首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

UVB irradiation is a major cause of human skin cancer. In addition to inducing neoplastic changes, UVB irradiation also causes immune suppression which may impair local defence reactions allowing abnormal cells to proliferate and develop into skin tumours.1 The immuno-suppressive events induced by UVB irradiation are mediated by a number of pathways involving altered DNA,2 cis-urocanic acid (cis-UCA),3 IL-10,4 and mast cells.5 UVB-damaged DNA can result in mutations including those of p53, allowing the proliferation of aberrant cells and, ultimately, local tumour invasion. In p53 gene knockout mice, development of skin tumours increases more rapidly after exposure to UVB irradiation.6 p53 as a target for UV-induced mutations in developing murine and human skin cancer involves C→T and CC→TT transitions at dipyrimidine sites.7 This paper summarises the adaptive responses in mouse skin following acute and chronic UV irradiation.  相似文献   

2.
Immunosuppression attributed mainly to the UVB (290-320 nm) waveband is a prerequisite for skin cancer development in mice and humans. The contribution of UVA (320-400 nm) is controversial, but in mice UVA irradiation has been found to antagonise immunosuppression by UVB. In other studies of photoimmune regulation, protection mediated via oestrogen receptor-β signalling was identified as a normal endogenous defence in mice, and was shown to depend on UVA irradiation. A gender bias in photoimmune responsiveness was thus suggested, and is tested in this study by comparing the UV-induced inflammatory and immune responses in male and female hairless mice. We report that male mice, which show greater skin thickness than females, developed a less intense but slower resolving sunburn inflammatory oedema, correlated with reduced epidermal expression of pro-inflammatory IL-6 than females following solar simulated UV (SSUV, 290-400 nm) exposure. On the other hand, the contact hypersensitivity reaction (CHS) was more severely suppressed by SSUV in males, correlated with increased epidermal expression of immunosuppressive IL-10. Exposure to the UVB waveband alone, or to cis-urocanic acid, suppressed CHS equally in males and females. However, whereas UVA irradiation induced immunoprotection against either UVB or cis-urocanic acid in females, this protection was significantly reduced or abrogated in males. The results indicate that males are compromised by a relative unresponsiveness to the photoimmune protective effects of UVA, alone or as a component of SSUV. This could explain the known gender bias in skin cancer development in both mice and humans.  相似文献   

3.
UVB radiation is a potent immunosuppressive agent that inhibits cell-mediated immune responses. The mechanisms by which UVB radiation influences cell-mediated immune responses have been the subject of extensive investigation. However, the role of innate immunity on photoimmunological processes has received little attention. The purpose of this study was to determine whether Toll-like receptor-4 (TLR4) contributed to UV-induced suppression of contact hypersensitivity (CHS) responses. TLR4−/− and wild type C57BL/6 (TLR4+/+) mice were subjected to a local UVB immunosuppression regimen consisting of 100 mJ/cm2 UVB radiation followed by sensitization with the hapten DNFB. Wild type TLR4+/+ mice exhibited significant suppression of contact hypersensitivity response, whereas TLR4−/− developed significantly less suppression. The suppression in wild type TLR4+/+ mice could be adoptively transferred to naïve syngeneic recipients. Moreover, there were significantly fewer Foxp3 expressing CD4+CD25+ regulatory T-cells in the draining lymph nodes of UV-irradiated TLR4−/− mice than TLR4+/+ mice. When cytokine levels were compared in these two strains after UVB exposure, T-cells from TLR4+/+ mice produced higher levels of IL-10 and TGF-β and lower levels of IFN-γ and IL-17. Strategies to inhibit TLR4 may allow us to develop immunopreventive and immunotherapeutic approaches for management of UVB induced cutaneous immunosuppression.  相似文献   

4.
Ultraviolet radiation activates the expression of a wide variety of genes, by pathways which differ between the short non-solar ultraviolet C (UVC) wavelengths, which are strongly absorbed by nucleic acids, and the long solar ultraviolet A (UVA, 320–380 nm) wavelengths, which generate active oxygen intermediates. Intermediate solar ultraviolet (UV) wavelengths in the UVB (290–320 nm) range also contain an oxidative component, but more closely resemble UVC in their gene activating properties. Short wavelength UV, in common with other extracellular stimuli including growth factors, activates signal transduction events that involve both stress- and mitogen-activated protein kinase cascades. The extrapolation of the complex modulation of gene expression that ensues to the consequences of natural UV exposure requires careful attention to the details of doses and wavelength employed in the model experiments. Nevertheless, there is evidence that UVB irrradiation of skin can activate the expression of proteins including immunomodulating cytokines, ornithine decarboxylase and, to a limited extent, nuclear oncogene products, as well as lead to stabilisation of p53. Non-cytotoxic doses of UVA radiation also lead to the strong activation of several genes which would be expected to have functional relevance in vivo.  相似文献   

