with its receptor.  相似文献   

10.
RAS GTPase is a prototype for nucleotide-binding proteins that function by cycling between GTP and GDP, with hydrogen atoms playing an important role in the GTP hydrolysis mechanism. It is one of the most well studied proteins in the superfamily of small GTPases, which has representatives in a wide range of cellular functions. These proteins share a GTP-binding pocket with highly conserved motifs that promote hydrolysis to GDP. The neutron crystal structure of RAS presented here strongly supports a protonated γ-phosphate at physiological pH. This counters the notion that the phosphate groups of GTP are fully deprotonated at the start of the hydrolysis reaction, which has colored the interpretation of experimental and computational data in studies of the hydrolysis mechanism. The neutron crystal structure presented here puts in question our understanding of the pre-catalytic state associated with the hydrolysis reaction central to the function of RAS and other GTPases.  相似文献   

11.
The biological activities of Rho family GTPases are controlled by their guanine nucleotide binding states in cells. Here we have investigated the role of Mg(2+) cofactor in the guanine nucleotide binding and hydrolysis processes of the Rho family members, Cdc42, Rac1, and RhoA. Differing from Ras and Rab proteins, which require Mg(2+) for GDP and GTP binding, the Rho GTPases bind the nucleotides in the presence or absence of Mg(2+) similarly, with dissociation constants in the submicromolar concentration. The presence of Mg(2+), however, resulted in a marked decrease in the intrinsic dissociation rates of the nucleotides. The catalytic activity of the guanine nucleotide exchange factors (GEFs) appeared to be negatively regulated by free Mg(2+), and GEF binding to Rho GTPase resulted in a 10-fold decrease in affinity for Mg(2+), suggesting that one role of GEF is to displace bound Mg(2+) from the Rho proteins. The GDP dissociation rates of the GTPases could be further stimulated by GEF upon removal of bound Mg(2+), indicating that the GEF-catalyzed nucleotide exchange involves a Mg(2+)-independent as well as a Mg(2+)-dependent mechanism. Although Mg(2+) is not absolutely required for GTP hydrolysis by the Rho GTPases, the divalent ion apparently participates in the GTPase reaction, since the intrinsic GTP hydrolysis rates were enhanced 4-10-fold upon binding to Mg(2+), and k(cat) values of the Rho GTPase-activating protein (RhoGAP)-catalyzed reactions were significantly increased when Mg(2+) was present. Furthermore, the p50RhoGAP specificity for Cdc42 was lost in the absence of Mg(2+) cofactor. These studies directly demonstrate a role of Mg(2+) in regulating the kinetics of nucleotide binding and hydrolysis and in the GEF- and GAP-catalyzed reactions of Rho family GTPases. The results suggest that GEF facilitates nucleotide exchange by destabilizing both bound nucleotide and Mg(2+), whereas RhoGAP utilizes the Mg(2+) cofactor to achieve high catalytic efficiency and specificity.  相似文献   

12.
Ras guanine nucleotide binding protein (GTPase) activation is a widely assessed readout in cell biological studies. We describe an improved approach for the quantitative analysis of total GDP and GTP bound to Ras. The present method involves HPLC separation and online detection/quantitation of Ras-bound [(32)P]-labelled GDP/GTP. As compared to standard approaches that are time consuming and/or provide only semi-quantitative data, this technique allows the rapid processing of large numbers of samples for the quantitative determination of Ras-bound GDP and GTP.  相似文献   

13.
Unlike other GTPases, interferon-gamma-induced human guanylate binding protein-1 has the ability to hydrolyze GTP to both GDP and GMP, with GMP being the major product of the reaction. This protein has two domains, an N-terminal globular domain and a C-terminal helical domain. These two domains are connected by a short intermediate region consisting of a two-stranded β-sheet and a helix. As human guanylate binding protein-1 has been shown to undergo stimulated GTPase activity without external GTPase-activating protein, we sought to understand the roles of each of the two individual domains, the intermediate region, a conserved motif (103DXEKGD108), and the mechanism of the stimulation of GTPase activity. The steady-state assays using radiolabeled [α-32P]GTP on the wild-type protein suggest that the stimulation of activity primarily occurs during the cleavage of the second phosphate of GTP rather than the first, through allosteric interaction. Using several truncated and mutant proteins, we demonstrate for the first time that both the α-helix of the intermediate region and the 103DXEKGD108 motif play critical roles for the hydrolysis to GMP, but they appear to act in different ways: α-helix acts through structural stabilization by allosteric interaction and, thus, acts as an internal GTPase-activating protein, whereas the motif might act by providing necessary catalytic residues. Our data also show that the N-terminal globular domain is able to perform only the first catalysis (GTP to GDP, an activity associated with basal level), but the helical domain in the full-length protein stimulates the hydrolysis of GTP to GMP with higher GMP formation by preventing the dissociation of GDP-bound enzyme dimer.  相似文献   

