首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The antiviral action of interferon   总被引:5,自引:0,他引:5  
On interferon treatment cells develop an antiviral state. This requires time and RNA and protein synthesis. At least six polypeptides and two enzymes have been reported to be synthesized in increased amounts in response to interferon and a multiplicity of effects have been attributed to it. Interferon has been reported to inhibit virus growth at the level of the uncoating of the virus, virus RNA and protein synthesis and virus maturation. This has led to the acceptance of a multisite model for interferon action. The evidence for this and for the role of two known interferon-mediated enzymes, the 2-5A synthetase and protein kinase, are reviewed.  相似文献   

2.
3.
A mouse cell line, NIH 3T3, does not respond to some of the activities of interferon. Even after treatment with high concentrations of interferon the replication of lytic viruses, such as encephalomyocarditis virus (EMCV) and vesicular stomatitis virus (VSV) is not inhibited in these cells. In contrast, interferon treatment of these same cells results in the inhibition of Moloney murine leukemia virus (MMuLV) production. We have analyzed enzymatic pathways which are induced by interferon in these cells. After interferon treatment, the level of the (2'-5')oligoadenylate [(2'-5)An] synthetase activity and the phosphorylation of the 67000-dalton protein (P1) are enhanced in NIH 3T3 cells to approximately the same level as interferon-sensitive mouse L-cells. Moreover, NIH 3T3 and L-cells, contain approximately the same levels of enzymes which inactivate (2'-5')An. Both exogenously added (2'-5')A3 or double-stranded RNA (dsRNA) failed to inhibit protein synthesis in NIH 3T3 extracts even though they were potent inhibitors of L-cell extract-directed protein synthesis. Direct measurements of the (2'-5')An-dependent ribonuclease F (RNase F) failed to detect such activity in NIH 3T3 cells. Our results, therefore, suggest that the presence of RNase F activity is necessary for the interferon-induced antiviral activity against EMCV and against VSV. The induction of protein kinase activity by interferon treatment of NIH 3T3 cells appears to have no direct effect on EMCV and VSV replication.  相似文献   

4.
The level of 2-5A synthetase in extracts of peripheral blood lymphocytes and a specific protein kinase activity in platelet-rich plasma were measured in normal individuals and in patients suffering from viral or bacterial infections. The level of these enzymes was tested at different times during the disease. The level of 2-5A synthetase and the protein kinase activity was enhanced by several-fold during viral and bacterial infections and decreased during the course of the disease in parallel with clinical ameliorations and reversal of clinical symptoms. Among the different types of infections studied, higher levels of these enzymes were observed during viral than bacterial infections. Our results emphasize the use of these enzymes as markers to evaluate the state of the disease and recovery. Furthermore, they provide evidence for the production of interferon during different types of infection.  相似文献   

5.
6.
Injection of conventional or axenic weanling mice with potent sheep or goat antibody to mouse interferon alpha/beta resulted in a decrease in the basal level of 2-5A synthetase in resting peritoneal macrophages and rendered these cells permissive for vesicular stomatitis virus. There was a good inverse correlation between the level of 2-5A synthetase in peritoneal macrophages and the permissivity of these cells for vesicular stomatitis virus. The peritoneal macrophages of 1- and 2-week-old mice had low levels of 2-5A synthetase and were permissive for vesicular stomatitis virus, whereas at 3 weeks (and after) there was a marked increase in the level of 2-5A synthetase in peritoneal macrophages, and these cells were no longer permissive for vesicular stomatitis virus. We suggest that low levels of interferon alpha or beta or both are produced in normal mice, and that this interferon contributes to host defense by inducing and maintaining an antiviral state in some cells.  相似文献   