5.
A previous study in the hairless mouse, in which the photoimmune protective properties of a topical phytoestrogen or 17-beta-estradiol were abrogated by the estrogen receptor antagonist ICI 182,780, revealed that estrogen receptor (Er) signaling is involved in the regulation of the suppression of immune function by UVB (290-320 nm) radiation. Here we identify the expression of Er-beta but not Er-alpha mRNA in hairless mouse skin, whereas Er-alpha and Er-beta mRNA were present in normal haired mouse skin. This suggests that the non-classical estrogen target Er-beta is involved in the photoimmune modulation, and is consistent with Er-alpha being more closely associated with hair growth control, as indicated by other studies. In mice with a null mutation for Er-beta, there was a significant exacerbation of the solar simulated UV (290-400 nm)-induced suppression of contact hypersensitivity. Immunohistochemical analysis revealed that the Er-beta deficiency inhibited the normally immunoprotective upregulation by the UVA (320-400 nm) waveband of the epidermal expression of the cytokines IFN-gamma and IL-12. Er-beta deficiency also significantly increased the UVB-induced expression of the immunosuppressive cytokine IL-10. Thus Er signalling via the Er-beta is evidently a major regulator of the UVA and UVB waveband interactions that determine the skin's immune functional status, and achieves this by normalization of the cutaneous cytokine array in the UV-irradiated skin.  相似文献   

6.
Exposure of the skin of mice to UVA (320–400 nm) radiation has been shown to provide protection against the immunosuppressive effects of UVB (290–320 nm) radiation. The UVA protection was mediated via the UVA induction of the stress protein heme oxygenase-1, and its enzymatic product carbon monoxide (CO). Because UVB-induced immunosuppression is an accompanying and prerequisite feature of the promotion phase of photocarcinogenesis, the potential for immunoprotective CO to act as an anti-skin cancer agent was tested in this study. Groups of female albino Skh:hr-1 hairless mice were irradiated chronically with daily minimally erythemogenic doses of solar simulated UV radiation (SSUV) during a 10 week-period to induce photocarcinogenesis. The effect of repeated topical application of lotions containing a CO-releasing molecule (CORM-2; tricarbonyldichlororuthenium (II) dimer) at 250 or 500 μM, that had previously been shown in short-term experiments to provide photoimmune protection in mice, was measured. Tumor development was monitored for 29 weeks. Topical CORM-2 treatment was observed to reduce the acute and chronic inflammatory erythema reaction compared with control irradiated mice that did not receive CORM-2 lotions, and to reduce the chronic epidermal hyperplasia accompanying tumor outgrowth. The CORM-2 treatments provided a significant moderate inhibition of early tumor appearance dose-dependently, significantly reduced the average tumor multiplicity, increased the regression of established tumors dose-dependently, and inhibited the formation of large locally invasive tumors. The CORM-2 treatments also reduced the expression of immunosuppressive IL-10 in the uninvolved epidermis and dermis of tumor-bearing mice, and enhanced immunopotentiating epidermal IL-12 expression. Therefore CO signalling was revealed to have previously unrecognized anti-carcinogenic functions in the skin, consistent with a protective modulation of the epidermal cytokines. This is a novel observation that also implies that the UVA waveband that produces CO physiologically in exposed skin, might likewise be found to have an anti-photocarcinogenic action.  相似文献   

7.
Vitamin D production is initiated by exposure of 7-dehydrocholesterol in the skin to the UVB (280-320 nm) component of sunlight, resulting in the formation of photoproducts, which are subsequently metabolically activated to biologically active moieties in a series of dark reactions as described elsewhere in this symposium. Irradiation of the skin with UVB has, however, other effects not all of which are beneficial. Most notable is the initiation of skin cancer. Non-melanoma skin cancer is clearly initiated by UVB but for the most lethal of the skin cancers, cutaneous malignant melanoma, although associated with sunlight exposure, the wavelengths responsible have not been clearly identified. Using a mouse model for UV-induced melanoma, we have recently shown that UVB, not UVA (320-400 nm), is also responsible for melanoma initiation. A balance therefore needs to be struck between the healthy effects of exposure to UVB in sunlight--vitamin D formation--and the deleterious effects of which the most potentially serious is melanoma initiation. A powerful tool in determining this balance would be an understanding of the action spectra or wavelength dependence for each of these effects. Here we describe methodologies, approaches and potential pitfalls for action spectra determination illustrated by our experience with the HGF/SF transgenic mouse model for UV-induced melanoma.  相似文献   

