首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is well-established that activated T cells proliferate in response to interleukin 2 (IL 2) and produce various soluble lymphokines such as macrophage-activating factor (MAF) in response to antigen. Prior to investigating the molecular events involved in signaling the initiation of these responses in cloned murine cytotoxic T lymphocytes (CTL), we determined whether these responses could occur independently, and we established for each response the time during which signal transducing mechanisms may function. It was found that this cloned CTL population was in a resting state (G1 phase of cell cycle) 7 days after stimulation with antigen plus IL 2. At this time, the incubation of these resting CTL with IL 2 for 4 to 6 hr resulted in a maximal proliferative response that was not accompanied by the production of MAF. Conversely, the incubation of resting CTL with antigen or lectin (in the absence of IL 2) for at least 8 hr resulted in the maximal production of MAF at 24 hr without inducing a proliferative response. In addition, antigen or lectin, but not IL 2, triggered an immediate (less than 1 min) and sustained (at least 8 hr) mobilization of intracellular calcium. The kinetics of this calcium response paralleled the minimum time (8 hr) that was required for resting CTL to interact with either antigen or lectin in order to produce maximal titers of MAF. These results indicate that proliferation and lymphokine (MAF) production in cloned murine CTL are independent events. In these resting CTL, the signal mechanisms that mediate the production of lymphokines are most likely restricted to the initial 8 hr of stimulation by antigen or lectin and involve the rapid and prolonged mobilization of cytoplasmic calcium. Proliferative signals, however, are probably complete within 4 to 6 hr after stimulation by IL 2 and do not involve readily demonstrable fluxes of cytoplasmic calcium, as determined by the fluorescent calcium probe Quin 2.  相似文献   

2.
Lymphokine-mediated induction of cytolytic activity in a T cell hybridoma   总被引:3,自引:0,他引:3  
Functionally inducible CTL hybridomas were constructed by fusing alloantigen-specific T cells (C57BL/6 alpha-DBA/2) with cells from the rat thymoma line W/FU (C58NT)D. A cloned hybridoma line (KSH.4.13.6) that was specifically cytolytic in the presence of activated rat spleen cell supernatant fluid (rat Con A SN) lost activity when transferred to normal medium. However, a cytolytic activity could be reinduced by culturing KSH.4.13.6 cells in medium containing rat Con A SN or secondary mixed leukocyte culture SN. By using various sources of SN, it was found that cytolytic induction required two different factors. PMA-induced EL-4 SN and SN from antigen-activated cloned T cells, neither of which were capable of inducing cytolytic activity alone, were able to synergize in the cytolytic induction of KSH.4.13.6 IFN-gamma and IL 1 failed to induce cytolytic activity even in the presence of EL-4 SN. Furthermore, this hybridoma produced macrophage activating factor (MAF) upon culture in rat Con A SN, although MAF production could not be induced by either specific antigen or lectins. The kinetics of induction and loss of cytolytic activity mediated by rat Con A SN were similar to those of the induction of MAF production. However, EL-4 SN, which by itself was incapable of inducing cytolytic activity, was able to induce MAF production in the KSH.4.13.6 hybrid to an extent similar to that induced by rat Con A SN. These results suggest that the induction of cytolytic activity and of MAF production in this cloned hybridoma cell line are regulated by different mechanisms. Such a functionally inducible T cell hybrid may provide a tool for biochemical and molecular analysis of T cell function and regulation, and of the characterization of cytokines required for CTL differentiation.  相似文献   