7.
Vasoactive intestinal peptide (VIP), composed of 28 amino acids, is a multifunctional neurotransmitter. We have demonstrated here that its action on human transformed colonic epithelial (HT-29) cells is mediated through the induction of interferon (IFN) synthesis. We have found that these cells have a functional receptor for IFN alpha 2; binding was specific to either IFN alpha 2 or IFN beta but not to IFN gamma. VIP induced the 2'5'oligoadenylate synthetase (2'5'A synthetase) and the antiviral state with the same efficiency as poly (I).poly (C). The induction of 2'5'A synthetase activity required cellular RNA and protein synthesis, and the maximum induction occurred with 10(-7) M VIP at 24 h. VIP, like some IFN inducers, induced the synthesis of the 70 hsp which, however, preceded the expression of 2'5'A synthetase. VIP treatment caused the induction and secretion of IFN, having a titer value of 32 international units/ml. This IFN has been identified as type beta/alpha, because both 2'5'A synthetase and the antiviral activities were abolished by anti-human IFN beta/alpha antibodies, but not by anti-IFN gamma antibodies. Thus the pathway of VIP action on HT-29 cells may be outlined as 1) binding of VIP, 2) synthesis of 70 hsp, 3) induction of IFN synthesis and its secretion, 4) binding of the secreted IFN to cell surface receptors and 5) turning on the induction of 2'5'A synthetase and antiviral activities.  相似文献   

8.
The relationship between prostaglandins (PG) and interferon (IFN) was investigated. IFN induced the synthesis of immunoreactive PGE and PGA at early and late stages, respectively, of vaccinia virus infection in mouse L fibroblasts. Only species-specific IFN possessed this activity and PG synthesis was stimulated in virus-infected cells, while normal L cells were not affected. The vaccinia virus infection did not significantly alter PG synthesis in the absence of IFN. Indomethacin increased the rate of vaccinia virus replication and partially inhibited the IFN-induced protection of L cells. The addition of exogenous PGA1 only partially reversed this effect. Finally, short-term PGA treatment induced the synthesis of two enzymes (protein kinase and 2,5A synthetase) thought to be partially responsible for the antiviral action of interferon. These findings suggest that a prostaglandin or PG-related compound seems to mediate at least one aspect of IFN action.  相似文献   

9.
陈伟卓  高向东  徐晨  牛春 《生物磁学》2013,(36):7165-7170
干扰素作用于靶细胞膜表面的受体后,通过信号转导系统诱导一系列抗病毒蛋白产生,干扰病毒复制以达到抗病毒目的。2’-5’寡聚腺苷酸合成酶(2’.5’oligoadenylatesynthetase,OAS)是干扰素作用于细胞后产生的一种重要的抗病毒蛋白,几十年来,国内外学者对OAS家族及其抗病毒机制进行了大量研究并取得了一定的进展,OAS被dsRNA激活后,催化生成2-5A,2-5A激活核酸内切酶RNaseL,降解病毒RNA,阻断病毒蛋白合成,从而发挥抗病毒作用。体内外研究表明,OAS的表达量或活性的变化可用于评价机体对干扰素的反应,反映干扰素抗病毒效果,另外,它还可作为系统性红斑狼疮的病情活动度的一种检测指标。因此,OAS具有重要的临床应用价值。本文就OAS家族及其抗病毒机制,其测定方法与对于病毒性肝炎和系统性红斑狼疮疾病的临床意义展开综述,以期对OAS的研究和应用提供参考。OAS是典型的干扰素诱导产物,可反映机体内干扰素的抗病毒水平,具有广阔的应用前景。  相似文献   

