首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactive oxygen species (ROS) generated by the NADPH oxidases are conventionally thought to be cytotoxic and mutagenic and at high levels induce an oxidative stress response. The phagocyte NADPH oxidase catalyzes the NADPH-dependent reduction of molecular oxygen to generate superoxide O2-., which can dismute to generate ROS species. Together, these ROS participate in host defence by killing or damaging invading microbes. Flavocytochrome b558 is the catalytic core of the phagocyte NADPH oxidase and consists of a large glycoprotein gp91phox or Nox-2 and a small protein p22phox. The other components of the NADPH oxidase are cytosolic proteins, namely p67phox, p47phox, p40phox and Rac. A defect in any of the genes encoding gp91phox, p22phox, p67phox or p47phox results in chronic granulomatous disease, a genetic disorder characterized by severe and recurrent infections. Evidence is rapidly accumulating that low level of ROS were produced by NADPH oxidase homologs in non-phagocytic cells. To date, six human homologs (Nox-1, Nox-3, Nox-4, Nox-5, Duox-1 and Duox-2) have been recently identified in a variety of non-phagocytic cells. The identification of Nox-1 was quickly followed by the cloning of Nox-3, Nox-4, and Nox-5. In parallel, two very large members of the Nox family were discovered, namely Duox-1 and Duox-2, initially also referred to as thyroid oxidases. The physiological functions of Nox-dependent ROS generation are in progress and still require detailed characterization. Activation mechanisms and tissue distribution of the different members of the Nox family are very different, suggesting distinct physiological functions. Nox family enzymes are likely to be involved in a variety of physiological events including cell proliferation, host defence, differentiation, apoptosis, senescence and activation of growth-related signaling pathways. An increase and a decrease in the function of Nox enzymes can contribute to a wide range of pathological processes.  相似文献   

2.
3.
Reactive oxygen species (ROS) derived from vascular NADPH oxidase are important in normal and pathological regulation of vessel growth and function. Cell-specific differences in expression and function of the catalytic subunit of NADPH oxidase may contribute to differences in vascular cell response to NADPH oxidase activation. We examined the functional expression of gp91phox on NADPH oxidase activity in vascular smooth muscle cells (SMC) and fibroblasts (FB). As measured by dihydroethidium fluorescence in situ, superoxide (O2-*) levels were greater in adventitial cells compared with medial SMC in wild-type aorta. In contrast, there was no difference in O2-* levels between adventitial cells and medial SMC in aorta from gp91phox-deficient (gp91phox KO) mice. Adventitial-derived FB and medial SMC were isolated from the aorta of wild-type and gp91phox KO mice and grown in culture. Consistent with the observations in situ, basal and stimulated ROS levels were reduced in FB isolated from aorta of gp91phox KO compared with FB from wild-type aorta, whereas ROS levels were similar in SMC derived from gp91phox KO and wild-type aorta. There were no differences in expression of superoxide dismutase between gp91phox KO and wild-type FB to account for these observations. Because gp91phox is associated with membranes, we examined NADPH-stimulated O2-. production in membrane-enriched fractions of cell lysate. As measured by chemiluminescence, NADPH oxidase activity was markedly greater in wild-type FB compared with gp91phox KO FB but did not differ among the SMCs. Confirming functional expression of gp91phox in FB, antisense to gp91phox decreased ROS levels in wild-type FB. Finally, deficiency of gp91phox did not alter expression of the gp91phox homolog NOX4 in isolated FB. We conclude that the neutrophil subunit gp91phox contributes to NADPH oxidase function in vascular FB, but not SMC.  相似文献   