3.
The effect of glucocorticoids on lymphokine production by T lymphocytes was examined by using long-term alloreactive T cell clones that secreted one or more of the lymphokines interleukin 2 (IL 2), interferon-gamma, macrophage-activating factor (MAF), and colony-stimulating factor when stimulated by an antigen or a mitogen. Production of all of these four lymphokines was inhibited when glucocorticoids were added at physiologic concentrations (10(-8) to 10(-6) M) to clones stimulated with concanavalin A (Con A). Clones were heterogeneous with respect to their sensitivity to glucocorticoid inhibition of MAF production; cytolytic clones were generally more resistant than noncytolytic clones. The glucocorticoid dexamethasone (Dex) and an IL 2-containing supernatant exerted opposing effects on clonal MAF production. Kinetics experiments showed that Dex inhibited MAF production by reducing the rate of secretion without causing a compensatory increase in the duration of secretion, whereas the IL 2 source increased the rate and the total amount of MAF secretion. Dex abrogated the effect of IL 2. Inhibition by Dex was apparent from the earliest time of detectable MAF production (about 4 hr after stimulation) and increased with longer exposure until production ceased (12 to 24 hr). Pre-exposure and removal of Dex before Con A stimulation also inhibited MAF release. Effects of Dex on lymphokine secretion by clones could be dissociated from effects on their growth in response to stimulator cells and IL 2. Factor production by the 16 clones tested was inhibited to some degree. Proliferation, however, by two of these clones (both cytolytic) was unaffected by Dex, whereas proliferation of two noncytolytic clones was strongly inhibited even in the presence of a saturating dose of IL 2.  相似文献   

4.
We have studied the activation signals that regulate interferon-gamma (IFN-gamma) secretion from murine cytotoxic T lymphocytes (CTL) upon binding mitogen or antigen. CTL clones were found to require at least 1 hr of stimulation with concanavalin A (Con A) in order to produce detectable levels of IFN-gamma. Full activation of IFN-gamma synthesis in CTL clones occurred after stimulation for 2 hr or more, and in those cultures CTL continued to produce high levels of IFN-gamma even after the effects of Con A had been neutralized. Splenic T cells and uncloned long-term CTL lines required a longer period of stimulation than cloned CTL for Con A-induced IFN-gamma secretion. The relationship between IFN-gamma secretion and cytotoxic activity was studied in an antigen-specific system. These studies reveal marked differences in the types of effector responses generated by CTL upon contact with antigen, demonstrating that some antigen-bearing cells promote high levels of IFN-gamma secretion and are poorly lysed by CTL, whereas other cell lines are lysed with high efficiency by CTL but induce low levels of IFN-gamma secretion.  相似文献   

5.
We have previously reported that insulin increases the synthesis de novo of phosphatidic acid (PA), phosphatidylinositol (PI), phosphatidylinositol 4-phosphate (PIP), phosphatidylinositol 4,5-bisphosphate (PIP2) and diacylglycerol (DAG) in BC3H-1 myocytes and/or rat adipose tissue. Here we have further characterized these effects of insulin and examined whether there are concomitant changes in inositol phosphate generation and Ca2+ mobilization. We found that insulin provoked very rapid increases in PI content (20% within 15 s in myocytes) and, after a slight lag, PIP and PIP2 content in both BC3H-1 myocytes and rat fat pads (measured by increases in 32P or 3H content after prelabelling phospholipids to constant specific radioactivity by prior incubation with 32Pi or [3H]inositol). Insulin also increased 32Pi incorporation into these phospholipids when 32Pi was added either simultaneously with insulin or 1 h after insulin. Thus, the insulin-induced increase in phospholipid content appeared to be due to an increase in phospholipid synthesis, which was maintained for at least 2 h. Insulin increased DAG content in BC3H-1 myocytes and adipose tissue, but failed to increase the levels of inositol monophosphate (IP), inositol bisphosphate (IP2) or inositol trisphosphate (IP3). The failure to observe an increase in IP3 (a postulated 'second messenger' which mobilizes intracellular Ca2+) was paralleled by a failure to observe an insulin-induced increase in the cytosolic concentration of Ca2+ in BC3H-1 myocytes as measured by Quin 2 fluorescence. Like insulin, the phorbol diester 12-O-tetradecanoylphorbol 13-acetate (TPA) increased the transport of 2-deoxyglucose and aminoisobutyric acid in BC3H-1 myocytes. These effects of insulin and TPA appeared to be independent of extracellular Ca2+. We conclude that the phospholipid synthesis de novo effect of insulin is provoked very rapidly, and is attended by increases in DAG but not IP3 or Ca2+ mobilization. The insulin-induced increase in DAG does not appear to be a consequence of phospholipase C acting upon the expanded PI + PIP + PIP2 pool, but may be derived directly from PA. Our findings suggest the possibility that DAG (through protein kinase C activation) may function as an important intracellular 'messenger' for controlling metabolic processes during insulin action.  相似文献   

