首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background: Poliovirus (PV) is the etiologic agent of paralytic poliomyelitis, which is sometimes followed, after decades of clinical stability, by new symptoms, including progressive muscular atrophy, collectively known as the post-polio syndrome. This raises the question of possible PV persistence in post-polio patients.Objective: To test the capacity of PV to establish persistent infections in human cells, three models were developed.Study design: This review focuses on the viral and cellular parameters involved in persistent PV infection.Results: Many PV strains, which are generally lytic in primate cell lines, are able to establish persistent infections in human neuroblastoma cells. During persistent infection, PV mutants (PVpi) are consistently selected, and several of their capsid substitutions occur at positions known to be involved in PV–PV receptor interactions. PVpi have a particular property: they can establish persistent infections in non-neural HEp-2 cells. PV can also persistently infect primary cultures of human fetal brain cells and the majority of cells which survive infection belong to the neuronal lineage.Conclusions: The results obtained with the three models of persistent PV infection in human cells suggest that several mechanisms are used by PV to establish and maintain persistent infections in neural and non-neural cells. The interactions of the virus with its receptor seem to be a key-step in all cases. In the future, the elucidation of the etiology of the post-polio syndrome will require the characterization of PV sequences having persisted for decades in post-polio patients.  相似文献   

2.
S G Sawicki  J H Lu    K V Holmes 《Journal of virology》1995,69(9):5535-5543
The A59 strain of murine coronavirus mouse hepatitis virus (MHV) can cause persistent infection of 17C1-1 cells and other murine cell lines. Persistently infected cultures released large amounts of virus (10(7) to 10(8) PFU/ml) and were resistant to superinfection with MHV but not to infection with unrelated Semliki Forest and vesicular stomatitis viruses. The culture medium from persistently infected cultures did not contain a soluble inhibitor such as interferon that protected uninfected cells from infection by MHV or vesicular stomatitis virus. The persistent infection was cured if fewer than 100 cells were transferred during subculturing, and such cured cultures were susceptible to reinfection and the reestablishment of persistent infection. Cultures of 17C1-1 cells that had been newly cloned from single cells consisted of a mixture of MHV-resistant and -susceptible cells. 17C1-1/#97 cells, which were cured by subcloning after 97 passages of a persistently infected culture over a 1-year period, contained 5 to 10% of their population as susceptible cells, while 17C1-1/#402 cells, which were cured by subcloning after 402 passages over a 3-year period, had less than 1% susceptible cells. Susceptibility to infection correlated with the expression of MHV receptor glycoprotein (MHVR [Bgp1a]). Fluorescence-activated cell sorter analysis with antibody to MHVR showed that 17C1-1/#97 cells contained a small fraction of MHVR-expressing cells. These MHVR-expressing cells were selectively eliminated within 24 h after challenge with MHV-A59, and pretreatment of 17C1-1/#97 cells with monoclonal antibody CC1, which binds to the N-terminal domain of MHVR, blocked infection. We conclude that the subpopulation of MHVR-expressing cells were infected and killed in acutely or persistently infected cultures, while the subpopulation of MHVR-nonexpressing cells survived and proliferated. The subpopulation of MHVR-negative cells produced a small proportion of progeny cells that expressed MHVR and became infected, thereby maintaining the persistent infection as a steady-state carrier culture. Thus, in 17C1-1 cell cultures, the unstable or epigenetic expression of MHVR permitted the establishment of a persistent, chronic infection.  相似文献   