14.
The mechanism of oligomerization and its role in the regulation of activity in large GTPases are not clearly understood. Human guanylate binding proteins (hGBP-1 and 2) belonging to large GTPases have the unique feature of hydrolyzing GTP to a mixture of GDP and GMP with unequal ratios. Using a series of truncated and mutant proteins of hGBP-1, we identified a hydrophobic helix in the connecting region between the two domains that plays a critical role in dimerization and regulation of the GTPase activity. The fluorescence with 1-8-anilinonaphthalene sulfonate and circular dichroism measurements together suggest that in the absence of the substrate analog, the helix is masked inside the protein but becomes exposed through a substrate-induced conformational switch, and thus mediates dimerization. This is further supported by the intrinsic fluorescence experiment, where Leu298 of this helix is replaced by a tryptophan. Remarkably, the enzyme exhibits differential GTPase activities depending on dimerization; a monomer produces only GDP, but a dimer gives both GDP and GMP with stimulation of the activity. An absolute dependence of GMP formation with dimerization demonstrates a cross talk between the monomers during the second hydrolysis. Similar to hGBP-1, hGBP-2 showed dimerization-related GTPase activity for GMP formation, indicating that this family of proteins follows a broadly similar mechanism for GTP hydrolysis.  相似文献   

15.
To investigate mechanisms that underlie different modes of tumor cell movement we have studied how regulation of the activity of the Rho family GTPases determines the mode of tumor cell movement. Guanine nucleotide exchange factors (GEFs) and GTPase accelerating proteins (GAPs) are key regulators of the activity of small GTPases with GEFs promoting activation to the GTP bound state and GAPs promoting inactivation by stimulating GTP hydrolysis. We identified two important signaling pathways regulating amoeboid and mesenchymal types of motility in melanoma. Here, we discuss our findings in the context of how specificity of Rho signaling is achieved by GEFs and GAPs.  相似文献   

16.
This theoretical work covers structural and biochemical aspects of nucleotide binding and GDP/GTP exchange of GTP hydrolases belonging to the family of small GTPases. Current models of GDP/GTP exchange regulation are often based on two specific assumptions. The first is that the conformation of a GTPase is switched by the exchange of the bound nucleotide from GDP to GTP or vice versa. The second is that GDP/GTP exchange is regulated by a guanine nucleotide exchange factor, which stabilizes a GTPase conformation with low nucleotide affinity. Since, however, recent biochemical and structural data seem to contradict this view, we present a generalized scheme for GTPase action. This novel ansatz accounts for those important cases when conformational switching in addition to guanine nucleotide exchange requires the presence of cofactors, and gives a more nuanced picture of how the nucleotide exchange is regulated. The scheme is also used to discuss some problems of interpretation that may arise when guanine nucleotide exchange mechanisms are inferred from experiments with analogs of GTP, like GDPNP, GDPCP, and GDP γ S.  相似文献   