6.
Murine splenocytes and cloned murine T cells were used to study the in vitro immunosuppressive effects of UV-inactivated feline leukemia virus (FeLV-UV) on lymphokine secretion. FeLV-UV can significantly depress the accumulation of IL 2 in cultures of Con A-stimulated C57BL/6 splenocytes and in cultures containing the alloreactive helper T cell clone B6D/2-2m plus Con A. Inhibition of lymphokine accumulation in these cultures could not be attributed to absorption or inactivation of IL 2 by the FeLV-UV or to the FeLV-UV-induced production of substances which interfere with the IL 2 bioassay. Thus, FeLV-UV appears to block production and/or secretion of IL 2 by a direct inhibitory effect on IL 2-secreting murine T lymphocytes. Additional studies indicate that FeLV-UV impairs IL 2 production only if added very soon after lymphocyte contact with lymphokine-inducing agents and that IL 2 secretion resumes when FeLV-UV is removed from the culture. FeLV-UV also impairs accumulation of MAF (interferon-gamma?) in cultures of Con A-stimulated C57BL/6 splenocytes and in cultures containing the alloreactive cytotoxic T lymphocyte clone B6D/2-7c plus Con A. The latter observation again suggests that FeLV-UV impairs lymphokine secretion by a direct effect on lymphokine-producing T lymphocytes. Furthermore, it suggests that FeLV-UV does not selectively impair production of IL 2 nor does it have selective inhibitory effects on helper T cells. Rather, FeLV-UV appears to have a general inhibitory effect on lymphokine production by T lymphocytes. Finally, concentrations of FeLV-UV which suppress MAF production by the CTL clone have little influence on the cytolysis mediated by the same cloned T cell population. Thus, the immunosuppressive influence of FeLV-UV is selective for phenomena associated with induction of new T lymphocyte functions, such as lymphokine secretion, and spares other immune functions already expressed by the same cells.  相似文献   

7.
We have recently described the production of cytotoxic T lymphocyte (CTL) hybridomas that grow continuously in culture, exhibiting constitutive, allospecific (anti-H-2b) killing activity. We now report on the response of these monoclonal CTL hybridomas to specific antigen (H-2Db) and to mitogenic lectins. Both specific antigen and T cell mitogens enhance hybridoma-mediated specific target cell killing. In addition, stimulated, but not unstimulated hybridoma cells secrete considerable amounts of IL 2 into the culture medium. Repeated cloning of the hybridomas provides strong evidence that both killing activity and IL 2 secretion can be attributed to one cell. Unfractionated Con A supernatants, containing IL 2 and other factors known to influence T cell responsiveness, or IL 2-containing media of stimulated hybridomas affect neither the growth nor the lytic activity of the hybridomas. Anti-LFA-1 monoclonal antibody, a potent inhibitor of CTL and CTL hybridoma-mediated target cell lysis, abolishes antigen- or mitogen-induced IL 2 secretion by the CTL hybridomas. Involvement of a single hybridoma receptor in antigen recognition (afferent and efferent) and in initiating IL 2 secretion is proposed. The CTL hybridomas displaying retarded killing activity before the antigenic or mitogenic stimulation appear to represent an intermediate stage in CTL differentiation, reminiscent of "memory" CTL.  相似文献   

