首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
We have studied the effects of lovastatin, an inhibitor of hydroxy-methylglutaryl-CoA-reductase, on cultures of Trypanosoma cruzi epimastigotes. It inhibits growth at 10 and 30 micrograms per ml; these effects are reverted by 100 microM of squalene, but not by 100 microM of cholesterol. Lovastatin at the same amounts inhibits [14C]acetate incorporatin into sterols, isolated either by digitonin precipitation or thin layer chromatography. At 50 micrograms per ml it kills most of the trypanosomes. These concentrations are below reported toxic levels for mammals; this drug and its analogs should, therefore, be tested as chemotherapeutic agents against Chagas' disease.  相似文献   

2.
Trypanosoma cruzi is the etiological agent of Chagas disease, an important neglected illness affecting about 12–14 million people in endemic areas of Latin America. The chemotherapy of Chagas disease is quite unsatisfactory mainly due to its poor efficacy especially during the later chronic phase and the considerable well-known side effects. These facts emphasize the need to search for find new drugs. Diamidines and related compounds are minor groove binders of DNA at AT-rich sites and present excellent anti-trypanosomal activity. In the present study, six novel aromatic amidine compounds (arylimidamides and diamidines) were tested in vitro to determine activity against the infective and intracellular stages of T. cruzi, which are responsible for sustaining the infection in the mammalian hosts. In addition, their selectivity and toxicity towards primary cultures of cardiomyocyte were evaluated since these cells represent important targets of infection and inflammation in vivo. The aromatic amidines were active against T. cruzi in vitro, the arylimidamide DB1470 was the most effective compound presenting a submicromolar LD50 values, good selectivity index, and good activity at 4 °C in the presence of blood constituents. Our results further justify trypanocidal screening assays with these classes of compounds both in vitro and in vivo in experimental models of T. cruzi infection.  相似文献   

3.
Inhibition of Fas-mediated apoptosis by Trypanosoma cruzi infection   总被引:4,自引:0,他引:4  
Trypanosoma cruzi-infected and normal control mammalian cells were subjected to analysis of Fas-mediated apoptosis stimulated by an agonistic anti-Fas monoclonal antibody. The infected cells showed markedly hampered apoptotic changes in nuclear morphology, phosphatidylethanolamine translocation from the inside to the outside of the plasma membrane, and DNA fragmentation into multiples of 180 bp, relative to normal control cells. Upstream of these morphological and biochemical consequences, the caspase-3 activity was elevated by the Fas stimulation in a significantly greater proportion of intact control cells, but at a highly reduced rate of infected cells. The rapid elevation of caspase-8 activity in control, apoptotic cells was completely inhibited in infected cells. In an examination of the specificity of other stimulants, X-ray radiation or chemicals such as hydrogen peroxide, colchicine or etoposide did not cause significant differences in apoptotic rates between control and infected cells; tumor necrosis factor-alpha, however, induced a high rate of apoptosis in control cells, with an extremely lowered rate in infected cells. This study demonstrates, for the first time, that T. cruzi infection inhibits one of the earliest steps of death receptor-mediated apoptosis, an effect that most probably involves the inhibition of caspase-8. Differential apoptotic responses in cells infected with T. cruzi and other intracellular parasites are discussed.  相似文献   

4.
Amastigotes of different strains of Trypanosoma cruzi responded to stimulation with concanavalin A in an axenic medium by increased DNA synthesis and cell multiplication. These effects were inhibited by alpha-methyl mannoside. Other mitogens, i.e. phytohemagglutinin P, castor bean ricin Type II isolated from Ricinus communis, and a bacterial lipopolysaccharide, had no effect on amastigote growth. Amastigote stimulation by concanavalin A lends itself to studies on the biochemistry and cell cycle of this human pathogen.  相似文献   

5.
, , and 1986. Inhibition of lysosomal fusion by Trypanosoma cruzi in peritoneal macrophages. International Journal for Parasitology 16: 629–632. Prelabelling of lysosomes with acridine orange has been performed in order to verify whether metacyclic forms of Trypanosoma cruzi are capable of inhibiting lysosomal fusion during the first moments of interiorization in non-sensitized mouse peritoneal macrophages. Thus, the degree of degranulation (lysosomal fusion) in metacyclic forms is low while epimastigote forms present higher levels. When epimastigote forms are made to interact with the macrophages in the presence of various concentrations of the medium used for transformations of epimastigotes to metacyclic forms or when interaction was performed in the presence of NH4Cl, the degree of degranulation was similar to that obtained when interaction was carried out with metacyclic forms.