3.
Previously, we demonstrated that memory cell-mediated immune responses can be generated in Pichinde virus (PV)-primed mice after secondary challenge in vivo with homologous virus. Further, treatment of mice with cyclophosphamide (CY) before primary infection with PV abrogated the generation of H-2-restricted, virus-specific cytotoxic T lymphocytes (CTL), and rechallenge of these mice was followed by neither a primary nor a secondary CTL response. Here, we demonstrate that this CY-induced block in memory anti-PV CTL generation was not due to establishment of a persistent infection. Interestingly, this CY-induced block in memory anti-PV CTL generation was overcome by secondarily coinfecting mice with PV and lymphocytic choriomeningitis virus (LCMV) or PV and Tacaribe virus. Secondary infection with LCMV or Tacaribe virus alone did not elicit anti-PV CTL. Coinfection resulted in the generation of a PV-specific memory CTL response as judged by maximal activity on day 4 after rechallenge. Co-infection with PV and vesicular stomatitis virus, an unrelated rhabdovirus, did not efficiently restore memory anti-PV CTL responses. Memory anti-PV CTL responses were also restored when interleukin 2 (IL 2)-containing supernatants were injected i.p. after rechallenge of CY-treated mice with PV. To demonstrate that IL 2 was the responsible lymphokine in these preparations, highly purified IL 2 was added to in vitro cultures of spleen cells from CY-treated PV-primed mice. In the presence of PV-infected syngeneic macrophages, addition of purified IL 2 resulted in a dose-dependent restoration of H-2-restricted anti-PV CTL activity. The CTL precursor (CTLp) frequency of CY-treated PV-primed mice was markedly decreased from that of normal PV-primed mice. Thus, the long-lasting block in the ability to generate a PV-specific memory CTL response after CY treatment appears to be due to both a lack of helper T cell activity and a significant reduction of CTLp. However, this block may be overcome by coinfecting with viruses that cross-react at the helper T cell level or by exogenous treatment with highly purified IL 2.  相似文献   

4.
Poliovirus (PV) can establish persistent infections in human neuroblastoma IMR-32 cells. We previously showed that during persistent infection, specific mutations were selected in the first extracellular domain of the PV receptor (CD155) of these cells (N. Pavio, T. Couderc, S. Girard, J. Y. Sgro, B. Blondel, and F. Colbère-Garapin, Virology 274:331-342, 2000). These mutations included the Ala 67 --> Thr substitution, corresponding to a previously described allelic form of the PV receptor. The mutated CD155(Thr67) and the nonmutated IMR-32 CD155 (CD155(IMR)) were expressed independently in murine LM cells lacking the CD155 gene. Following infection of the cells with PV, we analyzed the death of cells expressing these two forms of CD155. Levels of DNA fragmentation, caspase activity, and cytochrome c release were lower in LM-CD155(Thr67) cells than in LM-CD155(IMR) cells. Thus, the level of apoptosis was lower in cells expressing mutated CD155 selected during persistent PV infection in IMR-32 than in cells expressing the wild-type receptor.  相似文献   

5.
Upon Ag encounter, naive T cells undergo extensive Ag-driven proliferation and can differentiate into effector cells. Up to 95% of these cells die leaving a small residual population of T cells that provide protective memory. In this study, we investigated the contribution of the BH3-only family protein Bid in the shutdown of T cell responses after acute and persistent infection. Influenza virus pathogenicity has been proposed to be mediated by a peptide encoded in the basic polymerase (PB1-RF2) acting through Bid. In our experiments, we found that after acute infection with influenza virus, mice lacking Bid had normal expansion and contraction of Ag-specific CD8(+) T cells. However, in chronic γ-herpesvirus infection, Bid-deficient virus-specific CD8(+) T cells expanded normally but failed to contract fully and were maintained at ~2-fold higher levels. Previously, we have demonstrated that Bim plays a prominent role in T cell shutdown in persistent infection by cooperating with the death receptor Fas, which regulates apoptosis in response to repeated TCR signaling. Bid lies at the nexus of these two signaling pathways, thus we reasoned that Bid and Bim might cooperate in regulation of T cell shutdown in persistent infection. In this study, we observed that the combined loss of Bid and Bim synergistically enhanced the persistence of CD8(+) T cells during γ-herpesvirus infection. Thus, these data uncover a role for Bid in coordinating apoptotic signaling pathways to ensure appropriate shutdown of T cell immune responses in the setting of persistent Ag exposure.  相似文献   