8.
The induction of cytotoxic T lymphocytes (CTL) from CTL precursors requires a combination of antigen and lymphokine signals. To investigate lymphokine requirements for CTL generation, we used an assay in which helper T cell and accessory cell-depleted spleen cells or whole thymocytes were cultured with lectin (Con A) and lymphokines. This culture was followed by assessment of lectin-dependent cytolysis. High concentrations of recombinant interleukin 2 (R-IL 2) (100 U/ml) alone were not sufficient for lectin-mediated CTL induction from thymocytes, whereas 20 to 100 U/ml of R-IL 2 alone could induce a significant lectin-mediated CTL response from accessory cell-depleted spleen cells. Using thymocytes as responders, we found purified or recombinant interferon-gamma (IFN-gamma) did not cause cytolytic activity either in the absence of or in the presence of R-IL 2. However, supernatant from Con A-stimulated rat spleen cells (rat Con A SN) in combination with R-IL 2 could induce cytolytic activity, suggesting that several factors are required for CTL induction. Con A SN was fractionated by gel filtration and the fractions were tested for ability to induce CTL. In the presence of a low level of R-IL 2 (5 U/ml), fractions with a Mr of approximately 31,000 could induce CTL, and this activity was referred to as CTL differentiation factor (CDF). The peak fractions containing CDF activity did not have detectable IL 1, IL 2, IFN-gamma, or CSF activity. However, by add-back experiments and the use of blocking antibodies, a monoclonal antibody against the IL 2 receptor or antibodies against murine IFN-gamma, we demonstrated that CTL induction from mature thymocytes (L3T4-, Lyt-2+) requires CDF activity in addition to IL 2 and IFN-gamma.  相似文献   

9.
A panel of antigen-specific mouse helper T cell clones was characterized according to patterns of lymphokine activity production, and two types of T cell were distinguished. Type 1 T helper cells (TH1) produced IL 2, interferon-gamma, GM-CSF, and IL 3 in response to antigen + presenting cells or to Con A, whereas type 2 helper T cells (TH2) produced IL 3, BSF1, and two other activities unique to the TH2 subset, a mast cell growth factor distinct from IL 3 and a T cell growth factor distinct from IL 2. Clones representing each type of T cell were characterized, and the pattern of lymphokine activities was consistent within each set. The secreted proteins induced by Con A were analyzed by biosynthetic labeling and SDS gel electrophoresis, and significant differences were seen between the two groups of T cell line. Both types of T cell grew in response to alternating cycles of antigen stimulation, followed by growth in IL 2-containing medium. Examples of both types of T cell were also specific for or restricted by the I region of the MHC, and the surface marker phenotype of the majority of both types was Ly-1+, Lyt-2-, L3T4+, Both types of helper T cell could provide help for B cells, but the nature of the help differed. TH1 cells were found among examples of T cell clones specific for chicken RBC and mouse alloantigens. TH2 cells were found among clones specific for mouse alloantigens, fowl gamma-globulin, and KLH. The relationship between these two types of T cells and previously described subsets of T helper cells is discussed.  相似文献   

10.
B Haye  G Marcy  C Jacquemin 《Biochimie》1979,61(8):905-912
The "phospholipid effect" which is the enhanced turnover of the phosphorylinositol group of phosphatidylinositol (PI) occurs in the thyroid of response to thyreostimulin (TSH). The possibility that Ca2+ ions are involved in this stimulation has been investigated with pig thyroid slices. Experiments performed in media without Ca2+ or containing E.G.T.A. (2 mM), indicate that it is not the extracellular Ca2+ which is implied, but rather the intracellular Ca2+. The ionophore A23187 (6.10(-6) M) increases the specific radioactivity of the acid soluble precursors, but has also a specific effect on the PI turnover, which is additive with the effect of a high concentration of TSH (50 mU/ml). Washing and loading of slices with various Ca2+ concentrations show that 0.9 mM restores the TSH phospholipid effect. Verapamil (10(-3) M) and Chlorpromazine (10(-3) M) redirect glycerolipid metabolism by increasing PI and phosphatidic acid (PA) synthesis at the expense of other glycerolipids, as phosphatidylcholine (PC) and phosphatidylethanolamine (PE). These results suggest that the "phospholipid effect" is not a result of Ca2+ entry into the thyroid cells. On the contrary, it seems that this increased turnover of PI in "long term" incubations (3 hr). An additive and acute effect of TSH effect is more pronounced when Ca2+ movements  相似文献   