The present results suggest that during the first moments of the interaction of T. cruzi, only the infective forms may increase the cytoplasmic pH value of the host phagocytic cell, avoiding lysosomal fusion and the subsequent destruction of the parasite.  相似文献   


6.
Epimastigotes multiplies in the insect midgut by taking up nutrients present in the blood meal including heme bound to hemoglobin of red blood cell. During blood meal digestion by vector proteases in the posterior midgut, hemoglobin is clipped off into amino acids, peptides, and free heme. In this paper, we compared the heme and hemoglobin uptake kinetics and followed their intracellular trafficking. Addition of heme to culture medium increased epimastigote proliferation in a dose-dependent manner, while medium supplemented with hemoglobin enhanced growth after 3-day lag phase. Medium supplemented with globin-derived peptides stimulated cell proliferation in a dose-independent way. Using Palladium mesoporphyrin IX (Pd-mP) as a fluorescent heme-analog, we observed that heme internalization proceeded much faster than that observed by hemoglobin-rhodamine. Binding experiments showed that parasites accumulated the Pd-mP into the posterior region of the cell whereas hemoglobin-rhodamine stained the anterior region. Finally, using different specific inhibitors of ABC transporters we conclude that a P-glycoprotein homologue transporter is probably involved in heme transport through the plasma membrane.  相似文献   

7.
8.
Trypanosoma cruzi is the causative agent of Chagas disease, which is characterized by acute and chronic phases. During the former, parasitemia rises dramatically, then decreases significantly during the chronic phase. Immune mechanisms responsible for the parasitemia reduction have not been thoroughly elucidated. The goal of the present study was to further characterize the immune response during chronic infection. Previously, we described antiegressin, an antibody in sera from chronically infected mice. The in vitro presence of antiegressin inhibits parasite egress from infected host cells. Antiegressin appears by day 14 of an in vivo infection and is maintained through at least day 280 postinfection. The in vitro functional activity of antiegressin is initiated late in the 4-6 days intracellular growth cycle of T. cruzi; antiegressin may be added at day 4, inhibiting parasite release at day 5. Immunocytochemical staining using antineuraminidase demonstrates the presence of mature parasites inside host BALB/c fibroblasts grown in the presence of antiegressin. These results demonstrate the ability of antiegressin to inhibit emergence of developmentally mature trypomastigotes from infected host cells late in their intracellular growth cycle. We believe this antibody plays an important and novel role in achieving the low-parasitemia characteristic of chronic Chagas disease.  相似文献   

9.
The anti-inflammatory cytokine, transforming growth factor beta (TGFbeta), plays an important role in Chagas disease, which is caused by the protozoan parasite Trypanosoma cruzi. In the current study, we show that the addition of an anti-TGFbeta antibody inhibited T. cruzi infection of cardiomyocytes, demonstrating the requirement for active endogenous TGFbeta. As TGFbeta is synthesized as a biologically inactive precursor, which is proteolytically processed to yield a mature, active homodimer, we hypothesized that T. cruzi could activate latent TGFbeta. To test this, we added recombinant latent TGFbeta to a TGFbeta-responsive reporter cell line in the presence of T. cruzi. We observed that T. cruzi was able to activate latent recombinant TGFbeta in this cellular model. We then investigated the ability of T. cruzi to activate latent TGFbetain vitro. We found that live T. cruzi, or cytosolic extracts of T. cruzi, activated latent TGFbeta in a dose- and temperature-dependent manner. The agent involved in TGFbeta activation was shown to be thermolabile and hydrophobic. Taken together, our studies demonstrate that T. cruzi directly activates latent TGFbeta. This activation is required for parasite entry into the mammalian cells and is likely to play an important role in modulating the outcome of T. cruzi infection.  相似文献   