6.
When rotavirus infects the mature villus tip cells of the small intestine, it encounters a highly polarized epithelium. In order to understand this virus-cell interaction more completely, we utilized a cell culture-adapted rhesus rotavirus (RRV) to infect human intestinal (Caco-2) and Madin-Darby canine kidney (MDCK-1) polarized epithelial cells grown on a permeable support. Filter-grown Caco-2 cells and MDCK-1 cells, producing a transepithelial resistance of 300 to 500 and greater than 1,000 omega . cm2, respectively, were infected from either the apical or basolateral domain with RRV or Semliki Forest virus. Whereas Semliki Forest virus infection only occurred when input virions had access to the basolateral domain of MDCK-1 or Caco-2 cells, RRV infected MDCK-1 and Caco-2 monolayers in a symmetric manner. The effect of rotavirus infection on monolayer permeability was analyzed by measuring the transepithelial electrical resistance. Rotavirus infection on filter-grown Caco-2 cells caused a transmembrane leak at 18 h postinfection, before the development of the cytopathic effect (CPE) and extensive virus release. Electrical resistance was completely abolished between 24 and 36 h postinfection. Although no CPE could be detected on RRV-infected MDCK cells, the infection caused a transmembrane leak that totally abolished the electrical resistance at 18 to 24 h postinfection. Cell viability and the CPE analysis together with immunohistochemistry and immunofluorescence data indicated that the abolishment of resistance across the monolayer was due not to an effect on the plasma membrane of the cells but to an effect on the paracellular pathway limited by tight junctions. Attachment and penetration of rotavirus onto Caco-2 cells caused no measurable transmembrane leak during the first hour of infection.  相似文献   

7.
Persistent poliovirus infection of human fetal brain cells.   总被引:2,自引:2,他引:0       下载免费PDF全文
It has been suggested that poliovirus (PV), the causative agent of poliomyelitis, could persist in surviving patients. We have previously shown that PV can persistently infect some human cell lines in vitro, particularly neuroblastoma cell lines. We report here an ex vivo model in which PV can persistently infect primary cultures of human fetal brain cells. Two mutations involving capsid residues 142 of VP2 and 95 of VP1 were repeatedly selected during the persistent infections. These residues are located in capsid regions known to be involved in interactions between PV and its receptor. During the first week after infection, viral antigens were found in cells of both the neuronal and glial lineages. In contrast, 2 weeks after infection, viral antigens were detected almost exclusively in cells of the neuronal lineage. They were detected predominantly in cells expressing a marker of early commitment to the neuronal lineage, MAP-5, particularly in neuroblasts. Viral antigens were also found in immature progenitors expressing a neuroepithelium marker, nestin, and in cells expressing a marker of postmitotic neurons, MAP-2. The presence of viral antigens in postmitotic neurons suggests that PV can persist in neurons of patients who have survived poliomyelitis.  相似文献   

8.
AIMS: The mechanism of the host cell invasion of Plesiomonas shigelloides and its capability to induce apoptosis were investigated. METHODS AND RESULTS: We performed a time course experiment on the bacterial adherence and invasion of the P. shigelloides P-1 strain into Caco-2 cells using an invasion assay and flow cytometry. The adherence of P. shigelloides to the Caco-2 cells was almost completed within 10 min after the infection. Thereafter, P. shigelloides starts internalization within the Caco-2 cells, which was completed within 60 min after the infection. Based on the invasion assay using nocodazole, cytochalasin D, and genistein, it became clear that the mechanism of the internalization depended on the signal transduction followed by the rearrangement of the cytoskeletal protein. Based on the DNA laddering and TUNEL methods, the cytotoxicity of the Caco-2 cells by the invasion of P. shigelloides occurred through the induction of apoptosis. CONCLUSIONS: This work demonstrated that the mechanism of invasion of P. shigelloides into Caco-2 cells and the invasion of P. shigelloides induces apoptotic cell death. SIGNIFICANCE AND IMPACT OF THE STUDY: This work revealed the virulence factor, which may be important for understanding of the pathogenesis of P. shigelloides.  相似文献   

