首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Particulate fraction associated protein kinase activity was studied in human polymorphonuclear leukocytes stimulated by bacteria. Staphylococcus aureus was found to increase particulate fraction associated protein kinase C activity in a time and concentration dependent manner. The increase comprised both the phospholipid dependent and independent kinase activity and was augmented by addition of serum. Similar observations were done using Staphylococcus epidermidis and Klebsiellae pneumoniae. However, Escherichia coli only increased the phospholipid independent kinase activity in the particulate fraction, which suggests the presence of protease activity.  相似文献   

2.
A calcium-activated, phospholipid-dependent protein kinase (protein kinase C) was purified to near homogeneity from human polymorphonuclear leukocytes and shown to be identical to bovine protein kinase C. The Ca2+ activation of the enzyme was studied and the Ca2+ concentrations required to activate the enzyme were compared to free cytosolic Ca2+ concentrations in resting and activated polymorphonuclear leukocytes. The free calcium concentrations in the cytosol and in the enzyme assay mixture were determined using the calcium indicator quin 2. The enzyme activity was almost totally dependent upon phosphatidylserine and could be strongly activated by Ca2+ concentrations in the micromolar range, but was not activated by phosphatidylserine at Ca2+ concentrations corresponding to the intracellular free Ca2+ concentration under resting conditions. However, at similar Ca2+ concentrations (less than 2.5 X 10(-7) M) the enzyme was highly activated by phorbol 12-myristate 13-acetate (PMA) or diolein in the presence of phosphatidylserine. It was demonstrated that PMA stimulation of human polymorphonuclear leukocytes did not induce any increase in the level of the intracellular free calcium concentration. It was concluded that PMA activation of protein kinase C occurred independently of a rise in the intracellular Ca2+ concentration. K0.5 (half-maximal activation) for the PMA activation of purified protein kinase C was shown to be equivalent to the K0.5 for PMA stimulation of superoxide (O-2) production in human polymorphonuclear leukocytes, suggesting that protein kinase C is involved in activation of the NADPH oxidase. The presumed intracellular Ca2+ antagonist TMB-8 inhibited the PMA-induced superoxide production, but neither by an intracellular Ca2+ antagonism nor by a direct inhibition of protein kinase C activity.  相似文献   

3.
To determine whether insulin activates protein kinase C in BC3H-1 myocytes, we evaluated changes in protein phosphorylation, protein kinase activities, and the intracellular translocation of protein kinase C activity in response to insulin and phorbol esters. Phorbol 12-myristate 13-acetate (PMA), but not insulin, stimulated the phosphorylation of an acidic Mr 80,000 protein which has been shown to be an apparently specific marker for protein kinase C activation. In addition, PMA, but not insulin, stimulated the rapid association of protein kinase C activity with a cellular particulate fraction. In contrast to these differences, both insulin and PMA stimulated the phosphorylation of ribosomal protein S6 and activated a ribosomal protein S6 kinase in cell-free extracts from cells exposed to these agents. In cells exposed to high concentrations of PMA for 16 h, protein kinase C activity and immunoreactivity were abolished, without changes in cellular morphology. Under these conditions, insulin, but not PMA, stimulated phosphorylation of the ribosomal protein S6 in intact cells and activated the S6 kinase in cell-free extracts derived from insulin-treated intact cells. We conclude that: insulin does not appear to activate protein kinase C in BC3H-1 myocytes, at least as assessed by phosphorylation of the Mr 80,000 protein; both insulin and PMA activate an S6 protein kinase in these cells; and insulin can promote S6 phosphorylation and activate the S6 kinase normally in protein kinase C-deficient cells. Activation of the S6 kinase by insulin and PMA, although apparently proceeding through different mechanisms, may explain some of the similar biological actions of these compounds in BC3H-1 myocytes.  相似文献   

4.
A calcium-activated, phospholipid-dependent protein kinase (protein kinase C) was purified to near homogeneity from bovine polymorphonuclear leucocytes. The purified enzyme had a specific activity of 10 000 U/mg protein and on SDS gelelectrophoresis the Mr was 88 000. The enzyme activity was almost totally dependent upon phosphatidylserine and could be strongly activated by Ca2+ concentrations in the micromolar range. At lower concentrations of calcium (less than 1 X 10(-7) M) the enzyme was only activated by the simultaneous presence of phosphatidylserine and diolein. Phorbol 12-myristate 13-acetate mimicked the effect of diolein and partially activated the enzyme. Protein kinase C activity and the phorbolester binding protein co-purified throughout all the purification steps.  相似文献   