4.
Reactive oxygen species (ROS) are important signal transduction molecules in ligand-induced signaling, regulation of cell growth, differentiation, apoptosis and motility. Recently NADPH oxidases (Nox) homologous to Nox2 (gp91phox) of phagocyte cytochrome b558 have been identified, which are an enzymatic source for ROS generation in epithelial cells. This study was undertaken to delineate the requirements for ROS generation by Nox4. Nox4, in contrast to other Nox proteins, produces large amounts of hydrogen peroxide constitutively. Known cytosolic oxidase proteins or the GTPase Rac are not required for this activity. Nox4 associates with the protein p22phox on internal membranes, where ROS generation occurs. Knockdown and gene transfection studies confirmed that Nox4 requires p22phox for ROS generation. Mutational analysis revealed structural requirements affecting expression of the p22phox protein and Nox activity. Mechanistic insight into ROS regulation is significant for understanding fundamental cell biology and pathophysiological conditions.  相似文献   

5.
Nox3, a member of the superoxide-producing NADPH oxidase (Nox) family, participates in otoconia formation in mouse inner ears, which is required for perception of balance and gravity. The activity of other Nox enzymes such as gp91(phox)/Nox2 and Nox1 is known to absolutely require both an organizer protein (p47(phox) or Noxo1) andanactivatorprotein (p67(phox) or Noxa1); for the p47(phox)-dependent activation of these oxidases, treatment of cells with stimulants such as phorbol 12-myristate 13-acetate is also indispensable. Here we show that ectopic expression of Nox3 in various types of cells leads to phorbol 12-myristate 13-acetate-independent constitutive production of a substantial amount of superoxide under the conditions where gp91(phox) and Nox1 fail to generate superoxide, i.e. in the absence of the oxidase organizers and activators. Nox3 likely forms a functional complex with p22(phox); Nox3 physically interacts with and stabilizes p22(phox), and the Nox3-dependent superoxide production is totally dependent on p22(phox). The organizers p47(phox) and Noxo1 are capable of enhancing the superoxide production by Nox3 in the absence of the activators, and the enhancement requires the interaction of the organizers with p22(phox), further indicating a link between Nox3 and p22(phox). The p47(phox)-enhanced Nox3 activity is further facilitated by p67(phox) or Noxa1, whereas the activators cancel the Noxo1-induced enhancement. On the other hand, the small GTPase Rac, essential for the gp91(phox) activity, is likely dispensable to the Nox3 system. Thus Nox3 functions together with p22(phox) as an enzyme constitutively producing superoxide, which can be distinctly regulated by combinatorial use of the organizers and activators.  相似文献   

6.
The vascular NAD(P)H oxidases constitute important sources of ROS in the vessel wall and have been implicated in vascular disease. Vascular smooth muscle cells (VSMCs) from conduit arteries express two gp91phox homologs, Nox1 and Nox4, of which Nox1 is agonist-sensitive. Because p22phox has been shown to be functionally important in vascular cells stimulated with vasoactive hormones, the relationship of Nox1 and p22phox was investigated in VSMCs from rat and human aortas. Coimmunoprecipitation studies demonstrated that p22phox and hemagglutinin-tagged Nox1 associate in unstimulated VSMCs. These findings were confirmed by confocal microscopy, showing colocalization of the two proteins in their native states in the plasma membrane and submembrane areas of the cell. NADPH-driven superoxide production, as measured by electron spin resonance using 1-hydroxy-3-carboxypyrrolidine as a spin probe, is dependent on the coexpression of both subunits, suggesting the importance of the association for the functional integrity of the enzyme. These results indicate that in contrast to the neutrophil enzyme, VSMCs can use Nox1 rather than gp91phox as a catalytic center in the p22phox-based oxidase and that these two proteins are preassembled at or near the plasma membrane and submembrane vesicular structures in unstimulated cells.  相似文献   

