首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sendai virus particles bind to human erythrocytes at 4 degrees C and fuse with them at 37 degrees C. The present work describes a new method by which adsorbed virus particles can be removed from human erythrocytes, allowing quantitative determination of the number of virus particles which can bind and fuse with human erythrocyte membranes. Through the use of 125I-labeled Sendai virus particles, it is shown that incubation with 50 mM dithiothreitol removed about 90 to 95% of adsorbed virus particles. Fused virus particles were resistant to treatment with dithiothreitol. Negligible amounts of 125I-labeled Sendai virus particles were removed by treatment with dithiothreitol after incubation of virus-cell complexes at 37 degrees C. Trypsinized virus particles were able to attach to, but not fuse with, human erythrocytes even after prolonged incubation at 37 degrees C. Treatment with dithiothreitol removed as much as 80 to 85% of trypsinized virus particles incubated with human erythrocytes at 37 degrees C. A quantitative determination revealed that about 1,000 to 1,200 and 600 to 800 Sendai virus particles can bind to or fuse with human erythrocytes, respectively.  相似文献   

2.
Ehrlich ascites tumor cell membranes were completely modified after incubation at 37 °C for 30 min with a small dose of HVJ (about 0.7% of the maximum number of the virus particles that could be adsorbed onto the cells). After this treatment, the cells could adsorb further added HVJ onto their surfaces at 0 °C. But the cell agglutination which was induced by viral adsorption at 0 °C was very weak, and the interaction of the adsorbed virus with the lipid layer of the cell membrane at 37 °C preceding fusion or lysis of the cells was not strong. A discrepancy was observed between acquisition of the modification and liberation of sialic acid (destruction of viral receptors) by viral neuraminidase. The modification proceeded well on incubation at 37 °C but not at lower temperatures. The possibility that the modification is induced by fusion of viral envelopes with cell membranes is discussed.  相似文献   

3.
S Nir  K Klappe  D Hoekstra 《Biochemistry》1986,25(8):2155-2161
The kinetics and extent of fusion between Sendai virus and erythrocyte ghosts were investigated with an assay for lipid mixing based on the relief of self-quenching of fluorescence. The results were analyzed in terms of a mass action kinetic model, which views the overall fusion reaction as a sequence of a second-order process of virus-cell adhesion followed by the first-order fusion reaction itself. The fluorescence development during the course of the fusion process was calculated by numerical integration, employing separate rate constants for the adhesion step and for the subsequent fusion reaction. Dissociation of virus particles from the cells was found to be of minor importance when fusion was initiated by mixing the particles at 37 degrees C. However, besides the initiation of fusion, extensive dissociation does occur after a preincubation of a concentrated suspension of particles at 4 degrees C followed by a transfer of the sample to 37 degrees C. The conclusion drawn from the levels of fluorescence increase obtained after 20 h of incubation is that in principle most virus particles can fuse with the ghosts at 37 degrees C and pH 7.4. However, the number of Sendai virus particles that actually fuse with a single ghost is limited to 100-200, despite the fact more than 1000 particles can bind to one cell. This finding may imply that 100-200 specific fusion sites for Sendai virus exist on the erythrocyte membrane. A simple equation can yield predictions for the final levels of fluorescence for a wide range of ratios of virus particles to ghosts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
A kinetic and quantitative analysis of the binding and fusion of Sendai virus with erythrocyte membranes was performed by using a membrane fusion assay based on the relief of fluorescence self-quenching. At 37 degrees C, the process of virus association displayed a half time of 2.5 min; at 4 degrees C, the half time was 3.0 min. The fraction of the viral dose which became cell associated was independent of the incubation temperature and increased with increasing target membrane concentration. On the average, one erythrocyte ghost can accommodate ca. 1,200 Sendai virus particles. The stability of viral attachment was sensitive to a shift in temperature: a fraction of the virions (ca. 30%), attached at 4 degrees C, rapidly (half time, ca. 2.5 min) eluted from the cell surface at 37 degrees C, irrespective of the presence of free virus in the medium. The elution can be attributed to a spontaneous, temperature-induced release, rather than to viral neuraminidase activity. Competition experiments with nonlabeled virus revealed that viruses destined to fuse do not exchange with free particles in the medium but rather bind in a rapid and irreversible manner. The fusion rate of Sendai virus was affected by the density of the virus particles on the cell surface and became restrained when more than 170 virus particles were attached per ghost. In principle, all virus particles added displayed fusion activity. However, at high virus-to-ghost ratios, only a fraction actually fused, indicating that a limited number of fusion sites exist on the erythrocyte membrane. We estimate that ca. 180 virus particles maximally can fuse with one erythrocyte ghost.  相似文献   