9.
Here, we report that specific manipulations of the cellular response to virus infection can cause prevention of apoptosis and consequent establishment of persistent infection. Infection of several human cell lines with Sendai virus (SeV) or human parainfluenza virus 3, two prototypic paramyxoviruses, caused slow apoptosis, which was markedly accelerated upon blocking the action of phosphatidylinositol 3-kinases (PI3 kinases) in the infected cells. The observed apoptosis required viral gene expression and the action of the caspase 8 pathway. Although virus infection activated PI3 kinase, as indicated by AKT activation, its blockage did not inhibit JNK activation or IRF-3 activation. The action of neither the Jak-STAT pathway nor the NF-kappaB pathway was required for apoptosis. In contrast, IRF-3 activation was essential, although induction of the proapototic protein TRAIL by IRF-3 was not required. When IRF-3 was absent or its activation by the RIG-I pathway was blocked, SeV established persistent infection, as documented by viral protein production and infectious virus production. Introduction of IRF-3 in the persistently infected cells restored the cells' ability to undergo apoptosis. These results demonstrated that in our model system, IRF-3 controlled the fate of the SeV-infected cells by promoting apoptosis and preventing persistence.  相似文献   

10.
Eight cell lines were systematically compared for their permissivity to primary infection, replication, and spread of seven human influenza viruses. Cell lines were of human origin (Caco-2, A549, HEp-2, and NCI-H292), monkey (Vero, LLC-MK2), mink (Mv1 Lu), and canine (MDCK). The influenza viruses included seasonal types and subtypes and a pandemic virus. The MDCK, Caco-2, and Mv1 Lu cells were subsequently compared for their capacity to report neutralization titers at day one, three and six post-infection. A gradient of sensitivity to primary infection across the eight cell lines was observed. Relative to MDCK cells, Mv1 Lu reported higher titers and the remaining six cell lines reported lower titers. The replication and spread of the seven influenza viruses in the eight cell substrates was determined using hemagglutinin expression, cytopathic effect, and neuraminidase activity. Virus growth was generally concordant with primary infection, with a gradient in virus replication and spread. However, Mv1 Lu cells poorly supported virus growth, despite a higher sensitivity to primary infection. Comparison of MDCK, Caco-2, and Mv1 Lu in neutralization assays using defined animal antiserum confirmed MDCK cells as the preferred cell substrate for influenza virus testing. The results observed for neutralization at one day post-infection showed MDCK cells were similar (<1 log2 lower) or superior (>1 log2 higher) for all seven viruses. Relative to Caco-2 and Mv1 Lu cells, MDCK generally reported the highest titers at three and six days post-infection for the type A viruses and lower titers for the type B viruses and the pandemic H9N2 virus. The reduction in B virus titer was attributed to the complete growth of type B viruses in MDCK cells before day three post-infection, resulting in the systematic underestimation of neutralization titers. This phenomenon was also observed with Caco-2 cells.  相似文献   

11.
The interaction of herpes simplex virus type 1 (HSV-1) with murine macrophage cell lines was examined. The cell lines appeared to be moderately permissive for HSV-1 replication, though the yield of the virus was limited compared with that in Vero cells. Furthermore, the murine macrophage cell line SL-1, bearing Ia antigen, was persistently infected with HSV-1 for over one year, and was designated SL-1/KOS. Persistent infection could not be established in an Ia antigen-negative macrophage cell line, SL-4. In the SL-1/KOS culture, there was a small number of infected cells as revealed by infectious center assay. Treatment with monoclonal antibody against HSV-1 cured the persistent infection. Therefore maintenance of the persistent infection is considered to be due to a carrier culture consisting of a minority of infected cells and a majority of uninfected cells. In the SL-1/KOS cultures a low level of interferon (IFN) was found. When a large amount of exogenous recombinant murine IFN-beta (10(5)-10(6) international units/ml) was added to the culture, virus production diminished to undetectable levels. These results suggest that IFN plays an important role in the maintenance of persistent infection. In long-term persistently infected cultures, syncytium formation appeared and the virus from such cultures had a different DNA structure from that of the virus originally used for infection as revealed by restriction endonuclease analysis.  相似文献   