7.
The NADPH oxidase 1 (Nox1) is a gp91(phox) homologue preferentially expressed in the colon. We have established primary cultures of guinea pig large intestinal epithelial cells giving 90% purity of surface mucous cells. These cells spontaneously released superoxide anion (O(2)(-)) of 160 nmol/mg protein/h and expressed the Nox1, p22(phox), p67(phox), and Rac1 mRNAs, but not the gp91(phox), Nox4, p47(phox), p40(phox), and Rac2 mRNAs. They also expressed novel homologues of p47(phox) and p67(phox) (p41(nox) and p51(nox), respectively). Human colon cancer cell lines (T84 and Caco2 cells) expressed the Nox1, p22(phox), p51(nox), and Rac1 mRNAs, but not the other NADPH component mRNAs, and secreted only small amounts of O(2)(-) (<2 nmol/mg protein/h). Cotransfection of p41(nox) and p51(nox) cDNAs in T84 cells enhanced PMA-stimulated O(2)(-) release 5-fold. Treatment of the transfected T84 cells with recombinant flagellin (rFliC) from Salmonella enteritidis further augmented the O(2)(-) release in association with the induction of Nox1 protein. The enhanced O(2)(-) production by cotransfection of p41(nox) and p51(nox) vectors further augmented the rFliC-stimulated IL-8 release from T84 cells. T84 cells expressed the Toll-like receptor 5, and rFliC rapidly phosphorylated TGF-beta-activated kinase 1 and TGF-beta-activated kinase 1-binding protein 1. A potent inhibitor for NF-kappaB (pyrrolidine dithiocarbamate) significantly blocked the rFliC-primed increase in O(2)(-) production and induction of Nox1 protein. These results suggest that p41(nox) and p51(nox) are involved in the Nox1 activation in surface mucous cells of the colon, and besides that, epithelial cells discern pathogenicities among bacteria to appropriately operate Nox1 for the host defense.  相似文献   

8.
Molecular composition and regulation of the Nox family NAD(P)H oxidases   总被引:12,自引:0,他引:12  
Reactive oxygen species (ROS) are conventionally regarded as inevitable deleterious by-products in aerobic metabolism with a few exceptions such as their significant role in host defense. The phagocyte NADPH oxidase, dormant in resting cells, becomes activated during phagocytosis to deliberately produce superoxide, a precursor of other microbicidal ROS, thereby playing a crucial role in killing pathogens. The catalytic center of this oxidase is the membrane-integrated protein gp91(phox), tightly complexed with p22(phox), and its activation requires the association with p47(phox), p67(phox), and the small GTPase Rac, which normally reside in the cytoplasm. Since recent discovery of non-phagocytic gp91(phox)-related enzymes of the NAD(P)H oxidase (Nox) family--seven homologues identified in humans--deliberate ROS production has been increasingly recognized as important components of various cellular events. Here, we describe a current view on the molecular composition and post-translational regulation of Nox-family oxidases in animals.  相似文献   

9.
The membrane-integrated protein gp91phox, existing as a heterodimer with p22phox, functions as the catalytic core of the phagocyte NADPH oxidase, which plays a crucial role in host defence. The oxidase, dormant in resting cells, becomes activated to produce superoxide, a precursor of microbicidal oxidants, by interacting with the adaptor proteins p47phox and p67phox as well as the small GTPase Rac. In the past few years, several proteins homologous to gp91phox were discovered as superoxide-producing NAD(P)H oxidases (Nox's) in non-phagocytic cells; however, regulatory mechanisms for the novel oxidases have been largely unknown. Current identification of proteins highly related to p47phox and p67phox, designated Noxol (Nox organizer 1) and Noxal (Nox activator 1), respectively, has shed lights on common and distinct mechanisms underlying activations of Nox family oxidases.  相似文献   

10.
Toll receptor-mediated regulation of NADPH oxidase in human dendritic cells   总被引:9,自引:0,他引:9  
Activation of NADPH oxidase represents an essential mechanism of defense against pathogens. Dendritic cells (DC) are phagocytic cells specialized in Ag presentation rather than in bacteria killing. Human monocyte-derived DC were found to express the NADPH oxidase components and to release superoxide anions in response to phorbol esters and phagocytic agonists. The NADPH oxidase components p47phox and gp91phox were down-regulated during monocyte differentiation to DC, and maturation of DC with pathogen-derived molecules, known to activate TLRs, increased p47phox and gp91phox expression and enhanced superoxide anions release. Similar results were obtained with plasmacytoid DC following maturation with influenza virus. In contrast, activation of DC by immune stimuli (CD40 ligand) did not regulate NADPH oxidase components or respiratory burst. NADPH oxidase-derived oxygen radicals did not play any role in DC differentiation, maturation, cytokine production, and induction of T cell proliferation, as based on the normal function of DC generated from chronic granulomatous disease patients and the use of an oxygen radical scavenger. However, NADPH oxidase activation was required for DC killing of intracellular Escherichia coli. It is likely that the selective regulation of oxygen radicals production by pathogen-activated DC may function to limit pathogen dissemination during DC trafficking to secondary lymphoid tissues.  相似文献   