5.
Many cytoplasmic proteins, including Ca2+- and phospholipid-dependent protein kinase (protein kinase C) of polymorphonuclear leukocytes (PMNs) associate in Ca2+-dependent manner with phospholipid liposomes containing cardiolipin (CL), as in the case of phosphatidylserine (PS)-containing liposomes. A crude protein kinase C fraction was purified by association of the enzyme with CL-containing liposomes (flotation method). The partially purified protein kinase C from rat brain or guinea pig PMN was activated by the CL-containing liposomes in the presence of dioleoylglycerol (DG) and Ca2+. This activation was analogous to that of PS. The half maximum activity was obtained with 20 microM CL in the presence of 1 microM Ca2+ and 5 microM DG. Many of the cytoplasmic proteins which associate with CL-containing liposomes were preferentially phosphorylated by membrane-associated protein kinase C in the presence of DG and Ca2+. These results suggest that the association of cytoplasmic protein kinase C with the membrane has an important role in regulation of protein kinase C activity in relation to the association of other cytoplasmic proteins to the membrane.  相似文献   

6.
The toxicity of polycyclic aromatic hydrocarbons such as benzo(a)pyrene, 7,12-dimethylbenz(a)anthracene, and 3-methylcholanthrene has been associated with alterations in the proliferation of vascular smooth muscle cells and the development of lesions of mesenchymal origin. Because phosphorylation of endogenous substrates plays a central role in the regulation of smooth muscle cell growth, the present studies were conducted to evaluate the phosphorylation pattern of medial aortic protein upon repeated in vivo exposure of Japanese quail to benzo(a)pyrene (BaP). Medial aortic homogenates from quail treated for 10 weeks with 10 mg/kg benzo(a)pyrene or vehicle were processed for in vitro measurements of protein phosphorylation. In vitro phosphorylation of endogenous or exogenous proteins stimulated in vitro by phorbol myristate acetate/phosphatidyl-serine or cyclic AMP, known activators of protein kinase C and cyclic AMP-dependent protein kinase, respectively, was examined in the cytosolic and particulate fractions of homogenates from control and treated animals. Benzo(a)pyrene treatment significantly enhanced the basal phosphorylation of Mr 113, 35, and 23 kDa proteins in the cytosolic fraction. Modest increases in the phosphorylation of Mr 71, 52, and 38 kDa were also observed under basal conditions. No changes in the basal phosphorylation of particulate proteins were observed. Phosphorylation of endogenous protein substrates by protein kinase C in the cytosolic fraction was not altered by benzo(a)pyrene treatment. In contrast, inhibition of C-kinase-mediated phosphorylation of endogenous Mr 272, 72, and 45 kDa proteins was observed in the particulate fraction of aortic homogenates from benzo(a)pyrene-treated quail relative to controls. Exogenous histone phosphorylation by PKC in the particulate, but not cytosolic fraction, was decreased by benzo(a)pyrene treatment. The effects of benzo(a)pyrene on the C-kinase system were specific, since cAMP-mediated phosphorylation of endogenous proteins, as well as exogenous histone, was not altered by benzo(a)pyrene. Interestingly, benzo(a)pyrene treatment was associated with a selective increase of Mr 200, 80, and 67 kDa proteins in the cytosolic fraction. Collectively, these data are consistent with the hypothesis that medial protein phosphorylation is a significant molecular target of benzo(a)pyrene within the vascular wall.  相似文献   

7.
The phosphorylation of an Mr 82,000 protein (p82) in the Triton X-100 extract of the particulate fraction of mouse epidermis is dependent on the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) or diacylglycerol and phospholipid and, contrary to protein kinase C (PKC)-catalyzed phosphorylation, cannot be activated by calcium plus phospholipid. The novel p82 kinase differs also from PKC in many other respects, such as substrate specificity, turnover rate, and sensitivity to inhibitors. The p82 kinase can be separated from PKC by chromatography on phenyl sepharose and does not react with a polyclonal PKC antiserum. Like PKC, the novel kinase phosphorylates its substrate on threonine and serine, but not on tyrosine. Similar to PKC, the epidermal p82-kinase system is down-modulated after TPA treatment of mouse skin, with a half-life of around 5 h. Down-modulation is also accomplished by the phorbol ester RPA, but not by the Ca2+ ionophore A23187, and it is inhibited by the immunosuppressive agent cyclosporin A. In addition to down-modulation, TPA treatment of the animals activates a phosphatase that dephosphorylates phosphorylated p82 in the extract of the particulate fraction.  相似文献   