12.
AIMS: To characterize the effect of bovine lactoferrin and lactoferricin B against feline calicivirus (FCV), a norovirus surrogate and poliovirus (PV), as models for enteric viruses. METHODS AND RESULTS: Crandell-Reese feline kidney (CRFK) cells were used for the propagation of FCV and monkey embryo kidney (MEK) cells for PV. The assays included visual assessment of cell lines for cytopathic effects and determination of the percentage cell death using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium] dye reduction assay. Incubation of bovine lactoferrin with CRFK cells either prior to or together with FCV inoculation substantially reduced FCV infection. In contrast, the interference of lactoferrin with the infection of cells with PV was demonstrated only when lactoferrin was present with cell lines and virus for the entire assay period. Using indirect immunofluorescence, lactoferrin was detected on the surface of both CRFK and MEK cells, suggesting that the interference of viral infection may be attributed to lactoferrin binding to the surfaces of susceptible cells, thereby preventing the attachment of the virus particles. Lactoferricin B, a cationic antimicrobial peptide derived from the N-terminal domain of bovine lactoferrin, reduced FCV but not PV infection. CONCLUSION: Lactoferrin was shown to interfere with the infection of cells for both FCV and PV. However, lactoferricin B showed no interference of infection with PV and interference with infection for FCV required the presence of lactoferricin B together with the cell line and virus. SIGNIFICANCE AND IMPACT OF THE STUDY: An in vitro basis is provided for the effects of bovine lactoferrin and lactoferricin B in moderating food-borne infections of enteric viruses.  相似文献   

13.
肠道病毒A71型(enterovirus A71,EV-A71)是导致手足口病(hand-foot-mouth disease,HFMD)的主要病原体之一,目前对其治疗尚无特异高效的抗病毒药物.研究表明,细胞膜转运相关分子参与病毒的入侵、复制以及感染性子代病毒颗粒的释放.为寻找宿主中可有效抑制EV-A71感染的细胞膜转...  相似文献   

14.
Rat myotubes infected with polyoma virus (PV) introduced into the multinucleated cells by virus-bearing myoblasts at the time of cell fusion incorporate 3H-TdR and exhibit mitotic-type figures. The infected myotubes also produce a viral-specific nuclear antigen, tumor (T) antigen, which appears in groups of adjacent nuclei or in all nuclei of the myotubes. The proportion of myotubes which synthesize DNA, T-antigen and exhibit mitotic-type figures is related to the multiplicity of virus infection.Intact myotubes which are resistant to infection with PV by virus absorption can be infected by microinjection of the virus into the cells. Myotubes thus infected produce T-antigen which appears in multiple nuclei, but do not incorporate 3H-TdR or contain mitotic-type figures. The data suggest that the resistance of myotubes to infection with PV might be due to a change in the cell surface membrane during differentiation so that virus cannot penetrate the cell. The T-antigen apparently has no bearing on the activation of the DNA-synthesizing apparatus in multinucleated muscle cells.  相似文献   

15.
Zhang Y  Yang J  Bao R  Chen Y  Zhou D  He B  Zhong M  Li Y  Liu F  Li Q  Yang Y  Han C  Sun Y  Cao Y  Yan H 《PloS one》2011,6(9):e24296
The induction of a strong mucosal immune response is essential to building successful HIV vaccines. Highly attenuated recombinant HIV vaccinia virus can be administered mucosally, but even high doses of immunization have been found unable to induce strong mucosal antibody responses. In order to solve this problem, we studied the interactions of recombinant HIV vaccinia virus Tiantan strain (rVTT-gagpol) in mucosal epithelial cells (specifically Caco-2 cell layers) and in BALB/c mice. We evaluated the impact of this virus on HIV antigen delivery and specific immune responses. The results demonstrated that rVTT-gagpol was able to infect Caco-2 cell layers and both the nasal and lung epithelia in BALB/c mice. The progeny viruses and expressed p24 were released mainly from apical surfaces. In BALB/c mice, the infection was limited to the respiratory system and was not observed in the blood. This showed that polarized distribution limited antigen delivery into the whole body and thus limited immune response. To see if this could be improved upon, we stimulated unpolarized budding of the virus and HIV antigens by treating both Caco-2 cells and BALB/c mice with colchicine. We found that, in BALB/c mice, the degree of infection and antigen expression in the epithelia went up. As a result, specific immune responses increased correspondingly. Together, these data suggest that polarized budding limits antigen delivery and immune responses, but unpolarized distribution can increase antigen expression and delivery and thus enhance specific immune responses. This conclusion can be used to optimize mucosal HIV vaccine strategies.  相似文献   