5.
Epoxyeicosatrienoic acids (EETs) are candidate endothelium-derived hyperpolarizing factors that demonstrate a wide range of biological effects. The presence of both cis- and trans-EETs in rat plasma was identified with HPLC-electrospray ionization tandem mass spectrometry in this study. The total EETs in plasma are 38.2 ng/ml with cis-EETs representing 21.4 +/- 0.4 ng/ml and trans-EETs 16.8 +/- 0.4 ng/ml. EETs in RBCs were estimated to be 20.2 ng/10(9) RBCs, which corresponds to 200 ng in RBCs contained in 1 ml blood. RBC incubation with 10 mM tert-butyl hydroperoxide resulted in 4.4-fold increase of total cis-EETs (from 9.2 to 40.2 ng/10(9) RBCs) and 5.5-fold increase of total trans-EETs (from 11.0 to 60.8 ng/10(9) RBCs). EETs were released (2 ng/ml) from RBCs after incubation at 37 degrees C for 10 min even after being washed 3 times, indicating that RBCs are reservoirs of plasma EETs. The identification of cis- and trans-EETs in RBCs and in plasma as well as their release from RBCs suggest a vasoregulatory role of RBCs in view of their potent vasoactivity.  相似文献   

6.
The early interactions of LLC-MK2 cell-grown noninfectious Sendai virus and a murine cell line, P815 mastocytoma ascitic cells, were studied by electron microscopy, using the ferritin-conjugated antibody technique with anti-virus glycoprotein serum. For comparison, the interactions of egg-grown infectious Sendai virus with the same cells were also examined. When noninfectious virus was adsorbed to the cells in the cold, the cell membranes become partially invaginated at the site of contact of adsorbed virions, but ferritin-conjugated antibodies did not penetrate into the areas of envelope-cell membrane association. This pattern of virus attachment was similar to that of infectious virus attachment. Upon subsequent incubation at 37 degrees C, most of the adsorbed noninfectious virions were taken into cytoplasmic vesicles and then degraded, although a few virions remained attached to the cell membrane. No evidence of fusion of envelopes of noninfectious virions was obtained. On the other hand, envelopes of infectious virions fused with the cell membrane, and the transferred viral antigens diffused on the cell surfaces and then decreased in number.  相似文献   

7.
The process of cell fusion of Madin-Darby canine kidney (MDCK) cells by HVJ (Sendai virus) was investigated to determine whether the HVJ particles were directly associated with the site of membrane fusion. Confluent monolayer cultures of MDCK cells are sealed together by tight junctions on the apices of their lateral membranes, so added virus particles can be adsorbed only to the apical surfaces of the cells. After incubation with HVJ at 37 degrees C for 30 min, the cells still appeared mononucleate and unfused by light microscopy, but electron microscopic examination showed that fusion at the lateral membranes had occurred below the tight junctions. Furthermore, when fluorescein isothiocyanate (FITC)-labeled macromolecules, which cannot pass across the gap junctions, were injected into the cells at this stage, labeled macromolecules were found to diffuse into the adjacent cells. These findings strongly suggest that cell fusion was initiated in the lateral membrane, a region distinct from the site of adsorbed HVJ particles. Thus, the virus particles were not directly associated with the fusion site, but induced fusion of the lateral membranes indirectly.  相似文献   

8.
The uptake of minute virus of mice into cells in tissue culture was examined biochemically and by electron microscopy. Cell-virus complexes were formed at 4 degrees C, and uptake of virus was followed after the cells were shifted to 37 degrees C. The infectious particles appeared to enter cells at 37 degrees C by a two-step process. The first and rapid phase was measured by the resistance of cell-bound virus to elution by EDTA. The bulk of the bound virus particles became refractory to elution with EDTA within 30 min of incubation at 37 degrees C. The infectious particles became resistant to EDTA elution at the same rate. The second, slower phase of the uptake process was measured by the resistance of infectious particles to neutralization by antiserum. This process was complete within 2 h of incubation at 37 degrees C. During this 2-h period, labeled viral DNA became progressively associated with the nuclear fraction of disrupted cells. The uptake of infectious virus could occur during the G1 phase of the cell cycle and was not an S phase-specific event. The uptake process was not the cause of the S phase dependence of minute virus of mice replication. In electron micrographs, virus absorbed to any area of the cell surface appeared to be taken into the cell by pinocytosis.  相似文献   