11.
An NAD(P)H oxidase has been hypothesized to be the main source of reactive oxygen species (ROS) in vessels; however, questions remain about its function and similarity with the neutrophil oxidase. Therefore, vascular superoxide generation was measured by electron paramagnetic resonance spectroscopy using the spin-trap 5,5'-dimethly-pyrroline-N-oxide in aortas from wild-type (WT) and gp91(phox)-deficient mice (gp91(phox)-/-), which do not have a functioning neutrophil NADPH oxidase. There was no significant difference between radical adduct formation by WT or gp91(phox)-/- mouse aortas either at baseline or after stimulation with NADPH or NADH. Also, spin-adduct formation was identical in the 100,000-g pellets obtained from WT and gp91(phox)-/- mouse aortas. SOD mimetics and the flavoenzyme inhibitor diphenyleneiodonium blocked spin-adduct formation from both intact vessels and particulate fractions. Other pharmacological inhibitors of metabolic pathways involved in ROS generation had no effect on this phenomenon. To examine the role of this enzyme in vascular tone control, aortic rings were suspended in organ chambers and preconstricted with phenylephrine to reach half-maximal contraction. Exposure to NADPH elicited a 20% increase in vascular tone, which was decreased by SOD mimetics in a concentration-dependent manner, suggesting that superoxide was responsible for this phenomenon. NADH had no effect on vascular tone. Thus superoxide is generated in the vessel wall by an NAD(P)H-dependent oxidase, which modulates vascular contractile tone. This enzyme is structurally and genetically distinct from the neutrophil NADPH oxidase.  相似文献   

12.
13.
14.
Nox1 and Nox4, homologues of the leukocyte NADPH oxidase subunit Nox2 (gp91phox) mediate superoxide anion formation in various cell types. However, their interactions with other components of the NADPH oxidase are poorly defined. We determined whether a direct interaction of Nox1 and Nox4 with the p22phox subunit of the NADPH oxidase occurs. Using confocal microscopy, co-localization of p22phox with Nox1, Nox2, and Nox4 was observed in transiently transfected vascular smooth muscle cells (VSMC) and HEK293 cells. Plasmids coding for fluorescent fusion proteins of p22phox and the Nox proteins with cyan- and yellow-fluorescent protein (cfp and yfp, respectively) were constructed and expressed in VSMC and HEK293 cells. The cfp-tagged p22phox expression level increased upon cotransfection with Nox1 or Nox4. Protein-protein interaction between the fluorescent fusion proteins of p22phox and the Nox partners was observed using the fluorescence resonance energy transfer technique. Immunoprecipitation of native Nox1 from human VSMC revealed co-precipitation of p22phox. Immunoprecipitation from transfected HEK293 cells revealed co-precipitation of native p22phox with yfp-tagged Nox1, Nox2, and Nox4. Following mutation of a histidine (corresponding to the position 115 in human Nox2) to leucine, this interaction was abolished. Transfection of rat p22phox (but not Noxo1 and Noxa1) increased the radical generation in cells expressing Nox4. We provide evidence that p22phox directly interacts with Nox1 and Nox4, to form an superoxide-generating NADPH oxidase and demonstrate that mutation of the potential heme binding site in the Nox proteins disrupts the complex formation of Nox1 and Nox4 with p22phox.  相似文献   