16.
The epidemic outbreak of severe acute respiratory syndrome (SARS) in 2003 was caused by a novel coronavirus (CoV), designated SARS-CoV. The RNA genome of SARS-CoV is complexed by the nucleocapsid protein (N) to form a helical nucleocapsid. Besides this primary function, N seems to be involved in apoptotic scenarios. We show that upon infection of Vero E6 cells with SARS-CoV, which elicits a pronounced cytopathic effect and a high viral titer, N is cleaved by caspases. In contrast, in SARS-CoV-infected Caco-2 cells, which show a moderate cytopathic effect and a low viral titer, this processing of N was not observed. To further verify these observations, we transiently expressed N in different cell lines. Caco-2 and N2a cells served as models for persistent SARS-CoV infection, whereas Vero E6 and A549 cells did as prototype cell lines lytically infected by SARS-CoV. The experiments revealed that N induces the intrinsic apoptotic pathway, resulting in processing of N at residues 400 and 403 by caspase-6 and/or caspase-3. Of note, caspase activation is highly cell type specific in SARS-CoV-infected as well as transiently transfected cells. In Caco-2 and N2a cells, almost no N-processing was detectable. In Vero E6 and A549 cells, a high proportion of N was cleaved by caspases. Moreover, we examined the subcellular localization of SARS-CoV N in these cell lines. In transfected Vero E6 and A549 cells, SARS-CoV N was localized both in the cytoplasm and nucleus, whereas in Caco-2 and N2a cells, nearly no nuclear localization was observed. In addition, our studies indicate that the nuclear localization of N is essential for its caspase-6-mediated cleavage. These data suggest a correlation among the replication cycle of SARS-CoV, subcellular localization of N, induction of apoptosis, and the subsequent activation of caspases leading to cleavage of N.  相似文献   

17.
Rat virus (RV) infection can cause disease or disrupt responses that rely on cell proliferation. Therefore, persistent infection has the potential to amplify RV interference with research. As a step toward determining underlying mechanisms of persistence, we compared acute and persistent RV infections in infant euthymic and athymic rats inoculated oronasally with the University of Massachusetts strain of RV. Rats were assessed by virus isolation, in situ hybridization, and serology. Selected tissues also were analyzed by Southern blotting or immunohistochemistry. Virus was widely disseminated during acute infection in rats of both phenotypes, whereas vascular smooth muscle cells (SMC) were the primary targets during persistent infection. The prevalence of virus-positive cells remained moderate to high in athymic rats through 8 weeks but decreased in euthymic rats by 2 weeks, coincident with seroconversion and perivascular infiltration of mononuclear cells. Virus-positive pneumocytes and renal tubular epithelial cells also were detected through 8 weeks, implying that kidney and lung excrete virus during persistent infection. Viral mRNA was detected in SMC of both phenotypes through 8 weeks, indicating that persistent infection includes virus replication. However, only half of the SMC containing viral mRNA at 4 weeks stained for proliferating cell nuclear antigen, a protein expressed in cycling cells. The results demonstrate that vasculotropism is a significant feature of persistent infection, that virus replication continues during persistent infection, and that host immunity reduces, but does not eliminate, infection.  相似文献   