11.
The role that extracellular calcium plays in activating resting cloned cytotoxic T lymphocytes (CTL) to proliferate and to produce lymphokines was examined. In these cells, stimulation with interleukin 2 (IL-2) induced a proliferative response without a concomitant production of macrophage-activating factor (MAF), whereas stimulation with antigen or lectin (in the absence of IL-2) induced MAF production but not proliferation. In the case of IL-2-induced proliferation, extracellular calcium was required to initiate proliferation as well as to prevent cellular arrest later in the G2 + M phase of the cell cycle. In MAF production extracellular calcium was required both to activate the phosphatidylinositol signal-transducing mechanism and to mobilize intracellular calcium in antigen- or lectin-stimulated cytotoxic T lymphocytes. Further, extracellular calcium was required for only 8 of the 18 hr of stimulation time which was needed to achieve maximal MAF production, indicating that both calcium-dependent and -independent events exist in the signal pathway. Additional experiments with calcium ionophores and activators of protein kinase C indicated that although both intracellular calcium mobilization and de novo protein phosphorylation are involved in MAF production, an optimal increase in the level of intracellular calcium by itself is insufficient to induce the production of this lymphokine.  相似文献   

12.
Phosphatidic acid (PA), which can be synthesized de novo, or as a product of phosphatidylcholine hydrolysis and/or phosphorylation of 1,2-diacylglycerol (DAG), mediates diverse cellular functions in various cell types, including cardiomyocytes. We set out to characterize the effect of PA on intracellular free calcium ([Ca2+]i) and inositol-1,4,5-trisphosphate (IP(3)) levels in primary cultures of neonatal rat cardiomyocytes. Addition of PA led to rapid, concentration and time dependent increases in both IP(3) and [Ca2+]i levels in adherent cells. There was strong correlation in the concentration-response relationships between IP(3) and [Ca2+]i increases evoked by PA. Incubation with the sarcoplasmic reticulum (SR) Ca2+ pump inhibitor, cyclopiazonic acid (CPA), significantly attenuated the PA evoked [Ca2+]i increase but had no significant effect on IP(3) accumulation. The phospholipase C (PLC) inhibitor, D-609, attenuated both IP(3) and [Ca2+]i elevations evoked by PA whereas staurosporine (STS), a potent and non-selective PKC inhibitor, had no significant effect on either. Another PLC inhibitor, U73122, but not its inactive analog, U73343, also inhibited PA evoked increases in [Ca2+]i. Depletion of extracellular calcium attenuated both basal and PA evoked increases in [Ca2+]i. The PLA(2) inhibitors, bromophenylacyl-bromide (BPB) and CDP-choline, had no effect on PA evoked [Ca2+]i responses. Neither the DAG analog, dioctanoylglycerol, nor the DAG kinase inhibitor, R59949, affected PA evoked changes in [Ca2+]i. Taken together, these data indicate that PA, in a manner independent of PKC, DAG, or PLA(2), may enhance Ca2+ release from IP(3) sensitive SR Ca(2+) stores via activation of PLC in neonatal rat cardiomyocytes.  相似文献   

13.
Mice infected with herpes simplex virus develop little or no cytotoxic T lymphocyte (CTL) response. However, in lymph nodes (LN's) draining a local site infected with HSV, antigen-specific CTL precursors are sensitized, which upon transfer to in vitro culture conditions develop within 72 hr into effective CTL. The in vivo blockade of CTL differentiation can be overcome by cyclophosphamide, suggesting that a cyclophosphamide-sensitive mechanism blocks the in vivo generation of HSV-immune CTL. The cytolytic activity of HSV-immune CTL is H-2 restricted and antigen specific. Thus CTL sensitized toward HSV type 1 discriminate between syngeneic targets infected with either the immunologic HSV variant type 1 or type 2 (and vice versa). H-2-matched target cells exposed for 30 min to infectious HSV are lysed within 60 min of contact with CTL. Since HSV replication is believed to require more than 4 to 5 hr, the data suggest that either the expression of HSV-dependent "early proteins" takes place within 30 to 90 min or cell membrane-integrated HSV virion represents the target antigen of CTL.  相似文献   