9.
Intact Sendai virus particles were radiolabeled by the use of chloramine-T and Na 125I. The method described is reproducible, efficient and appropriate for the preparation of large quantities of biologically active virus with relatively high specific activity. Gel electrophoresis analysis of the radiolabeled virus revealed that approx. 50% of the total 125I incorporated in the virus are associated with the two viral envelope glycoproteins, while the remaining 50% are evenly distributed throughout the other viral polypeptides. The 125I-virus particles were used to study some of the kinetic parameters of the interaction between Sendai virus particles and human erythrocytes. Binding of virus particles at 4 °C is irreversible, non-cooperative and exhibits a characteristic saturation curve. A maximum of 1–2 × 103 virus particles bound per cell was derived from the saturation curve. Non-radioactive native virus particles as well as isolated glycophorin molecules competitively inhibit binding of the 125I-virus particles to human erythrocytes. Incubation at 37 °C of the virus-erythrocyte complex resulted in the release of about 33% of the bound virus to the surrounding medium.  相似文献   

10.
Intact Sendai virus particles were radiolabeled by the use of chloramine-T and Na 125I. The method described is reproducible, efficient and appropriate for the preparation of large quantities of biologically active virus with relatively high specific activity. Gel electrophoresis analysis of the radiolabeled virus revealed that approx. 50% of the total 125I incorporated in the virus are associated with the two viral envelope glycoproteins, while the remaining 50% are evenly distributed throughout the other viral polypeptides. The 125I-virus particles were used to study some of the kinetic parameters of the interaction between Sendai virus particles and human erythrocytes. Binding of virus particles at 4 °C is irreversible, non-cooperative and exhibits a characteristic saturation curve. A maximum of 1–2 × 103 virus particles bound per cell was derived from the saturation curve. Non-radioactive native virus particles as well as isolated glycophorin molecules competitively inhibit binding of the 125I-virus particles to human erythrocytes. Incubation at 37 °C of the virus-erythrocyte complex resulted in the release of about 33% of the bound virus to the surrounding medium.  相似文献   

11.
12.
Reductions in red blood cell membrane deformability (RBC(D)) may perturb microcirculatory blood flow and impair tissue O(2)-availability. We investigated the effect of assay temperature on the distribution of RBC(D) in endotoxin (LPS) incubated and control RBCs. Fresh blood from healthy rats was incubated with and without the presence of LPS for 6 hrs. An index of red blood cell membrane deformability, delta, was measured via the micropipette aspiration technique at 25 degrees C and 37 degrees C at 0, 2 and 6 hrs of incubation. The ATP content of RBC was measured by the luciferin-luciferase technique. At 25 degrees C, LPS caused a significant decrease in mean delta after 2 and 6 hours incubation compared to controls (-10.0%, p=0.03 and -24.0%, p=0.03, respectively) characterized by a left shift in the distribution (skewness: -1.4). However, at 37 degrees C a significant decrease in delta was only detected after 6 hrs of LPS incubation (-13.8%, p=0.01, compared to -5.1%, p=0.7 at 2 hours) and lacked the left shifted distribution (skewness: 0.2). No significant difference in ATP content of RBCs was observed between groups. We have shown that LPS incubation results in a significant decrease in RBC(D) and that room temperature measurement of physical membrane properties may exaggerate the differences between normal and perturbed RBCs.  相似文献   

13.
Phenotypic mixing between Sendai virus and vesicular stomatitis virus (VSV) or the mutant VSV ts045 was studied. Conditions were optimized for double infection, as shown by immunofluorescence microscopy. Virions from double-infected cells were separated by sequential velocity and isopycnic gradient centrifugations. Two types of particles with mixed protein compositions were found. One type was VSV particles with Sendai virus spikes, i.e., phenotypically mixed particles. A second type was Sendai virus-VSV associations, which in plaque assays also behaved as phenotypically mixed particles. The ratio of VSV G protein to Sendai virus glycoproteins on the cell surface was varied, using the VSV mutant ts045 in double infections. Thus, different amounts of the VSV G protein were allowed to reach the cell surface at 32, 38, and 39 degrees C in Sendai virus-infected cells. However, a fixed number of Sendai virus spikes was always found in the ts045 virions. This represented 12 to 16% of the number of G proteins present in normal VSV. Furthermore, the yield of ts045 virions was radically reduced during double infection when the temperature was raised to block G-protein transport to the cell surface, suggesting that the Sendai virus glycoproteins were not able to compensate for G protein in budding. These results emphasize the role of the G protein in VSV assembly.  相似文献   

14.
Single cell clones of latently infected mouse neuroblastoma cells were isolated from a culture chronically infected with mouse hepatitis virus in the presence of an antiviral antibody. These cell clones did not produce infections virus or exhibit viral cytopathic effects during cultivation at 32, 37, or 39°C. Infectious virus was isolated from single cell clones via fusion with permissive cells using polyethylene glycol, but not after fusion with inactivated Sendai virus or following treatment with metabolic inhibitors. One cell clone (S-3) from which virus was rescued was negative for viral antigen by immunofluorescence. The S-3 cell clone and no demonstrable virus antigen by complement-fixation tests using cytoplasmic extracts or virus-specified proteins detectable by polyacrylamide gel electrophoresis. The rescued viruses exhibited a temperature dependent growth defect at 32°C and have been classified as cold sensitive mutants. This study suggests that a complete genome of a positive stranded RNA virus can remain latent in infected cells without the expression of detectable virus antigen.  相似文献   