18.
Tick-borne encephalitis virus (TBEV) is one of the most important vector-borne viruses in Europe and Asia. Its transmission mainly occurs by the bite of an infected tick. However, consuming milk products from infected livestock animals caused TBEV cases. To better understand TBEV transmission via the alimentary route, we studied viral infection of human intestinal epithelial cells. Caco-2 cells were used to investigate pathological effects of TBEV infection. TBEV-infected Caco-2 monolayers showed morphological changes including cytoskeleton rearrangements and cytoplasmic vacuolization. Ultrastructural analysis revealed dilatation of the rough endoplasmic reticulum and further enlargement to TBEV containing caverns. Caco-2 monolayers maintained an intact epithelial barrier with stable transepithelial electrical resistance (TER) during early stage of infection. Concomitantly, viruses were detected in the basolateral medium, implying a transcytosis pathway. When Caco-2 cells were pre-treated with inhibitors of cellular pathways of endocytosis TBEV cell entry was efficiently blocked, suggesting that actin filaments (Cytochalasin) and microtubules (Nocodazole) are important for PI3K-dependent (LY294002) virus endocytosis. Moreover, experimental fluid uptake assay showed increased intracellular accumulation of FITC-dextran containing vesicles. Immunofluorescence microscopy revealed co-localization of TBEV with early endosome antigen-1 (EEA1) as well as with sorting nexin-5 (SNX5), pointing to macropinocytosis as trafficking mechanism. In the late phase of infection, further evidence was found for translocation of virus via the paracellular pathway. Five days after infection TER was slightly decreased. Epithelial barrier integrity was impaired due to increased epithelial apoptosis, leading to passive viral translocation. These findings illuminate pathomechanisms in TBEV infection of human intestinal epithelial cells and viral transmission via the alimentary route.  相似文献   

19.
Polarized epithelial cells represent the primary barrier to virus infection of the host, which must also be traversed prior to virus dissemination from the infected organism. Although there is considerable information available concerning the release of enveloped viruses from such cells, relatively little is known about the processes involved in the dissemination of nonenveloped viruses. We have used two polarized epithelial cell lines, Vero C1008 (African green monkey kidney epithelial cells) and Caco-2 (human intestinal epithelial cells), infected with poliovirus and investigated the process of virus release. Release of poliovirus was observed to occur almost exclusively from the apical cell surface in Caco-2 cells, whereas infected Vero C1008 cells exhibited nondirectional release. Structures consistent with the vectorial transport of virus contained within vesicles or viral aggregates were observed by electron microscopy. Treatment with monensin or ammonium chloride partially inhibited virus release from Caco-2 cells. No significant cell lysis was observed at the times postinfection when extracellular virus was initially detected, and transepithelial resistance and vital dye uptake measurements showed only a moderate decrease. Brefeldin A was found to significantly and specifically inhibit poliovirus biosynthetic processes by an as yet uncharacterized mechanism. The vectorial release of poliovirus from the apical (or luminal) surface of human intestinal epithelial cells has significant implications for viral pathogenesis in the human gut.  相似文献   

20.
In this work we have shown that astrovirus infection induces apoptosis of Caco-2 cells, since fragmentation of cellular DNA, cleavage of cellular proteins which are substrate of activated caspases, and a change in the mitochondrial transmembrane potential occur upon virus infection. The human astrovirus Yuc8 polyprotein capsid precursor VP90 is initially processed to yield VP70, and we have shown that this processing is trypsin independent and occurs intracellularly through four cleavages at its carboxy-terminal region. We further showed that VP90-VP70 processing is mediated by caspases, since it was blocked by the pancaspase inhibitor benzyloxycarbonyl-Val-Ala-Asp fluoromethylketone (z-VAD-fmk), and it was promoted by the apoptosis inducer TNF-related apoptosis-inducing ligand (TRAIL). Although the cell-associated virus produced in the presence of these compounds was not affected, the release of infectious virus to the cell supernatant was drastically reduced in the presence of z-VAD-fmk and increased by TRAIL, indicating that VP90-VP70 cleavage is important for the virus particles to be released from the cell. This is the first report that describes the induction and utilization of caspase activity by a virus to promote processing of the capsid precursor and dissemination of the viral particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号