8.
Interleukin-2 and phorbol 12-myristate 13-acetate (PMA) are shown to induce DNA-synthesis in human T-lymphocytes activated with phytohaemagglutinin. However, whereas PMA induced a rapid and persistent translocation of protein kinase C from cytosol to particulate fraction, no translocation was observed upon stimulation with interleukin-2. Treatment with PMA for 72 h caused a slow down-regulation of protein kinase C activity to less than 10% of unstimulated T-lymphocytes and was mainly located in the particulate fraction. In contrast, stimulation with phytohaemagglutinin increased the total cellular protein kinase C activity by approx. 100% but with an unaltered subcellular distribution. However, interleukin-2-induced DNA synthesis in PMA- and phytohaemagglutinin-stimulated T-lymphocytes was comparable. Further, maximal DNA synthesis was shown to be dependent on the continuous presence of interleukin-2. These results indicate that interleukin-2-induced proliferation of activated human T-lymphocytes can occur without a translocation of protein kinase C from the cytosol to the particulate fraction and that interleukin-2 most likely functions as a progression factor.  相似文献   

9.
Accumulating evidence indicates that protein kinase C plays an essential role in the activation of NADPH oxidase. In the present study, the correlation between superoxide generation, intracellular calcium, activation of purified protein kinase C and stabilized membrane-bound protein kinase C was studied. Phorbol 12-myristate 13-acetate (PMA) and 1-deacyl-2-acetyl-rac-glycerol (OAG) were found to induce equal activation of purified protein kinase C and translocation of protein kinase C to the membrane fraction, but differed significantly in their ability to induce superoxide generation. Intracellular calcium was varied using calcium ionophores and increasing the intracellular calcium concentration to more than 1 microM was found to induce increased superoxide generation in maximally OAG-stimulated cells; this contrasted to maximally PMA-stimulated leukocytes. Ionomycin and A23187 were both found to induce a translocation of protein kinase C to the membrane fraction. This translocation was highly dependent upon extracellular calcium. In contrast, PMA- and OAG-induced translocation of protein kinase C was not dependent upon extracellular calcium. In conclusion, our results indicate that although PMA, OAG and calcium ionophores seem to activate protein kinase C in human polymorphonuclear leukocytes these activators differ in their ability to induce superoxide generation.  相似文献   

10.
Reduced Protein Kinase C Activity in Ischemic Spinal Cord   总被引:5,自引:4,他引:1  
Protein phosphorylation was evaluated in a rabbit spinal cord ischemia model under conditions where cyclic AMP-dependent protein kinase (PK-A) and calcium/phospholipid-dependent protein kinase (PK-C) were activated. One hour of ischemia did not affect PK-A activity significantly; however, PK-C activity was reduced by more than 60%. In vitro phosphorylation of endogenous proteins by endogenous PK-C revealed that eight particulate and five cytosolic proteins showed stimulated phosphorylation by PK-C activators in control tissue, although this stimulation was virtually absent in ischemic samples. When control and ischemic particulate fractions were combined, the endogenous protein phosphorylation pattern under PK-C-activating conditions was similar to the ischemic sample, which suggests that inhibitory molecules may be present in the ischemic particulate fraction. In vitro phosphorylation of endogenous proteins under PK-A-activating conditions in ischemic tissue was similar to that in control tissue. The results suggest that the PK-C phosphorylation system is selectively impaired in ischemic spinal cord. In addition to reduced PK-C-dependent phosphorylation, an Mr 64,000 protein was phosphorylated in ischemic cytosolic samples, but not in control samples. The phosphorylation of the Mr 64,000 protein was neither PK-C-dependent nor PK-A-dependent. These altered phosphorylation reactions may play critical roles in neuronal death during the course of ischemia.  相似文献   