10.
Infection by Trypanosoma cruzi is accompanied by severe immunosuppression during the acute period. As part of our studies, to define the alterations caused by Trypanosoma cruzi in lymphocyte function, we examined in this work the interferon-gamma (IFN-gamma)-producing capacity of mitogen-stimulated mouse spleen and human peripheral blood mononuclear cells in the presence or absence of blood forms of the parasite. Co-culture of phytohaemagglutinin- or concanavalin A-stimulated spleen cells from normal mice with T. cruzi significantly decreased the levels of IFN-gamma activity found in the supernatants at 48 or 72 h. In contrast, human peripheral blood mononuclear cells, though suppressed by T. cruzi in their capacity to proliferate upon mitogenic stimulation, showed no significant decrease in IFN-gamma production. The addition of exogenous IFN-gamma did not reverse the suppressive effect of T. cruzi on either mouse or human cells. These results revealed, for the first time, the ability of T. cruzi to impair IFN-gamma production by activated mouse lymphocytes. The lack of restoration by exogenous IFN-gamma suggested that the reduced levels of this lymphokine were not, at least by themselves, the causative factor of reduced lymphoproliferation.  相似文献   

11.
Six functionalized 1,3-dienes were synthesized using cross-coupling reactions, catalyzed by palladium complexes, between alkenylboronic acids and alpha-bromo-alpha,beta-unsaturated carbonylic compounds. Their cytotoxicity against epimastigotes of Trypanosoma cruzi and fibroblastic Vero cells was evaluated, using concentrations ranging from 100 microM to 2.5 mM in experiments with three incubation times (4, 8 and 16 h). These tests were performed using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] colorimetric bioassays and its further reduction to formazan, according to the viability of the parasites and cells. With the exception of (5E,6E)-5-benzylidene-2-methylundec-6-en-4-one, all compounds were cytotoxic to both Trypanosoma cruzi and Vero cells, however differential values of IC50 were observed for two of these compounds. A possible structure-activity relationship is discussed.  相似文献   

12.
Regulation of intracellular Ca2+ homeostasis was characterized in epimastigote forms of Trypanosoma cruzi using the fluorescence probe Fura-2. Despite an increase in extracellular Ca2+, [Ca2+]o, from 0 to 2 mM, cytosolic Ca2+, [Ca2+]i, increased only from 85 +/- 9 to 185 +/- 21 nM, indicating the presence of highly efficient mechanisms for maintaining [Ca2+]i. Exposure to monovalent Na+ (monensin)-, K+ (valinomycin, nigericin)-, and divalent Ca2+ (ionomycin)-specific ionophores, uncouplers of mitochondrial respiration (oligomycin), inhibitors of Na+/K(+)-ATPase (ouabain), and Ca(2+)-sensitive ATPase (orthovanadate) in 0 or 1 mM [Ca2+]o resulted in perturbations of [Ca2+]i, the patterns of which suggested both sequestration and extrusion mechanisms. Following equilibration in 1 mM [Ca2+]o, incubation with orthovanadate markedly increased [Ca2+]i, results which are compatible with an active uptake of [Ca2+]i by endoplasmic reticulum. In contrast, equilibration in 0 or 1 mM [Ca2+]o did not influence the relatively smaller increase in [Ca2+]i following incubation with oligomycin, suggesting a minor role for the mitochondrial compartment. In cells previously equilibrated in 1 mM [Ca2+]o, exposure to monensin or ouabain, conditions known to decrease the [Na+]o/[Na+]i gradient, upon which the Na+/Ca2+ exchange pathways are dependent, markedly increased [Ca2+]i. In a complementary manner, decreasing the extracellular Na+ gradient with Li+ increased [Ca2+]i in a dose-dependent manner. Finally, the calcium channel blockers verapamil and isradipine inhibited the uptake of Ca2+ by greater than 50%, whereas diltiazem, nifedipine, and nicardipine were ineffective. The results suggest that epimastigote forms of T. cruzi maintain [Ca2+]i by uptake, sequestration, and extrusion mechanisms, with properties common to eukaryotic organisms.  相似文献   

13.
3'-Deoxydadenosine was found to be a potent inhibitor of nucleoside-stimulated protein kinase activity from culture forms of Trypanosoma cruzi and bloodstream forms of Trypanosoma gambiense. The type of inhibition by 3'-deoxyadenosine was competitive with respect to ATP. The inhibition constants for 3'-deoxyadenosine were determined to be 0.11mM and 0.085mM for the enzyme from T. cruzi and T. gambiense, respectively. The apparent Km value for ATP was 0.2mM for both enzymes. 2'-Deoxyadenosine was less effective as inhibitor of the protein kinase activity. The inhibition constants were calculated to be 0.8mM and 0.67mM, respectively.  相似文献   

