首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Jiang  Hui-Ning  Yun  Shuai-Ting  Wang  Bao-Xun  Zhang  Ming-Jing  Ma  Yu  Zhou  Yan-Xia 《Antonie van Leeuwenhoek》2022,115(6):773-782

A Gram-stain-positive, orange-pigmented, rod-shaped and flagellated bacterial strain T12T was isolated from wetland soil in Kunyu Mountain Wetland in Yantai, China. The strain was able to grow at 15–40 °C (optimum 37 °C), at 0.0–9.0% NaCl (optimum 2%, w/v) and at pH 5.5–9.0 (optimum 8.5). A phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain T12T is a member of the family Planococcaceae, sharing 97.6% and 97.1% sequence similarity with the type strains of Jeotgalibacillus salarius and Jeotgalibacillus marinus, respectively. Genome-based analyses revealed a genome size of 3,506,682 bp and a DNA G?+?C content of 43.7%. Besides, the genome sequence led to 55.0–74.6% average amino acid identity values and 67.8–74.7% average nucleotide identity values between strain T12T and the current closest relatives. Digital DNA-DNA hybridization of strain T12T with the type strains of Jeotgalibacillus proteolyticus and J. marinus demonstrated 19.0% and 20.3% relatedness, respectively. The chemotaxonomic analysis showed that the sole quinone was MK-7. The predominant cellular fatty acids were iso-C15:0, anteiso-C15:0, C16:1ω7c alcohol and iso-C14:0. The polar lipids consisted of an unidentified aminolipid, phosphatidylglycerol, diphosphatidylglycerol and two unidentified phospholipids. Based on the polyphasic characterization, strain T12T is considered to represent a novel species, for which the name Jeotgalibacillus aurantiacus sp. nov. is proposed. The type strain is T12T (=?KCTC 43296 T?=?MCCC 1K07171T).

  相似文献   

2.
The 38 kb eicosapentaenoic acid (EPA) biosynthesis gene cluster of Shewanella sp. strain SCRC-2738 was cloned into the cosmid vector (pEPA). A 27 kb nucleotide sequence of the XhoI to SpeI region of pEPA showed EPA production (6.3%) in E. coli JM109. Among the nine open reading frames (ORFs) in this sequence, only five (ORFs 2 and 5-8) were essential for EPA production. High levels of production (16%-22%) were found in E. coli JM109 transformed with a multicopy pNEB vector carrying only the five essential ORFs and in that transformed with a pNEB vector that integrated ORFs 3, 5, 6, 7 and 8, and vector pSTV28 that integrated the ORF2 encoding phosphopantetheinyl transferase (PPTase). Thus, production of EPA appears to be regulated by the presence of all the biosynthesis gene products and by the ratio of PPTase to the other gene products. The temperature -EPA production relationship in E. coli strain DH5alpha varied between constructs, suggesting that it is controlled not only by EPA biosynthesis enzymes but also by other factors in vivo. There was a strict upper temperature limit for EPA biosynthesis: no EPA was synthesized at 30 degrees C in E. coli transformants carrying any gene construct for EPA biosynthesis.  相似文献   

3.
We have reported that the chitinolytic system of Alteromonas sp. strain O-7 consists of chitinases (ChiA, ChiB, and ChiC), a chitinase-like enzyme (ChiD), beta-N-acetylglucosaminidases (GlcNAcasesA, GlcNAcaseB, and GlcNAcaseC), and a novel transglycosylative enzyme (Hex99). The gene encoding a beta-hexosaminidase with an unusual substrate specificity (hex86), located upstream of the hex99 gene, was cloned and sequenced. The gene encoded a protein of 761 amino acids with a calculated molecular mass of 86,758 Da. The deduced amino acid sequence of Hex86 showed sequence similarity with beta-hexosaminidases belonging to family 20. The hex86 gene was expressed in Escherichia coli, and the recombinant enzyme was purified to homogeneity. The enzyme rapidly cleaved p-nitrophenyl-beta-N-acetyl-D-glucosaminide and slowly cleaved p-nitrophenyl-beta-N-acetyl-D-galactosaminide. Unexpectedly, the enzyme did not hydrolyzed chitin oligosaccharides under the assay conditions for synthetic glycosides. However, after prolonged incubation with excessive quantities of the enzyme, Hex86 hydrolyzed chitin oligosaccharides. These results indicate that Hex86 is a novel enzyme that prefers p-nitrophenyl-beta-N-acetyl-D-glucosaminide to chitin oligosaccharides as a substrate.  相似文献   