15.
Chronic exposure to low-O2 tension induces pulmonary arterial hypertension (PAH), which is characterized by vascular remodeling and enhanced vasoreactivity. Recent evidence suggests that reactive oxygen species (ROS) may be involved in both processes. In this study, we critically examine the role superoxide and NADPH oxidase plays in the development of chronic hypoxic PAH. Chronic hypoxia (CH; 10% O2 for 3 wk) caused a significant increase in superoxide production in intrapulmonary arteries (IPA) of wild-type (WT) mice as measured by lucigenin-enhanced chemiluminescence. The CH-induced increase in the generation of ROS was obliterated in NADPH oxidase (gp91phox) knockout (KO) mice, suggesting that NADPH oxidase was the major source of ROS. Importantly, pathological changes associated with CH-induced PAH (mean right ventricular pressure, medial wall thickening of small pulmonary arteries, and right heart hypertrophy) were completely abolished in NADPH oxidase (gp91phox) KO mice. CH potentiated vasoconstrictor responses of isolated IPAs to both 5-hydroxytryptamine (5-HT) and the thromboxane mimetic U-46619. Administration of CuZn superoxide dismutase to isolated IPA significantly reduced CH-enhanced superoxide levels and reduced the CH-enhanced vasoconstriction to 5-HT and U-46619. Additionally, CH-enhanced superoxide production and vasoconstrictor activity seen in WT IPAs were markedly reduced in IPAs isolated from NADPH oxidase (gp91phox) KO mice. These results demonstrate a pivotal role for gp91phox-dependent superoxide production in the pathogenesis of CH-induced PAH.  相似文献   

16.
Activation of D1-like receptors (D1 and/or D5) induces antioxidant responses; however, the mechanism(s) involved in their antioxidant actions are not known. We hypothesized that stimulation of the D5 receptor inhibits NADPH oxidase activity, and thus the production of reactive oxygen species (ROS). We investigated this issue in D5 receptor-deficient (D5-/-) and wild-type (D5+/+) mice. NADPH oxidase protein expression (gp91(phox), p47(phox), and Nox 4) and activity in kidney and brain, as well as plasma thiobarbituric acid-reactive substances (TBARS) were higher in D5-/- than in D5+/+ mice. Furthermore, apocynin, an NADPH oxidase inhibitor, normalized blood pressure, renal NADPH oxidase activity, and plasma TBARS in D5-/- mice. In HEK-293 cells that heterologously expressed human D5 receptor, its agonist fenoldopam decreased NADPH oxidase activity, expression of one of its subunits (gp91(phox)), and ROS production. The inhibitory effect of the D5 receptor activation on NADPH oxidase activity was independent of cAMP/PKA but was partially dependent on phospholipase D2. The ability of D5 receptor stimulation to decrease ROS production may explain, in part, the antihypertensive action of D5 receptor activation.  相似文献   

17.
gp91(phox) (Nox2), the catalytic subunit of the superoxide-generating respiratory burst oxidase, is regulated by subunits p47(phox) and p67(phox). Nox1, a homolog of gp91(phox), is regulated by NOXO1 and NOXA1, homologs of p47(phox) and p67(phox), respectively. For both Nox1 and gp91(phox), an organizer protein (NOXO1 or p47(phox)) cooperates with an activator protein (NOXA1 or p67(phox)) to regulate the catalytic subunit. Herein, we investigate the subunit regulation of Nox3 compared with that of other Nox enzymes. Nox3, like gp91(phox), was activated by p47(phox) plus p67(phox). Whereas gp91(phox) activity required the protein kinase C activator phorbol myristate acetate (PMA), Nox3 activity was already high without PMA, but was further stimulated approximately 30% by PMA. gp91(phox) was also activated by NOXO1/NOXA1 and required PMA for high activity. gp91(phox) regulation required an intact activation domain in the activator protein, as neither p67(phox)(V204A) nor NOXA1(V205A) were effective. In contrast, p67(phox)(V204A) was effective (along with p47(phox)) in activating Nox3. Unexpectedly, Nox3 was strongly activated by NOXO1 in the absence of NOXA1 or p67(phox). Nox3 activity was regulated by PMA only when p47(phox) but not NOXO1 was present, consistent with the phosphorylation-regulated autoinhibitory region in p47(phox) but not in NOXO1. Deletion of the autoinhibitory region from p47(phox) rendered this subunit highly active in the absence of PMA toward both gp91(phox) and Nox3, and high activity required an activator subunit. The unique regulation of Nox3 supports a model in which multiple interactions with regulatory subunits stabilize an active conformation of the catalytic subunit.  相似文献   