11.
Inhibitory actions of 1-(5-isoquinolinyl-sulfonyl)-2-methylpiperazine (H-7), N-[2-(methylamine)ethyl]-5-isoquinolinesulfonamide [H-8] and polymyxin B on the calcium-activated, phospholipid-dependent protein kinase (protein kinase C) of rat liver were compared. Using a partially purified liver protein kinase C and an exogenous substrate histone-III S, polymyxin B showed maximum inhibition (IC50, 9.5 microM) followed by H-7 (IC50, 25 microM) and H-8 (IC50, 36 microM). These inhibitors also inhibited protein kinase C-induced phosphorylation of endogenous cytosolic and particulate proteins in a dose-dependent manner though polymyxin B was relatively less effective with the particulate fraction. With the aid of protein kinase-C activators and these inhibitors, seven proteins in cytosolic (Mr 170K, 150K, 43K, 34K, 30K, 25K and 19K daltons) and six proteins in particulate (Mr 150K, 43K, 34K, 25K, 19K and 16K daltons) fractions were identified as probable substrates for protein kinase C in liver. The identity of these proteins remains to be determined.  相似文献   

12.
The effect of phorbol esters on calcium-activated, phospholipid-dependent kinase (protein kinase C) and luteinizing hormone (LH) secretion was examined in cultured rat anterior pituitary cells. The potent tumor promoter 12-O-tetra-decanoylphorbol-13-acetate (TPA) stimulated LH secretion and activated pituitary protein kinase C in the presence of calcium and phosphatidylserine. The enzyme activity present in cytosol and particulate fractions was eluted at about 0.05 M NaCl during DE52-cellulose chromatography. Preincubation of pituitary cells with TPA markedly decreased cytosolic protein kinase C activity and increased enzyme activity in the particulate fraction. The maximal TPA-induced change in enzyme activity, with a 76% decrease in cytosol and a 4.3-fold increase in the particulate fraction, occurred within 10 min. The dose-dependent changes in protein kinase C redistribution in TPA-treated cells were correlated with the stimulation of LH release by the phorbol ester. These results suggest that activation of protein kinase C by TPA is associated with intracellular redistribution of the enzyme and is related to the process of secretory granule release from gonadotrophs.  相似文献   

13.
Two proteins (Mr 46,000, pI 6.4 and 7.0), the phosphorylation of which was increased by any of the membrane-perturbing agents in parallel with activation of NADPH oxidase in intact guinea-pig polymorphonuclear leukocytes in our previous study (Okamura, N., Ohashi, S., Nagahisa, N. and Ishibashi, S. (1984) Arch. Biochem. Biophys. 228, 270-277), were also phosphorylated in a cell-free system prepared from the leukocytes. The in vitro phosphorylation of these two proteins was stimulated by the addition of phosphatidylserine in the presence of higher concentrations of Ca2+ (300-500 microM). The phosphorylation was further increased when protein kinase C partially purified from guinea-pig brain was added to the system. At a low concentration of Ca2+ (about 10 microM), stimulation of the phosphorylation was not attained by phosphatidylserine alone but required the addition of diacylglycerol or phorbol myristate acetate. On the other hand, the increase in the phosphorylation was inhibited by H-7, an inhibitor for protein kinase C. These results indicate that protein kinase C is involved in the phosphorylation of the two proteins, which may be related to the superoxide anion production stimulated by various membrane-perturbing agents.  相似文献   

14.
In vitro effects of sodium orthovanadate on protein kinase C induced phosphorylation of rat liver cytosolic and particulate proteins were examined. Vanadate enhanced the phosphorylation of six liver cytosolic proteins (Mr 170K, 150K, 80K, 34K, 25K and 19K daltons), the probable substrates for protein kinase C. There was a 2.5-fold increase in total endogenous protein phosphorylation at 2.0 mM concentration which was abolished in the presence of protein kinase C inhibitors such as 1-(5-isoquinolinyl-sulfonyl-2-methylpiperazine (H-7), N-[2-(methylamine)-ethyl]-5-isoquinolinesulfonamide (H-8) and polymyxin B. Metavanadate showed a similar stimulatory effect whereas vanadyl sulfate was inhibitory. These differential effects of vanadium salts were also observed with the particulate fraction. The results suggest that some of the effects of vanadate could be mediated through protein kinase C-induced phosphorylation of endogenous proteins.  相似文献   