4.
Endoglycoceramidase (EGCase) is an enzyme capable of cleaving the glycosidic linkage between oligosaccharides and ceramides of various glycosphingolipids. We previously reported that the Asn-Glu-Pro (NEP) sequence is part of the active site of EGCase of Rhodococcus sp. strain M-777. This paper describes the molecular cloning of a new EGCase gene utilizing the NEP sequence from the genomic library of Rhodococcus sp. strain C9, which was clearly distinguishable from M-777 by 16S rDNA analysis. C9 EGCase possessed an open reading frame of 1,446 bp encoding 482 amino acids, and showed 78% and 76% identity to M-777 EGCase II at the nucleotide and amino acid levels, respectively. Interestingly, C9 EGCase showed the different specificity to the M-777 enzyme: it hydrolyzed b-series gangliotetraosylceramides more slowly than the M-777 enzyme, whereas both enzymes hydrolyzed a-series gangliosides and neutral glycosphingolipids to the same extent.  相似文献   

5.
We purified from the culture supernatant of Alteromonas sp. strain O-7 and characterized a transglycosylating enzyme which synthesized beta-(1-->6)-(GlcNAc)2, 2-acetamido-6-O-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-2- deoxyglucopyranose from beta-(1-->4)-(GlcNAc)2. The gene encoding a novel transglycosylating enzyme was cloned into Escherichia coli, and its nucleotide sequence was determined. The molecular mass of the deduced amino acid sequence of the mature protein was determined to be 99,560 Da which corresponds very closely with the molecular mass of the cloned enzyme determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The molecular mass of the cloned enzyme was much larger than that of enzyme (70 kDa) purified from the supernatant of this strain. These results suggest that the native enzyme was the result of partial proteolysis occurring in the N-terminal region. The enzyme showed significant sequence homology with several bacterial beta-N-acetylhexosaminidases which belong to family 20 glycosyl hydrolases. However, this novel enzyme differs from all reported beta-N-acetylhexosaminidases in its substrate specificity. To clarify the role of the enzyme in the chitinolytic system of the strain, the effect of beta-(1-->6)-(GlcNAc)2 on the induction of chitinase was investigated. beta-(1-->6)-(GlcNAc)2 induced a level of production of chitinase similar to that induced by the medium containing chitin. On the other hand, GlcNAc, (GlcNAc)2, and (GlcNAc)3 conversely repressed the production of chitinase to below the basal level of chitinase activity produced constitutively in medium without a carbon source.  相似文献   

6.
The gene encoding a novel L-ribose isomerase (L-RI) from Acinetobacter sp. was cloned into Escherichia coli and nucleotide sequence was determined. The gene corresponded to an open reading frame of 747 bp that codes for a deduced protein of 249 amino acids, which showed no amino acid sequence similarity with any other sugar isomerases. After expression of the gene in E. coli using pUC118 the recombinant L-RI was purified to homogeneity using different chromatographic methods. The overall enzymatic properties of the purified recombinant L-RI were the same as those of the authentic L-RI. To our knowledge, this is the first time report concerning the L-RI gene.  相似文献   