14.
The expression of cytotoxic T lymphocyte (CTL)-specific carbohydrate antigens (termed CT antigens) was studied by using a cytolytically inducible T cell hybridoma, KSH4.13.6. Expression of the CT determinants occurred concomitantly with the expression of cytolytic activity after induction of the hybrid with supernatants from Con A-activated rat spleen cells. Purified IL 2 was also proven to be effective in inducing cytolytic activity and CT antigen expression, but the time course of activation by IL 2 was prolonged as compared to activation by crude supernatants. Furthermore, the activation process was reversible because removal of the hybrid from inducing medium resulted in the loss of cytolytic capability and CT antigen expression. By separating the low and high expressors of CT antigen from an induced hybrid population, it was shown that the level of CT antigen expression correlated with the cytolytic ability of the hybrid. High expressors of CT antigen exhibited four- to 50-fold greater lytic activity than populations with low CT antigen levels. Binding experiments using lectins indicated that an increase in GalNAc-containing oligosaccharides also occurred on activation of the hybrid. This finding agrees with our results which indicated that the CT carbohydrate antigens are probably associated with O-linked glycans. Because our previous results with CTL clones indicated that the CT antigens were associated with the T200 glycoproteins, we performed immunoprecipitation experiments with surface-labeled induced and uninduced KSH4.13.6. The T200 glycoproteins were precipitated by the CT1 monoclonal antibody from the induced population, but not from the uninduced population. Furthermore, precipitation by the GalNAc-recognizing lectin from Vicia villosa revealed marked differences in the GalNAc-containing proteins between the induced and uninduced populations. Thus, the results indicate that the T cell-derived polypeptide hormone IL 2 is able to influence the glycosylation of specific proteins in CTL, which results in the appearance of carbohydrate antigens whose expression is linked to the activation state of the CTL.  相似文献   

15.
Antigen-independent activation of memory cytotoxic T cells by interleukin 2   总被引:7,自引:0,他引:7  
Culture supernatants from mitogen- or antigen-activated murine spleen cells are capable of causing reexpression of specific cytolytic activity from inactive memory cytotoxic T lymphocytes (CTL) in the absence of the original priming antigen. We have demonstrated that memory CTL from cytolytically inactive day 14 MLC cells are induced to reexpress high levels of specific cytotoxic activity after incubation with IL 2. Highly purified IL 2 was shown to induce levels of lytic activity comparable with that induced by supernatants from secondary mixed lymphocyte cultures (secondary MLC SN), suggesting that only IL 2 is necessary for the reactivation process. Moreover, only Lyt-2+ cells are necessary for reactivation inasmuch as inactive MLC cells depleted of Lyt-1+ cells by treatment with antibody and complement, followed by FACS selection of Lyt-2+ cells, were efficiently reactivated by IL 2. Because IL 2 is considered a proliferative signal, we examined whether proliferation was requisite for reactivation of memory CTL by IL 2. In the presence of cytosine arabinoside, which effectively inhibited proliferation, IL 2 was capable of reactivating memory CTL as efficiently as antigen, thus implying a differentiative role for IL 2 in secondary CTL activation. Reactivation of CTL by IL 2 and antigen appear to be functionally distinct events, because antigen but not IL 2 could trigger immune interferon release, although either IL 2 or antigen induced high levels of cytotoxicity. We propose that resting, memory CTL retain a heightened level of expression of IL 2 receptors as compared with naive CTL precursors, and thus are able to respond directly to exogenous IL 2. The consequences of this are proliferation and reexpression of specific killing activity, but this signal is not sufficient to induce immune interferon secretion. Rather, it appears that a signal via the antigen receptor is necessary for release of this lymphokine.  相似文献   