10.
We previously demonstrated that dexamethasone treatment of L929 cells inhibited plaque formation by vesicular stomatitis virus (VSV), encephalomyocarditis virus, or vaccinia virus. We now have characterized the antiviral effects of glucocorticoids in L929 cells. Dexamethasone did not directly inactivate VSV nor did steroid treatment of L929 cells affect virion adsorption or penetration. The VSV yield in L929 cells treated with dexamethasone for a period of only 4 or 8 hr was decreased by 50% when cells were infected the day following steroid treatment. Treating L929 cells with dexamethasone for a longer period resulted in greater inhibitions of virus synthesis. Interferon activity (less than 5 units/ml) was not detected in L929 cell culture fluids and cell sonicates from steroid-treated cells and the addition of antiserum to murine alpha/beta-interferon had no effect on the ability of dexamethasone to inhibit VSV replication. Dexamethasone treatment of L929 cells did not induce the production of double-stranded RNA-dependent protein kinase but did result in a slight elevation of 2-5A oligoadenylate synthetase activity, two enzymatic activities associated with the antiviral state induced by interferon. However, the elevated 2-5A synthetase activity was not associated with an inhibition of VSV RNA accumulation in dexamethasone-treated L929 cells. By contrast, the synthesis of all five VSV proteins was reduced by 50-75% in dexamethasone-treated L929 cells as early as 4 hr after infection. Thus, the dexamethasone-mediated inhibition of VSV replication in L929 cells is associated with decreased production of VSV structural proteins.  相似文献   

11.
A new protein retained by poly(I):poly(C)-Sepharose was induced together with dsRNA-dependent enzymatic activities, a protein kinase and 2',5'-oligoadenylate synthetase (2,5A synthetase), in interferon-treated mouse L929 cells; it had an apparent molecular weight of 50,000 (50 K) and was not phosphorylated by the protein kinase. The kinetics of the induction of the poly(I):poly(C)-binding 50 K protein were similar to those of dsRNA-dependent protein kinase and 2',5'-oligoadenylate synthetase, and their inductions were all dependent on the interferon dose added, though a relatively higher dose was required for the 50 K protein. When the interferon preparation was heated to 100 degrees C in the presence of sodium dodecyl sulfate, its effect on cells of inducing the activity of 2',5'-oligoadenylate synthetase was preserved completely, indicating that the interferon molecule itself is responsible for the induction of the synthetase. Since the induction of the enzymatic activity was inhibited by addition of either actinomycin D or cycloheximide, it may not be an activation of a latent enzyme but a de novo synthesis of the enzyme.  相似文献   

12.
Theophylline, an inhibitor of cAMP phosphodiesterase, induces in human ovary carcinoma cells (CaOv) a 2-2.5-fold elevation of intracellular cAMP. This rise in the cAMP level is followed by an increase of the activity of 2',5'-oligo(A) synthetase in CaOv cells -insignificant (1.5-fold) after 16 hr incubation, and substantial (3.7-fold) after 30 hr incubation, as well as the development of antiviral resistance. Once CaOv cells have been incubated with the mixtures containing theophylline (2 mM) and lambda-, beta-, and gamma-interferon preparations (0.5-13 IU/ml), the total antiviral effect of the mixtures exceeds that generated by interferon or theophylline separately; the action of the above agents being additive. These data agree with the previously obtained results and support the suggestion that cAMP phosphodiesterase inhibitors partially mimic the antiviral action of interferon.  相似文献   

13.
J A Lewis  A Huq    B Shan 《Journal of virology》1989,63(11):4569-4578
We showed previously that the mouse fibroblastoid cell line Ltk-aprt- is resistant to the antiviral effects of beta interferon. This lack of response reflects a partial sensitivity to the interferon that is accompanied by a failure to activate expression of several interferon-regulated genes, although certain other genes respond in a normal manner. We show here that Ltk-aprt- cells were also unable to establish an antiviral state and to activate expression of 2,5-oligo(A) synthetase when treated with gamma interferon. Strikingly, however, treatment with a combination of beta interferon and gamma interferon provided complete protection against viral replication. Although the cells were completely insensitive to up to 250 U of the interferons per ml added singly, essentially complete protection from viral cytopathic effects was achieved when as little as 10 U of each of the interferons per ml were combined. Expression of 2,5-oligo(A) synthetase was also sensitive to this synergistic effect. Activation of an antiviral state could also be achieved by sequential treatment, first with gamma interferon and then with beta interferon. Partial protection against viral replication could be achieved by pretreatment with gamma interferon for as little as 1 h before incubation with beta interferon and could be blocked by the addition of specific antibodies or by cycloheximide, indicating that gamma interferon induces the synthesis of a protein which can act synergistically with a signal produced by the beta-interferon receptor. We suggest that Ltk-aprt- cells suffer from defects in one or more components of the gene activation pathways for both type I and type II interferons. Nonetheless, gamma interferon is able to activate the expression of a gene encoding a protein required for signal transduction. This protein acts synergistically with a transient signal produced in response to beta interferon, thereby activating the expression of a further group of genes.  相似文献   