15.
The distribution of calcium-activated, phospholipid-dependent protein kinase (protein kinase C) in supernatant and particulate fractions of primary cultures of rat astrocytes and its translocation by a phorbol ester were studied. We observed that 91% of protein kinase C activity in astrocytes was in the supernatant fraction, as measured by lysine-rich histone phosphorylation assay. Attempts to uncover latent activity in the particulate fraction were unsuccessful. Approximately 75% of the supernatant protein kinase C activity could be translocated to the particulate fraction by prior treatment (30-60 min) of the cultures with 100 nM 12-O-tetradecanoyl-phorbol 13-acetate (TPA), but not with 4 alpha-phorbol, an inactive phorbol ester. Investigation of endogenous substrates for protein kinase C showed that TPA treatment brought about an increase in phosphorylation in membrane proteins and a decrease in phosphorylation of supernatant proteins. These findings indicate that the distribution of protein kinase C in astrocytes differs substantially from that in whole brain tissue, where approximately two-thirds of the protein kinase C activity is associated with the particulate fraction. Because protein kinase C is concentrated in the cytosol of astrocytes and most of this activity can be translocated to membranes, astrocytes may be particularly well-suited to respond to signals that activate phosphoinositide-linked receptors in brain.  相似文献   

16.
Elucidation of the involvement of protein kinase C subtypes in several diseases is an important challenge for the future development of new drug targets. We previously identified the PKI55 protein, which acts as a protein kinase C modulator, establishing a feedback loop of inhibition. The PKI55 protein is able to penetrate the cell membrane of activated human T-lymphocytes and to inhibit the activity of alpha, beta(1) and beta(2) protein kinase C isoforms. The present study aimed to identify the minimal amino acid sequence of PKI55 that is able to inhibit the enzyme activity of protein kinase C. Peptides derived from both C- and N-terminal sequences were synthesized and initially assayed in rat brain protein kinase C to identify which part of the entire protein maintained the in vitro effects described for PKI55, and then the active peptides were tested on the isoforms alpha, beta(1), beta(2), gamma, delta, epsilon and zeta to identify their specific inhibition properties. Specific protein kinase C isoforms have been associated with the activation of specific signal transduction pathways involved in inflammatory responses. Thus, the potential therapeutic role of the selected peptides has been studied in polymorphonuclear leukocytes activated by the methyl ester derivative of the hydrophobic N-formyl tripeptide for-Met-Leu-Phe-OH to evaluate their ability to modulate chemotaxis, superoxide anion production and lysozyme release. These studies have shown that only chemotactic function is significantly inhibited by these peptides, whereas superoxide anion production and lysozyme release remain unaffected. Western blotting experiments also demonstrated a selective reduction in the levels of the protein kinase C beta(1) isoform, which was previously demonstrated to be associated with the polymorphonuclear leukocyte chemotactic response.  相似文献   

17.
1. Phosphorylation of rat liver endogenous substrates by protein kinase C (type III) was compared between cytosolic and particulate (mitochondria, microsomes and plasma membrane) fractions. 2. The rate and the maximum level of protein phosphorylation were several-fold higher in particulate fractions than in cytosolic fraction. 3. Protein phosphorylation in cytosolic fraction was dependent on both Ca2+ and phospholipid, but only Ca2+ was necessary in phosphorylation of particulate fractions. 4. These results suggest that protein kinase C (type III) has much more target proteins in particulate fractions rather than in cytosolic fraction and Ca2+ was important regulator in particulate protein phosphorylation.  相似文献   