16.
We have previously reported that influenza virus-specific cytotoxic T lymphocyte (CTL) clones require antigen and exogenous growth factors for continued proliferation in culture. In this report we show that after stimulation with specific antigen, cloned CTL are capable of limited proliferation in response to interleukin 2 (IL 2) alone but with time these large blast-like cells revert to smaller, quiescent cells that are no longer responsive to IL 2. The IL 2-unresponsive CTL can not be driven to proliferate by supra-optimal concentrations of IL 2, and unresponsiveness correlates with decreased ability to absorb IL 2 from conditioned medium at 0 degrees C, suggesting that unresponsiveness is due to diminished IL 2 receptors. Stimulation of the unresponsive CTL with antigen leads to re-expression of the IL 2 receptor. Decreased absorbing capacity of the unresponsive cells could not be accounted for by their smaller surface area, and the IL 2-unresponsive cells seemed not to down-regulate all their immune functions, as they remained cytotoxic. These results provide a basis for the role of specific antigen in maintaining CTL clones in vitro. Furthermore, these results suggest that antigen-dependent CTL lines can be regulated and that antigen and IL 2 both play a role in their regulation.  相似文献   

17.
The present study defines assay systems for vaccinia virus-reactive Lyt-1+2- T cells mediating various functions and investigates the positivity of L3T4 antigen on these Lyt-1+2- T cells as well as the role of L3T4 antigen in the activation of these T cells with respect to their functions. C3H/He mice were immunized against vaccinia virus by inoculating viable virus intraperitoneally (i.p.). Anti-vaccinia virus reactivity in lymphoid cells from these immunized mice was assessed by proliferative response, helper T cell activities involved in cytotoxic T lymphocyte (CTL) and B cell (antibody) responses, delayed type-hypersensitivity (DTH) response, and production of lymphokines such as interleukin 2 (IL2) and macrophage-activating factor (MAF). The results demonstrate that all of the above anti-vaccinia virus responses were mediated by Lyt-1+2- T cells and that these Lyt-1+2- T cells expressed L3T4 antigens on their cell surfaces. Moreover, such anti-vaccinia Lyt-1+2- T cell responses were inhibited in the presence of anti-L3T4 antigen antibody. These results indicate that there is a reciprocal relationship between Lyt-2 and L3T4 markers, and that L3T4 antigen is closely related to the activation of various functions of anti-vaccinia virus Lyt-1+2- T cells.  相似文献   

18.
Murine fetal thymus from C57BL/6J (B6) and DBA/2J contains a cell population that suppresses CTL responses to alloantigens. This suppressor cell population was found to exist in high frequency in murine fetal thymus at the 14th day of gestation. The activity of this cell in the thymus declined rapidly with increasing time of gestation, and suppressor activity in the thymus was undetectable by the time of birth. On the other hand, suppressor activity could be detected in organ cultures of 14-day fetal thymus even after the organs were cultured for 14 or 21 days. Fetal thymocytes from B6 or DBA/2J mice were grown as long-term lines in interleukin 2 (IL 2)-containing medium. Clones of suppressor cells were derived from long-term cultures by micromanipulation. The clones had an average doubling time of 13 to 16 hr and were dependent on IL 2 for growth. The clones were 10- to 100-fold more efficient in suppressing CTL responses to alloantigens than day 15 fetal thymocytes. Analyses of cell surface molecules with the use of monoclonal antibodies and conventional anti-H-2 sera by radioactive binding assays showed that cloned suppressor cells from B6 fetal thymus were Thy-1 and Lyt-2+, and expressed little or no L3T4, Lyt-1, H-2K, H-2D, and class II molecules. The suppressor clones lacked the cytolytic activity of conventional CTL and also served as very poor target cells in CTL-mediated cytolysis. The suppressor function of the cloned cells was radiation-resistant, and this suppression could not be reversed by the addition of excess exogenous IL 2. The cloned cells suppressed CTL responses only when they were added within the first 48 hr of a 5-day culture period. Analyses of the antigen specificity of the suppressor cells showed that they suppressed CTL responses in a nonantigen-specific manner.  相似文献   