8.
Abstract

In our previous report, we observed different cytokine modulation in mouse epidermis by the UVA and UVB wavebands. In the present investigations, the effects of irradiation with UVA and UVB on the Fas(CD95)/FasL system have been studied because apoptosis mediated by the interaction between Fas and FasL has been suggested recently to be associated with UVB-induced immunosuppression in mouse skin. Our results show that UVA irradiation following UVB irradiation has the ability to reduce the up-regulation of FasL expression in mouse skin resulting from the UVB irradiation.  相似文献   

9.
Mammalian skin incorporates a local equivalent of the hypothalamic–pituitary–adrenal (HPA) axis that is critical in coordinating homeostatic responses against external noxious stimuli. Ultraviolet radiation B (UVB) is a skin-specific stressor that can activate this cutaneous HPA axis. Since C57BL/6 (B6) and DBA/2J (D2) strains of mice have different predispositions to sensorineural pathway activation, we quantified expression of HPA axis components at the gene and protein levels in skin incubated ex vivo after UVB or sham irradiation. Urocortin mRNA was up-regulated after all doses of UVB with a maximum level at 50 mJ/cm2 after 12 h for D2 and at 200 mJ/cm2 after 24 h for B6. Proopiomelanocortin mRNA was enhanced after 6 h with the peak after 12 h and at 200 mJ/cm2 for both genotypes of mice. ACTH levels in tissue and media increased after 24 h in B6 but not in D2. UVB stimulated β-endorphin expression was higher in D2 than in B6. Melanocortin receptor 2 mRNA was stimulated by UVB in a dose-dependent manner, with a peak at 200 mJ/cm2 after 12 h for both strains. The expression of Cyp11a1 mRNA — a key mitochondrial P450 enzyme in steroidogenesis, was stimulated at all doses of UVB irradiation, with the most pronounced effect after 12–24 h. UVB radiation caused, independently of genotype, a dose-dependent increase in corticosterone production in the skin, mainly after 24 h of histoculture. Thus, basal and UVB stimulated expression of the cutaneous HPA axis differs as a function of genotype: D2 responds to UVB earlier and with higher amplitude than B6, while B6 shows prolonged (up to 48 h) stress response to a noxious stimulus such as UVB.  相似文献   

10.
The hypothalamic-pituitary-adrenal (HPA) axis maintains basal and stress-related homeostasis in vertebrates. Skin expresses all elements of the HPA axis including corticotropin-releasing hormone (CRH), proopiomelanocortin (POMC), ACTH, β-endorphin (β-END) with corresponding receptors, the glucocorticoidogenic pathway, and the glucocorticoid receptor (GR). To test the hypothesis that cutaneous responses to environmental stressors follow the organizational structure of the central response to stress, the activity of the "cutaneous HPA" axis homolog was investigated after exposure to ultraviolet radiation (UVR) wavelengths of UVA (320-400 nm), UVB (280-320 nm), and UVC (100-280 nm) in human skin organ culture and in co-cultured keratinocytes/melanocytes. The level of stimulation of CRH, POMC, MC1R, MC2R, CYP11A1, and CYP11B1 genes was dependent on UV wavelengths and doses, with the highest effects observed for highly energetic UVC and UVB. ELISA and Western assays showed significant production of CRH, POMC, ACTH, and CYP11A1 proteins and of cortisol, with a decrease in GR expression only after UVB and UVC. However, β-END expression was also stimulated by UVA. Immunocytochemistry localized the deposition of the aforesaid antigens predominantly to the epidermis with additional accumulation of CRH, β-END, and ACTH in the dermis. UVR-stimulated CYP11A1 expression was seen in the basal layer of the epidermis and cells of adjacent dermis. Thus, the capacity to activate or change the spatial distribution of the cutaneous HPA axis elements is dependent on highly energetic wavelengths (UVC and UVB), implying a dependence of a local stress response on their noxious activity with overlapping or alternative mechanisms activated by UVA.  相似文献   