15.
Human immunodeficiency virus (HIV) was purified by sucrose gradient centrifugation and labeled with octadecylrhodamine B-chloride (R-18) under conditions resulting in 90% quenching of the fluorescence label. Incubation of R-18-labeled HIV (R-18/HIV) with CD4-positive CEM and HUT-102 cells, but not with CD4-negative MLA-144 cells, resulted in fluorescence dequenching (DQ, increase in fluorescence) of 20-25%. Similar level of DQ was observed upon incubation of CEM cells with R-18-labeled Sendai virus. DQ was observed when R-18/HIV was incubated with CD4+ cells at 37 degrees C, but not at 4 degrees C. Most of the increase in fluorescence occurred within 5 min of incubation at 37 degrees C and was independent of medium pH over the range of pH 5-8. Preincubation of cells with the lysosomotropic agent NH4Cl had no inhibitory effect on DQ. Complete inhibition was observed when target cells were fixed with glutaraldehyde prior to R-18/HIV addition. Our results demonstrate application of membrane fluorescence dequenching method to a quantitative measurement of fusion between HIV and target cell membranes. As determined by DQ, HIV penetrates into target cells by a rapid, pH-independent, receptor-mediated and specific process of fusion between viral envelope and cell plasma membrane, quite similar to that observed with Sendai virus.  相似文献   

16.
17.
18.
A method was developed for directly observing the inner surfaces of plasma membranes by light and electron microscopy. Human erythrocytes were attached to cover slips (glass or mica) treated with aminopropylsilane and glutaraldehyde, and then disrupted by direct application of a jet of buffer, which removed the distal portion of the cells, thus exposing the cytoplasmic surface (PS) of the flattened membranes. Antispectrin antibodies and Sendai virus particles were employed as sensitive markers for, respectively, the PS and the external surface (ES) of the membrane; their localization by immunofluorescence or electron microscopy demonstrated that the major asymmetrical features of the plasma membrane were preserved. The fusion of Sendai virus particles with cells was investigated using double- labeling immunofluorescence techniques. Virus adsorbed to the ES of cells at 4 degrees C was not accessible to fluorescein-labeled antibodies applied from the PS side. After incubation at 37 degrees C, viral antigens could be detected at the PS. These antigens, however, remained localized and did not diffuse from the site of attachment, as is usually seen in viral antigens accessible on the ES. They may therefore represent internal viral antigens not incorporated into the plasma membrane as a result of virus-cell fusion.  相似文献   

19.
Incubation of intact Sendai virions or reconstituted Sendai virus envelopes with phosphatidylcholine/cholesterol liposomes at 37 degrees C results in virus-liposome fusion. Neither the liposome nor the virus content was released from the fusion product, indicating a nonleaky fusion process. Only liposomes possessing virus receptors, namely sialoglycolipids or sialoglycoproteins, became leaky upon interaction with Sendai virions. Fusion between the virus envelopes and phosphatidylcholine/cholesterol liposomes was absolutely dependent upon the presence of intact and active hemagglutinin/neuraminidase and fusion viral envelope glycoproteins. Fusion between Sendai virus envelopes and phosphatidylcholine/cholesterol liposomes lacking virus receptors was evident from the following results. Anti-Sendai virus antibody precipitated radiolabeled liposomes only after they had been incubated with fusogenic Sendai virions. Incubation of N-4-nitrobenzo-2-oxa-1,3-diazole-labeled fusogenic reconstituted Sendai virus particles with phosphatidylcholine/cholesterol liposomes resulted in fluorescence dequenching. Incubation of Tb3+-containing virus envelopes with phosphatidylcholine/cholesterol liposomes loaded with sodium dipicolinate resulted in the formation of the chelation complex Tb3+-dipicolinic acid, as was evident from fluorescence studies. Virus envelopes fuse efficiently also with neuraminidase/Pronase-treated erythrocyte membranes, i.e. virus receptor-depleted erythrocyte membranes, although fusion occurred only under hypotonic conditions.  相似文献   

20.
Influenza A virus particles (2 x 10(6)) were inoculated onto copper or stainless steel and incubated at 22 degrees C at 50 to 60% relative humidity. Infectivity of survivors was determined by utilizing a defined monolayer with fluorescent microscopy analysis. After incubation for 24 h on stainless steel, 500,000 virus particles were still infectious. After incubation for 6 h on copper, only 500 particles were active.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号