7.
Xiao Y  Zhang JJ  Liu H  Zhou NY 《Journal of bacteriology》2007,189(18):6587-6593
Alcaligenes sp. strain NyZ215 was isolated for its ability to grow on ortho-nitrophenol (ONP) as the sole source of carbon, nitrogen, and energy and was shown to degrade ONP via a catechol ortho-cleavage pathway. A 10,152-bp DNA fragment extending from a conserved region of the catechol 1,2-dioxygenase gene was obtained by genome walking. Of seven complete open reading frames deduced from this fragment, three (onpABC) have been shown to encode the enzymes involved in the initial reactions of ONP catabolism in this strain. OnpA, which shares 26% identity with salicylate 1-monooxygenase of Pseudomonas stutzeri AN10, is an ONP 2-monooxygenase (EC 1.14.13.31) which converts ONP to catechol in the presence of NADPH, with concomitant nitrite release. OnpC is a catechol 1,2-dioxygenase catalyzing the oxidation of catechol to cis,cis-muconic acid. OnpB exhibits 54% identity with the reductase subunit of vanillate O-demethylase in Pseudomonas fluorescens BF13. OnpAB (but not OnpA alone) conferred on the catechol utilizer Pseudomonas putida PaW340 the ability to grow on ONP. This suggests that OnpB may also be involved in ONP degradation in vivo as an o-benzoquinone reductase converting o-benzoquinone to catechol. This is analogous to the reduction of tetrachlorobenzoquinone to tetrachlorohydroquinone by a tetrachlorobenzoquinone reductase (PcpD, 38% identity with OnpB) in the pentachlorophenol degrader Sphingobium chlorophenolicum ATCC 39723.  相似文献   

8.
The beta-agarase C gene (agaC) of a marine bacterium, Vibrio sp. strain PO-303, consisted of 1,437 bp encoding 478 amino acid residues. beta-Agarase C was identified as the first beta-agarase that cannot hydrolyze neoagarooctaose and smaller neoagarooligosaccharides and was assigned to a novel glycoside hydrolase family.  相似文献   

9.
The beta-1,3-xylosidase gene (xloA) of Vibrio sp. strain XY-214 was cloned and expressed in Escherichia coli. The xloA gene consisted of a 1,608-bp nucleotide sequence encoding a protein of 535 amino acids with a predicted molecular weight of 60,835. The recombinant beta-1,3-xylosidase hydrolyzed beta-1,3-xylooligosaccharides to D-xylose as a final product.  相似文献   

10.
In the course of screening for antioxidative carotenoids from bacteria, we isolated and identified a novel carotenoid, OH-chlorobactene glucoside hexadecanoate (4), and rare carotenoids, OH-chlorobactene glucoside (1), OH-γ-carotene glucoside (2) and OH-4-keto-γ-carotene glucoside hexadecanoate (3) from Rhodococcus sp. CIP. The singlet oxygen ((1)O(2)) quenching model of these carotenoids showed potent antioxidative activities IC(50) 14.6 μM for OH-chlorobactene glucoside hexadecanoate (4), 6.5 μM for OH-chlorobactene glucoside (1), 9.9 μM for OH-γ-carotene glucoside (2) and 7.3 μM for OH-4-keto-γ-carotene glucoside hexadecanoate (3).  相似文献   

11.
We report the identification and characterization of the ste (Streptomyces eps) gene cluster of Streptomyces sp. 139 required for exopolysaccharide (EPS) biosynthesis. This report is the first genetic work on polysaccharide production in Streptomyces. To investigate the gene cluster involved in exopolysaccharide 139A biosynthesis, degenerate primers were designed to polymerase chain reaction amplify an internal fragment of the priming glycosyltransferase gene that catalyzes the first step in exopolysaccharide biosynthesis. Screening of a genomic library of Streptomyces sp. 139 with this polymerase chain reaction product as probe allowed the isolation of a ste gene cluster containing 22 open reading frames similar to polysaccharide biosynthesis genes of other bacterial species. Involvement of the ste gene cluster in exopolysaccharide biosynthesis was confirmed by disrupting the priming glycosyltransferase gene in Streptomyces sp. 139 to generate non-exopolysaccharide-producing mutants.  相似文献   