14.
CpG oligodeoxynucleotide induction of antiviral effector molecules in sheep   总被引:3,自引:0,他引:3  
Immunostimulatory CpG oligodeoxynucleotide (ODN) can protect mice against infection by many pathogens but the mechanisms mediating disease protection are not well defined. Furthermore, the mechanisms of CpG ODN induced disease protection in vivo have not been investigated in other species. We investigated the induction of antiviral effector molecules in sheep treated with a class B CpG ODN (2007). Subcutaneous injection of ODN 2007 induced a dose-dependent increase in serum levels of the antiviral effector molecule, 2'5'-A synthetase. Peak levels of enzyme were observed 4 days following ODN injection and enzyme levels remained elevated for the following 3-5 days. Repeated ODN injections induced a more sustained elevation of serum 2'5'-A synthetase activity. Finally, formulation of ODN 2007 in emulsigen increased the level of serum 2'5'-A synthetase activity and this response was CpG-specific. Elevated serum 2'5'-A synthetase activity suggested that CpG ODN acted through the induction of either interferon (IFN)-alpha or IFN-gamma. ODN 2007 did not induce detectable levels of IFN-alpha or IFN-gamma when incubated with peripheral blood mononuclear cells, but both IFN-alpha and IFN-gamma were detected following stimulation of lymph node cells with ODN 2007. CpG ODN induction of 2'5'-A synthetase in vitro correlated with the secretion of both IFN-alpha and IFN-gamma. Furthermore, immunohistochemical staining of skin revealed a marked cellular infiltration at the site of ODN 2007 injection. This cellular infiltration was CpG-specific and consisted of primarily CD172(+) myeloid cells. Many of the cells recruited to the site of ODN 2007 injection expressed IFN-alpha and some IFN-gamma. These observations support the conclusion that localized cell recruitment and activation contribute to CpG ODN induction of antiviral effector molecules, such as interferon and 2'5'-A synthetase.  相似文献   

15.
The demonstration that double-stranded (ds) RNA inhibits protein synthesis in cell-free systems prepared from interferon-treated cells, lead to the discovery of the two interferon-induced, dsRNA-dependent enzymes: the serine/threonine protein kinase that is referred to as PKR and the 2′,5′-oligoadenylate synthetase (2′,5′-OAS), which converts ATP to 2′,5′-linked oligoadenylates with the unusual 2′-5′ instead of 3′-5′ phosphodiesterase bond. We raised monoclonal and polyclonal antibodies against human PKR and the two larger forms of the 2′,5′-OAS. Such specific antibodies proved to be indispensable for the detailed characterization of these enzyme and the cloning of cDNAs corresponding to the human PKR and the 69–71 and 100 kDa forms of the 2′,5′-OAS. When activated by dsRNA, PKR becomes autophosphorylated and catalyzes phosphorylation of the protein synthesis initiation factor eIF2, whereas the 2′-5′OAS forms 2′,5′-oligoadenylates that activate the latent endoribonuclease, the RNAse L. By inhibiting initiation of protein synthesis or by degrading RNA, these enzymes play key roles in two independent pathways that regulate overall protein synthesis and the mechanism of the antiviral action of interferon. In addition, these enzymes are now shown to regulate other cellular events, such as gene induction, normal control of cell growth, differentiation and apoptosis.  相似文献   