18.
Flavocytochrome b558 is the membrane component of the phagocyte NADPH oxidase, and is a heterodimer composed of gp91phox and p22phox subunits. Human flavocytochrome b558 is recognized by monoclonal antibody 7D5 at an unidentified extracellular domain, although our previous study suggested it might recognize p22phox. 7D5 has proven useful in rapid screening of individuals for X-linked chronic granulomatous disease by flow-cytometry. Therefore, we re-evaluated the location of the 7D5 epitope using gene-engineered cell lines expressing hybrid flavocytochromes composed of human and murine subunit homologues. The current study demonstrates that the 7D5 recognizes epitope only of primate gp91phox. Flow-cytometric analyses showed that 7D5 consistently bound to cells expressing human gp91phox. In addition, 7D5 immunoprecipitated the approximately 58 kDa unglycosylated gp91phox protein from solubilized membrane fractions of tunicamycin-treated PLB-985 granulocytes, indicating that glycans were not required for 7D5 binding. Transgenic COS7 cells expressing human gp91phox but not p22phox were recognized by 7D5. These results localized the epitope of 7D5 to an extracellular peptide portion of primate gp91phox and indicate that the antibody will be useful for monitoring the efficiency of gene therapy in patients with flavocytochrome b558-deficient chronic granulomatous disease and for elucidating structural characteristics of flavocytochrome b558.  相似文献   

19.
The generation of reactive oxygen species (ROS) in cells stimulated with growth factors requires the activation of phosphatidylinositol 3-kinase (PI3K) and the Rac protein. We report here that the COOH-terminal region of Nox1, a protein related to gp91(phox) (Nox2) of phagocytic cells, is constitutively associated with beta Pix, a guanine nucleotide exchange factor for Rac. Both growth factor-induced ROS production and Rac1 activation were completely blocked in cells depleted of beta Pix by RNA interference. Rac1 was also shown to bind to the COOH-terminal region of Nox1 in a growth factor-dependent manner. Moreover, the depletion of Nox1 by RNA interference inhibited growth factor-induced ROS generation. These results suggest that ROS production in growth factor-stimulated cells is mediated by the sequential activation of PI3K, beta Pix, and Rac1, which then binds to Nox1 to stimulate its NADPH oxidase activity.  相似文献   

20.
Reactive oxygen species (ROS) are required in a number of critical cellular signaling events, including those underlying hippocampal synaptic plasticity and hippocampus-dependent memory; however, the source of ROS is unknown. We previously have shown that NADPH oxidase is required for N-methyl-D-aspartate (NMDA) receptor-dependent signal transduction in the hippocampus, suggesting that NADPH oxidase may be required for NMDA receptor-dependent long-term potentiation (LTP) and hippocampus-dependent memory. Herein we present the first evidence that NADPH oxidase is involved in hippocampal synaptic plasticity and memory. We have found that pharmacological inhibitors of NADPH oxidase block LTP. Moreover, mice that lack the NADPH oxidase proteins gp91(phox) and p47(phox), both of which are mouse models of human chronic granulomatous disease (CGD), also lack LTP. We also found that the gp91(phox) and p47(phox) mutant mice have mild impairments in hippocampus-dependent memory. The gp91(phox) mutant mice exhibited a spatial memory deficit in the Morris water maze, and the p47(phox) mutant mice exhibited impaired context-dependent fear memory. Taken together, our results are consistent with NADPH oxidase being required for hippocampal synaptic plasticity and memory and are consistent with reports of cognitive dysfunction in patients with CGD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号