12.
13.
14.
Retinal and its derivatives represent essential compounds in many biological systems. In animals, they are synthesized through a symmetrical cleavage of beta-carotene catalysed by a monooxygenase. Here, we demonstrate that the open reading frame sll1541 from the cyanobacterium Synechocystis sp. PCC 6803 encodes the first eubacterial, retinal synthesizing enzyme (Diox1) thus far reported. In contrast to enzymes from animals, Diox1 converts beta-apo-carotenals instead of beta-carotene into retinal in vitro. The identity of the enzymatic product was proven by HPLC, GC-MS and in a biological test. Investigations, of the stereospecifity showed that Diox1 cleaved only the all-trans form of beta-apo-8'-carotenal, yielding all-trans-retinal. However, Diox1 exhibited wide substrate specificity with respect to chain-lengths and functional end-groups. Although with divergent Km and Vmax values, the enzyme converted beta-apo-carotenals, (3R)-3-OH-beta-apo-carotenals as well as apo-lycopenals into retinal, (3R)-3-hydroxy-retinal and acycloretinal respectively. In addition, the alcohols of these substrates were cleaved to yield the corresponding retinal derivatives.  相似文献   

15.
A new yellow carotenoid, named 5,6-dihydrocrustaxanthin (6), was isolated together with five yellow xanthophylls: isoastaxanthin (1), 5,6-dihydropenaeusxanthin (2), penaeusxanthin (3), tetrahydroxypirardixanthin (4), and crustaxanthin (5) from three species of prawns: Marsupenaeus japonicus, Litopenaeus vannamei, and Metapenaeus joyneri, belonging to Penaeidae. The structure of (6) was determined to be (3R,4S,5R,6R,3′R,4′S)-5,6-dihydro-β,β-carotene-3,4,3′,4′-tetrol by UV-VIS, MS, 1H NMR, and CD spectral data. Distributions of yellow xanthophylls (16) in ten species of shrimps were investigated from a chemo-systematic point of view. Yellow xanthophylls (16) were present in only three species of prawns described above, among the ten species of shrimps investigated. Instead of 16, luteins and tunxanthins, having the 3-hydroxy-ε-end group, were present in other species of shrimps belonging to Penaeidae, Pandalidae, and Palaemonidae.  相似文献   

16.
The DNA sequence was determined for the cloned Agrobacterium sp. strain ATCC 21400 beta-glucosidase gene, abg. High-resolution nuclease S1 protection studies were used to map the abg mRNA 5' and 3' termini. A putative abg promoter was identified whose sequence shows similarities to the consensus promoter of Escherichia coli and with the nif promoter regions of Klebsiella. The abg coding sequence was 1,374 nucleotides long. The molecular weight of the enzyme, based on the predicted amino acid sequence, was 51,000. The observed Mr was 50,000 to 52,000. A region of deduced protein sequence was homologous to a region from two other beta-glucosidase sequences. This region of homology contained a putative active site by analogy with the active site of hen egg white lysozyme.  相似文献   