14.
Trypanosoma cruzi populations, composed primarily of trypomastigote forms, readily converted palmitic acid, linoleic acid, oleic acid, and stearic acid to CO2. Appreciable amounts of carbon from these four fatty acids were also incorporated into neutral and phospholipid lipids by these parasites. Palmitic acid, a 16 carbon saturated fatty acid, was converted at rates greater than those of the other three fatty acids.  相似文献   

15.
  • 1.1. The NAD-linked glutamate dehydrogenase (EC 1.4.1.2) partially purified from epimastigotes of Trypanosoma cruzi was strongly inhibited by the sulfhydryl reagents fluorescein mercuric acetate (FMA), p-chloromercuribenzoate (p-CMB), 5,5′ dithiobis (2-nitrobenzoate) (DTNB), N-ethylmaleimide (NEM), o-iodosobenzoate (IBz) and iodoacetamide (IAm).
  • 2.2. The [I]50 values (concentration of inhibitor for 50% inhibition) were 0.12, 1, 20, 80 μM, 1.2 and 25 mM, respectively, and the inhibition was nearly complete. Iodoacetate was practically ineffective.
  • 3.3. The inhibition by p-CMB or FMA, and to some extent that by DTNB, but not that by NEM or IBz, could be partially reversed by addition of β-mercaptoethanol.
  • 4.4. The enzyme partially modified by preincubation with p-CMB or IBz presented the same apparent Km values for α-oxoglutarate, NADH and NH4Cl, with a decreased apparent Vmax.
  • 5.5. The results suggest that one or more sulfhydryl groups, at or near the active site, are required for the activity of this glutamate dehydrogenase, which seems to be the most sensitive to thiol reagents among the similar enzymes studied so far.
  相似文献   

16.
Both the intracellular and the extracellular differentiation of Trypanosoma cruzi amastigotes was studied. Intracellular differentiation was monitored during the parasite's cycle of infection in mammalian cells, and extracellular differentiation was monitored after transfer of the parasites to Warren's medium at 27 C. Several different chemical antagonists of ADP-ribosyl transferase inhibited parasite differentiation in both systems. This inhibition was mediated by a specific effect on the differentiation process and could not be ascribed to interference with simple proliferation of the parasite. The effect is strikingly similar to that observed in studies of the cell differentiation of several higher animals and suggests that ADP-ribosyl transferase frequently constitutes an important element in the mechanism of eukaryotic cell differentiation.  相似文献   

17.
Almeida-de-Faria, M., Freymüller, E., Colli, W., and Alves, M. J. M. 1999. Trypanosoma cruzi: Characterization of an intracellular epimastigote-like form. Experimental Parasitology 92, 263-274. A detailed study of transient epimastigote-like forms as intermediates in the differentiation of Trypanosoma cruzi amastigotes to trypomastigotes inside the host cell cytoplasm was undertaken using the CL-14 clone grown in cells maintained at 33 degrees C. Several parameters related to these forms have been compared with epimastigotes and other stages of the parasite. Consequently, the designation of intracellular epimastigotes is proposed for these forms. Despite being five times shorter (5.4 +/- 0.7 micrometer) than the extracellular epimastigote (25.2 +/- 2.1 micrometer), the overall morphology of the intracellular epimastigote is very similar to a bona fide epimastigote, when cell shape, position, and general aspect of organelles are compared by transmission electron microscopy. Epimastigotes from both sources are lysed by human complement and bind to DEAE-cellulose, in contrast to amastigotes and trypomastigote forms. A monoclonal antibody (3C5) reacts with both epimastigotes either isolated from axenic media or intracellular and very faintly with amastigotes, but not with trypomastigotes. Some differences of a quantitative nature are apparent between the two epimastigote forms when reactivities with lectins or stage-specific antibodies are compared, revealing the transient nature of the intracellular epimastigote. The epitope recognized by 3C5 monoclonal antibody reacts slightly more intensely with extracellular than with intracellular epimastigotes, as detected by immunoelectron microscopy. Also a very faint reaction of the intracellular epimastigotes was observed with monoclonal antibody 2C2, an antibody which recognizes a glycoprotein specific for the amastigote stage. Biological parameters as growth curves in axenic media and inhability to invade nonphagocytic tissue-cultured cells are similar in the epimastigotes from both origins. It is proposed that the epimastigote-like forms are an obligatory transitional stage in the transformation of amastigotes to trypomastigotes with a variable time of permanency in the host cell cytoplasm depending on environmental conditions.  相似文献   