18.
Chemoattractant receptor-mediated hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) by phospholipase C is instrumental for leukocyte activation. Previous studies have demonstrated that chemoattractant treatment of intact polymorphonuclear leukocytes (PMN) causes a transient decrease in PIP2 due to phospholipase C activation, followed by an increase in cellular PIP2 levels. The present study determined whether chemoattractants altered the activities of the two enzymes responsible for the synthesis of PIP2, phosphatidylinositol kinase, and phosphatidylinositol-4-phosphate (PIP) kinase. Incubation of intact PMN with the N-formylated peptide chemoattractant formyl-methionyl-leucyl-phenylalanine at 37 degrees C caused a rapid (3 min), 2-fold stimulation of PIP kinase activity isolated from a particulate membrane fraction. The increase in PIP kinase was dose-dependent for a variety of N-formylated chemoattractants as well as leukotriene B4. Lineweaver-Burk analysis showed that the Vmax of PIP kinase was increased 2-fold by formyl-methionyl-leucyl-phenylalanine, without a significant change in the apparent Km of the enzyme for ATP. Phosphatidylinositol kinase was, however, not altered by any chemoattractants tested. Nonchemotactic activators of the oxidative burst in leukocytes such as phorbol myristate acetate and ionophore A23187 did not significantly alter PIP kinase, suggesting a specificity for chemotactic agents. These findings demonstrate direct, chemoattractant-induced stimulation of PMN PIP kinase which may serve to replenish the important phospholipid, PIP2, in the membrane following its hydrolysis by phospholipase C.  相似文献   

19.
Tyrosine protein kinase activity of rat spleen and other tissues   总被引:15,自引:0,他引:15  
Using a synthetic peptide (Glu-Asp-Ala-Glu-Tyr-Ala-Ala-Arg-Arg-Arg-Gly) as a substrate, various normal tissues from the rat were probed for tyrosine protein kinase activity. Spleen was shown to contain much higher tyrosine protein kinase activity than other rat tissues (lung, brain, testes, liver, kidney, heart, and thymus, in decreasing order of specific activity). Most of the tyrosine protein kinase activity of the various rat tissues (greater than 80%) was present in the particulate fraction, and Nonidet P-40, a nonionic detergent, could activate the particulate form of the enzyme 2-20-fold in many of the tissues. Epidermal growth factor (1 microgram/ml), cyclic AMP, cyclic GMP, or Ca2+ did not increase spleen tyrosine protein kinase activity. Half-maximal enzyme activity was observed at 60-80 microM MgATP and at 2.2 mM peptide, and both Mg2+ (10 mM) and Mn2+ (0.5-1.0 mM) were effective divalent metal ions for the expression of activity. When the particulate fraction of spleen was incubated with [gamma-32P]ATP followed by polyacrylamide gel electrophoresis in the presence of Na dodecyl SO4, a number of alkali-stable bands were identified by autoradiography. Two major bands at Mr = 53,000 and 56,000 were shown to contain phosphotyrosine. Two similar alkali-stable bands containing phosphotyrosine but with lower amounts of 32P labeling were also observed in the particulate fractions of various other tissues (lung, brain, kidney, and testes). The particulate form of tyrosine protein kinase of rat spleen could be solubilized by using high concentrations of Nonidet P-40 (5%) at an alkaline pH (pH 9.0). Partial purification and subsequent filtration on Sephacryl S-200 yielded a peak of tyrosine protein kinase activity with an apparent molecular weight of 55,000. The two major phosphorylated bands of Mr = 53,000 and 56,000 co-migrated with the peak of enzyme activity. The solubilized and partially purified enzyme preparation phosphorylated only tyrosine residues when either endogenous proteins or casein were used as substrates. These results suggest that relatively high activities of tyrosine protein kinase exist in a normal tissue (rat spleen). Major endogenous substrates of the enzyme(s) appear to be represented by two proteins of Mr = 53,000 and 56,000; one or both of these substrates may be the tyrosine protein kinase itself.  相似文献   

20.
The selective binding of protein kinase C to nitrocellulose-immobilized polypeptides from rat brain and human erythrocytes was investigated. Bound enzyme was detected immunochemically with a monospecific protein kinase C antibody, or by using radiolabeled enzyme. Two polypeptides from erythrocyte membranes with Mr values of 110,000 and 115,000 bound protein kinase C in the presence of phosphatidylserine (PS) and were highly enriched in the cytoskeletal fraction. A prominent protein kinase C-binding polypeptide at Mr about 115,000 was also evident in brain cytoplasm, postsynaptic densities, and nuclei. Overlays of electrophoretic blots with 14C-phospholipids revealed that the protein kinase C-binding polypeptides also bound PS but not other phospholipids. The binding of both protein kinase C and PS was markedly inhibited after phosphorylation of the Mr 110,000/115,000 polypeptides with the kinase itself. The relevance of the results to the binding of protein kinase C to membranes and to phospholipid-cytoskeletal interactions is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号