16.
17.
18.
The MuIFN-alpha/beta and MuIFN-gamma induced antiviral states which are directed against mengovirus have been shown previously to be differentially regulated. Following interferon removal, the MuIFN-alpha/beta-induced antiviral state decays rapidly, while the MuIFN-gamma-induced antiviral state increases dramatically. To determine whether these observations with mengovirus represent part of a general phenomenon, these studies have been extended using vesicular stomatitis virus and vaccinia virus, which represent two distinctly different groups of viruses. The antiviral states induced by MuIFN-gamma against all three viruses increased dramatically following interferon removal. The antiviral state induced by MuIFN-alpha/beta against vesicular stomatitis virus was stable following interferon removal, while the antiviral states induced by MuIFN-alpha/beta against mengovirus and vaccinia virus decayed rapidly. Also, levels of 2'5' oligoadenylate synthetase were determined at various times following interferon removal. MuIFN-alpha/beta was found to be a relatively strong inducer of 2'5' oligoadenylate synthetase, while MuIFN-gamma was a relatively weak inducer. Further, while the changes in 2'5' oligoadenylate synthetase levels paralleled the changes in the levels of the antiviral states induced by MuIFN-alpha/beta and MuIFN-gamma against mengovirus and vaccinia virus, the changes in 2'5' oligoadenylate synthetase levels did not parallel the changes in the antiviral state induced by MuIFN-alpha/beta against vesicular stomatitis virus. The results suggested that the 2'5' oligoadenylate synthetase levels did not correlate with the level of antiviral state.  相似文献   

19.
The protein kinase PKR and the 2′,5′-oligoadenylate (2-5A) synthetase are two interferon-induced and double-stranded RNA-activated enzymes which are implicated in the mechanism of action of interferon. Their distribution was undertaken here at the ultrastructural level by the immunogold procedure, following the use of specific monoclonal antibodies directed against PKR and 69- and 100-kDa forms of the 2-5A synthetase. These enzymes were detected as a pool of nonaggregated proteins scattered throughout the cell and as aggregates often associated with electron-dense doughnut-like structures showing a similar aspect whatever their subcellular localization: the cytoplasm, the nuclear envelope, and the nucleus. In general, the 2-5A synthetases were present in much more lower amounts than the PKR, probably due to the difficulty of detecting traces of proteins by electron microscopy. To circumvent this, we used a human lymphoblastoid cell line overexpressing the 69-kDa form of the 2-5A synthetase. In such cells, the synthetase was then clearly observed in both the cytoplasm and the nucleus; isolated or small clusters of gold particles were numerous in the cell mainly over the RNP fibrils of the interchromatin space, nucleolus, and ribosomes. Interestingly, gold particles were also found to be associated with the membranes of nuclear envelope and rough endoplasmic reticulum probably due to the myristilated motif of this form of 2-5A synthetase. Finally, intensely labeled electron-opaque dots sometimes associated with the nuclear pore complexes were present in the nucleus and in the cytoplasm of cells which might suggest their transport from the nucleus to the cytoplasm or reciprocally through the nuclear pore complexes. These observations indicate the wider distribution of the dsRNA-activated enzymes in the cell, thus pointing out their potential implication in as yet undetermined physiological function(s) necessary for various cellular metabolic reactions.  相似文献   

20.
Gangliosides are potent inhibitors of the antiviral activity of mouse fibroblasts and other beta-interferons. We have compared the effects of gangliosides on antiviral and antigrowth activities of mouse fibroblast interferon and on the induction of (2'--5')oligoadenylate synthetase, one of the enzymes implicated in the antiviral state induced by interferon. Whereas both biological effects appear to be inhibited by gangliosides in an analogous fashion, inhibition of induction of (2'--5')oligoadenylate synthetase does not correlate with inhibition of vesicular stomatitis virus replication. Ganglioside concentrations that inhibit the interferon-induced (2'--5')oligoadenylate synthetase to levels close to those of uninduced cells, still allow for a 100--1000-fold reduction of viral yield. Significantly higher ganglioside concentrations are required to prevent completely the antiviral effect. This biphasic relationship between (2'--5')oligoadenylate synthetase levels and inhibition of viral yield suggests that no or very small increases in synthetase levels are involved in inhibition of virus by between two and three orders of magnitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号