18.
Using as the host cell, a proline-requiring mutant of Chinese hamster ovary cell (CHO-K1), it was possible to arrest the differentiation of amastigote forms of Trypanosoma cruzi at the intermediate intracellular epimastigote-like stage. Complete differentiation to the trypomastigote stage was obtained by addition of L-proline to the medium. This effect was more pronounced using the T. cruzi CL-14 clone that differentiates fully at 33 degrees C (permissive temperature) and poorly at 37 degrees C (restrictive temperature). A synchronous differentiation of T. cruzi inside the host-cell is then possible by temperature switching in the presence of proline. It was found that differentiation of intracellular epimastigotes and trypomastigote bursting were proline concentration dependent. The intracellular concentration of proline was measured as well as the transport capacity of proline by each stage of the parasite. Amastigotes have the highest concentration of free proline (8.09 +/- 1.46 mM) when compared to trypomastigotes (3.81 +/- 1.55) or intracellular epimastigote-like forms (0.45 +/- 0.06 mM). In spite of having the lowest content of intracellular free proline, intracellular epimastigotes maintained the highest levels of L-proline transport compared to trypomastigotes and intracellular amastigotes, providing evidence for a high turnover for the L-proline pool in that parasite stage. This is the first report to establish a relationship between proline concentration and intracellular differentiation of Trypanosoma cruzi in the mammalian host.  相似文献   

19.
Maleckar J. R. and Kierszenbaum F. 1984. Suppression of mouse lymphocyte responses to mitogens in vitro by Trypanosoma cruzi. International Journal for Parasitology14: 45–52. The ability of T. cruzi to inhibit mitogen-induced mouse lymphocyte responses was studied to find out if the organism itself is involved in the production of the immunosuppression that occurs during the acute phase of Chagas' disease. Significant suppression of normal spleen cell responses to concanavalin A (a T cell-specific mitogen) or to bacterial lipopolysaccharide (a B cell-specific mitogen) were seen when the concentration of either trypomastigote or epimastigote forms of the parasite reached or exceeded 2.5 × 106 organisms/ml in the cultures. The inhibitory effect was noted over wide ranges of concentrations of either mitogen. Since spleen cells stimulated with mitogenic solutions that had been absorbed with 1 × 107 parasites/ml produced significant responses, the suppressive effect could not be attributed just to mitogen removal by the parasites. Preparations of T. cruzi disrupted by freezing and thawing also inhibited mitogen-induced responses. This indicated that production of suppression was not a result of parasite competition for essential medium nutrients and that trypanosome viability was not required. Suppression was demonstrable only when the parasites were incorporated into the cultures within 12 h after mitogenic stimulation. These results taken together indicate that T. cruzi has the ability to modulate directly or indirectly lymphocyte function by interfering with the initial stages of commitment to lymphoproliferation.  相似文献   

20.
Primaquine has been used to treat Chagas' disease in humans and has been reported to be active against extracellular Trypanosoma cruzi. Experiments were designed to evaluate the relative activity of primaquine against extra- and intracellular T. cruzi and to determine if primaquine might be combined advantageously with ketoconazole. Primaquine at 0.5 micrograms/ml significantly inhibited T. cruzi replication in infected mouse peritoneal macrophages and also effectively treated infected L929 cells. To examine the effect of primaquine on extracellular organisms, tissue culture T. cruzi were incubated with primaquine for different periods of time and then used to infect macrophages. Incubation with 10 micrograms/ml for 14 hr but not 8 hr significantly inhibited but did not eradicate replication. Incubation of spleen amastigotes or blood trypomastigotes for 2 hr with 10 micrograms/ml did not inhibit replication. Incubation of extracellular tissue culture T. cruzi with primaquine for 2 hr did not potentiate the activity of ketoconazole against intracellular organisms. The combination of primaquine and ketoconazole administered to acutely infected mice significantly decreased parasitemias in comparison to treatment with primaquine or ketoconazole alone. Thus primaquine acts primarily on intracellular rather than extracellular T. cruzi. Primaquine and ketoconazole appear to have additive activity in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号