17.
A genomic library of Sinorhizobium sp. strain NGR234 was introduced into Escherichia coli LS5218, a strain with a constitutively active pathway for acetoacetate degradation, and clones that confer the ability to utilize D-3-hydroxybutyrate as a sole carbon source were isolated. Subcloning experiments identified a 2.3 kb EcoRI fragment that retained complementing ability, and an ORF that appeared orthologous with known bdhA genes was located within this fragment. The deduced NGR234 BdhA amino acid sequence revealed 91% identity to the Sinorhizobium meliloti BdhA. Site-directed insertion mutagenesis was performed by introduction of a OmegaSmSp cassette at a unique EcoRV site within the bdhA coding region. A NGR234 bdhA mutant, NGRPA2, was generated by homogenotization, utilizing the sacB gene-based lethal selection procedure. This mutant was devoid of D-3-hydroxybutyrate dehydrogenase activity, and was unable to grow on D-3-hydroxybutyrate as sole carbon source. NGRPA2 exhibited symbiotic defects on Leucaena but not on Vigna, Macroptilium or Tephrosia host plants. Furthermore, the D-3-hydroxybutyrate utilization phenotype of NGRPA2 was suppressed by presence of plasmid-encoded multiple copies of the S. meliloti acsA2 gene. The glpK-bdhA-xdhA gene organization and the bdhA-xdhA operon arrangement observed in S. meliloti are also conserved in NGR234.  相似文献   

18.
Ramoplanin is a lipopeptide antibiotic active against multi-drug-resistant, Gram-positive pathogens. Structurally, it contains a di-mannose moiety attached to the peptide core at Hpg11. The biosynthetic gene cluster of ramoplanin has already been reported and the assembly of the depsipeptide has been elucidated but the mechanism of transferring sugar moiety to the peptide core remains unclear. Sequence analysis of the biosynthetic gene cluster indicated ramo-orf29 was a mannosyltransferase candidate. To investigate the involvement of ramo-orf29 in ramoplanin biosynthesis, gene inactivation and complementation have been conducted in Actinoplanes sp. ATCC 33076 by homologous recombination. Metabolite analysis revealed that the ramo-orf29 inactivated mutant produced no ramoplanin but the ramoplanin aglycone. Thus, ramo-orf29 codes for the mannosyltransferase in the ramoplanin biosynthesis pathway. This lays the foundation for further exploitation of the ramoplanin mannosyltransferase and aglycone in combinatorial biosynthesis.  相似文献   

19.
Protocatechuate 3,4-dioxygenase (EC 1.13.11.3) catalyzes the ring cleavage step in the catabolism of aromatic compounds through the protocatechuate branch of the beta-ketoadipate pathway. A protocatechuate 3,4-dioxygenase was purified from Streptomyces sp. strain 2065 grown in p-hydroxybenzoate, and the N-terminal sequences of the beta- and alpha-subunits were obtained. PCR amplification was used for the cloning of the corresponding genes, and DNA sequencing of the flanking regions showed that the pcaGH genes belonged to a 6. 5-kb protocatechuate catabolic gene cluster; at least seven genes in the order pcaIJFHGBL appear to be transcribed unidirectionally. Analysis of the cluster revealed the presence of a pcaL homologue which encodes a fused gamma-carboxymuconolactone decarboxylase/beta-ketoadipate enol-lactone hydrolase previously identified in the pca gene cluster from Rhodococcus opacus 1CP. The pcaIJ genes encoded proteins with a striking similarity to succinyl-coenzyme A (CoA):3-oxoacid CoA transferases of eukaryotes and contained an indel which is strikingly similar between high-G+C gram-positive bacteria and eukaryotes.  相似文献   

20.
Muraymycin, a potent translocase I inhibitor with clinical potential, is produced by Streptomyces sp. NRRL 30471. The structure of muraymycin is highly unusual and contains the hexahydro-2-imino-4-pyrimidylglycyl moiety (epicapreomycidine) and an ureido bond. Here we report the identification of the muraymycin gene cluster from Streptomyces sp. NRRL 30471. Sequencing analysis of a 43.4-kb contiguous region revealed 33 ORFs, 26 of which were proposed to be involved in muraymycin biosynthesis. Independent targeted inactivation of mur16 and mur17 directly abolished muraymycin production, demonstrating the role of the genes essential for muraymycin biosynthesis. These data provide insights into the molecular mechanisms for muraymycin biosynthesis, and lay a foundation for the generation of muraymycin derivatives with enhanced bioactivity via the strategies of combinatorial biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号