17.
Ras-like small GTPases cycle between GTP-bound active and GDP-bound inactive conformational states to regulate diverse cellular processes. Despite their importance, detailed kinetic or comparative studies of family members are rarely undertaken due to the lack of real-time assays measuring nucleotide binding or exchange. Here we report a bead-based flow cytometric assay that quantitatively measures the nucleotide binding properties of glutathione-S-transferase (GST) chimeras for prototypical Ras family members Rab7 and Rho. Measurements are possible in the presence or absence of Mg2+, with magnesium cations principally increasing affinity and slowing nucleotide dissociation rates 8- to 10-fold. GST-Rab7 exhibited a 3-fold higher affinity for guanosine diphosphate (GDP) relative to guanosine triphosphate (GTP) that is consistent with a 3-fold slower dissociation rate of GDP. Strikingly, GST-Rab7 had a marked preference for GTP with ribose ring-conjugated BODIPY FL. The more commonly used γ-NH-conjugated BODIPY FL GTP analogue failed to bind to GST-Rab7. In contrast, both BODIPY analogues bound equally well to GST-RhoA and GST-RhoC. Comparisons of the GST-Rab7 and GST-RhoA GTP binding pockets provide a structural basis for the observed binding differences. In sum, the flow cytometric assay can be used to measure nucleotide binding properties of GTPases in real time and to quantitatively assess differences between GTPases.  相似文献   

18.
Guo Z  Ahmadian MR  Goody RS 《Biochemistry》2005,44(47):15423-15429
Guanine nucleotide exchange factors are essential components of the mode of action of GTPases involved in signal transduction. Their fundamental mechanism is generally accepted to derive from stabilization of the nucleotide-free form of GTPases, which is reflected in an increase in the rate of GDP dissociation when such an exchange factor is bound to a GTPase. The known kinetic properties of exchange factors can be explained on the basis of this simple allosteric competitive mechanism. Here, we describe experiments designed to distinguish this mechanism from a newer model, which invokes an active role for the incoming (i.e., displacing) nucleotide, implying the transient formation of a quaternary complex consisting of an exchange factor, a GTPase, and two nucleotides, one which is being displaced while the other stimulates this displacement. We show that for a well-known system (the small GTPase Ras and its exchange factor Cdc25) there is no evidence for an effect of the concentration or the nature (i.e., GDP or GTP) of the displacing nucleotide on the rate constant of GDP release from the Cdc25.Ras.GDP complex, consistent with the simple allosteric competitive model, and in disagreement with the newer suggestion. In addition, we present arguments, which demonstrate how the erroneous conclusions leading to the alternative model were derived.  相似文献   

19.
The mechanism of the Mg2+-dependent myosin subfragment 1 catalyzed hydrolysis of GTP and 2-amino-6-mercapto-9-beta-ribofuranosylpurine 5'-triphosphate (thioGTP) has been investigated by rapid-reaction techniques. The myosin was isolated from rabbit skeletal muscle. The steady-state intermediate of these reactions consists pre-dominantly of a protein-substrate complex unlike the myosin subfragment 1 ATPase reaction which has a protein-products complex as the principal steady-state component. The mechanism of GTP hydrolysis catalyzed by subfragment 1 has other marked differences from the ATPase mechanism. The second-order rate constant of binding of GTP to subfragment 1 is tenfold greater than that for GDP binding. The dissociation rate constant of GDP from subfragment 1 is 0.06 s-1 compared with the subfragment 1 catalytic center activity for GTP hydrolysis of 0.5 s-1 at pH 8.0 and 20 degrees C. This shows that GDP bound to subfragment 1 forms a complex which is not kinetically competent to be an intermediate of the GTPase mechanism. GDP is hydrolyzed in the presence of subfragment 1 to GMP and Pi. The subfragment 1 GTPase mechanism has a nuber if features in common with that of the elongation factor Tu GTPase of the protein biosynthetic system of Escherichia coli.  相似文献   

20.
LRRK2 is a 250 kDa multidomain protein, mutations in which cause familial Parkinson's disease. Previously, we have demonstrated that the R1441C mutation in the ROC domain decreases GTPase activity. Here we show that the R1441C alters the folding properties of the ROC domain, lowering its thermodynamic stability. Similar to small GTPases, binding of different guanosine nucleotides alters the stability of the ROC domain, suggesting that there is an alteration in conformation dependent on GDP or GTP occupying the active site. GTP/GDP bound state also alters the self-interaction of the ROC domain, accentuating the impact of the R1441C mutation on this property. These data suggest a mechanism whereby the R1441C mutation can reduce the GTPase activity of LRRK2, and highlights the possibility of targeting the stability of the ROC domain as a therapeutic avenue in LRRK2 disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号