19.
In vitro generation of a secondary cytolytic T lymphocyte (CTL) response to Class I alloantigen requires two signals: recognition of the Class I antigen by precursor CTL (Signal 1), and subsequent interaction with lymphokine(s) (Signal 2). Previous work using subcellular antigen stimulation has demonstrated that the required lymphokine(s) is produced as a result of adherent cell uptake, processing, and Ia-restricted presentation of alloantigen to helper T cells. This pathway could be bypassed by addition to the cultures of supernatant from Con A-stimulated rat spleen cells. When an optimal level of lymphokine(s) is provided by addition of Con A supernatant, the magnitude of the CTL response obtained is dependent on the effectiveness of alloantigen recognition and triggering of the primed precursor CTL (pCTL). By using this approach, we examined the cellular and molecular requirements for generation of Signal 1. Previous results had indicated that pCTL were able to directly recognize subcellular antigen, and that cellular presentation of the antigen to pCTL was not required. Further evidence for this was provided by the finding that pulsing of the responder population for short times with liposomes containing purified H-2Kk resulted in effective stimulation of the response. Exposure of cells to antigen for 1 to 2 hr at 4 degrees C generated responses of comparable magnitude to those obtained when antigen was continuously present in the cultures. Experiments were also done to directly examine the ability of alloantigen-pulsed splenic adherent cells (SAC) to deliver Signal 1. Although the antigen-pulsed SAC were very effective in presenting to helper T cells to result in factor production, they were found to be very ineffective in providing Signal 1 to the pCTL. Having obtained strong evidence for triggering of pCTL occurring via direct recognition of the subcellular alloantigen, we then examined the role of antigen multivalency in recognition and triggering. Purified H-2Kk was prepared in a variety of forms of differing multivalency, ranging from monovalent papain cleavage product to large, highly multivalent liposomes and plasma membranes. The magnitude of the CTL responses obtained was found to be critically dependent on the multivalency of the antigen preparation. Examination of the antigen dose-response curves and maximal responses obtained suggests that valency of the antigen may be important both in determining the avidity of interaction between the pCTL and the antigen-bearing structure, and in determining the extent to which localized receptor cross-linking occurs on the cell surface to result in triggering.  相似文献   

20.
Alterations of phospholipid and arachidonic acid metabolism were studied by treatment of guinea-pig peritoneal-exudate macrophages with chemotactic peptide, formylmethionyl-leucylphenylalanine (fMet-Leu-Phe) and macrophage activation factor (MAF). The chemotactic peptide caused a rapid rearrangement in inositol phospholipids, including a breakdown of polyphosphoinositides within 30s, followed by a resultant formation of phosphatidylinositol (PI), diacylglycerol, phosphatidic acid and non-esterified arachidonic acid within 5 min. In addition to these sequential alterations, arachidonic acid was released mainly from PI. On the other hand, MAF induced a slow liberation of arachidonic acid, mainly from phosphatidylethanolamine (PE) and phosphatidylcholine (PC) by phospholipase A2 after the incubation period of 30 min, but not any rapid changes in phospholipids. Treatment of macrophages for 15 min with fMet-Leu-Phe produced the leukotrienes (LTs) B4, C4 and D4, prostaglandins (PG) E2 and F2 alpha and thromboxane (TX) B2. In contrast, MAF could not stimulate the production of arachidonic acid metabolites during the incubation period of 15 min, but could enhance that of PGE2, PGF2 alpha, TXB2 and hydroxyeicosatetraenoic acids at 6 h. However, the stimulated formation of LTs was not detected at any time. These results indicate that the effects of fMet-Leu-Phe on both phospholipid and arachidonic acid metabolism are very different from those mediated by MAF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号