11.
Although UVA (320-400 nm) is considered less harmful to skin as compared to UVB (290-320 nm) and UVC (200-290 nm) radiation, certain endogenous chromophores may enhance UVA-induced cutaneous reactions by largely O2-dependent photodynamic reactions. Photodegradation pattern and singlet oxygen (1O2), superoxide anion radical (O2-.) producing capacity of riboflavin (RF), lumiflavin (LF) and lumichrome (LC) were examined to assess their phototoxic potential under UVA. Photolysis of RF upon exposure to UVA, UVB or UVC revealed considerable degradation to LF and LC with a near identical spectral pattern of photodegradation between 250-500 nm. Both LF and LC were stable to UVA (3 J/cm2) and UVB (400 mJ/cm2), whereas RF was photodegraded by 30 and 20%, respectively, under similar irradiation conditions. UVA-sensitized LF and LC respectively, produced nearly 15% higher and 60% lower yield of 1O2 in comparison to RF, whereas, O2-. was generated predominently by RF. Both RF and LF thus appeared to be potential chromophores for evoking deleterious effects of UVA in normal human skin.  相似文献   

12.
长波紫外线A(UVA,320~400nm)照射皮肤后可产生活性氧族(reactive oxygen species,ROS),导致细胞损伤或免疫抑制,还能增强UVB的损伤作用。但也有研究表明,UVA照射不会产生免疫抑制,它可通过诱导血红素氧合酶1(HO-1)的表达减轻UVB照射引起的免疫抑制效应,从而对细胞产生保护作用。由于UVA照射引起的损伤或保护作用尚存在很大争议,本文主要结合近年来的相关研究,概括了适量UVA照射引起的免疫改变以及相关研究,总结了UVA照射诱导HO-1表达所发挥的细胞保护作用,尤其是HO-1的抗氧化和免疫保护作用,这将为深入了解UVA照射的反应机制和新型防晒剂的应用提供一定的指导意义。  相似文献   

13.
Stratospheric ozone depletion increases the amount of ultraviolet‐B radiation (UVBR) (280–320 nm) reaching the surface of the earth, potentially affecting phytoplankton. In this work, Anabaena sp. PCC 7120, a typically nitrogen (N)‐fixing filamentous bloom‐forming cyanobacterium in freshwater, was individually cultured in N‐deficient and N‐enriched media for long‐term acclimation before being subjected to ultraviolet‐B (UVB) exposure experiments. Results suggested that the extent of breakage in the filaments induced by UVBR increases with increasing intensity of UVB stress. In general, except for the 0.1 W · m?2 treatment, which showed a mild increase, UVB exposure inhibits photosynthesis as evidenced by the decrease in the chl fluorescence parameters maximum photochemical efficiency of PSII (Fv/Fm) and maximum relative electron transport rate. Complementary chromatic acclimation was also observed in Anabaena under different intensities of UVB stress. Increased total carbohydrate and soluble protein may provide some protection for the culture against damaging UVB exposure. In addition, N‐deficient cultures with higher recovery capacity showed overcompensatory growth under low UVB (0.1 W · m?2) exposure during the recovery period. Significantly increased (~830%) ATPase activity may provide enough energy to repair the damage caused by exposure to UVB.  相似文献   

14.
The sensitivity of different life stages of the eulittoral green alga Urospora penicilliformis (Roth) Aresch. to ultraviolet radiation (UVR) was examined in the laboratory. Gametophytic filaments and propagules (zoospores and gametes) released from filaments were separately exposed to different fluence of radiation treatments consisting of PAR (P = 400–700 nm), PAR + ultraviolet A (UVA) (PA, UVA = 320–400 nm), and PAR + UVA + ultraviolet B (UVB) (PAB, UVB = 280–320 nm). Photophysiological indices (ETRmax, Ek, and α) derived from rapid light curves were measured in controls, while photosynthetic efficiency and amount of DNA lesions in terms of cyclobutane pyrimidine dimers (CPDs) were measured after exposure to radiation treatments and after recovery in low PAR; pigments of propagules were quantified after exposure treatment only. The photosynthetic conversion efficiency (α) and photosynthetic capacity (rETRmax) were higher in gametophytes compared with the propagules. The propagules were slightly more sensitive to UVB‐induced DNA damage; however, both life stages of the eulittoral inhabiting turf alga were not severely affected by the negative impacts of UVR. Exposure to a maximum of 8 h UVR caused mild effects on the photochemical efficiency of PSII and induced minimal DNA lesions in both the gametophytes and propagules. Pigment concentrations were not significantly different between PAR‐exposed and PAR + UVR–exposed propagules. Our data showed that U. penicilliformis from the Antarctic is rather insensitive to the applied UVR. This amphi‐equatorial species possesses different protective mechanisms that can cope with high UVR in cold‐temperate waters of both hemispheres and in polar regions under conditions of increasing UVR as a consequence of further reduction of stratospheric ozone.  相似文献   

15.
Although indirect effects of solar ultraviolet (UV) radiation on insects are well known (e.g. UV radiation can modify plant chemistry), direct effects of solar radiation on insects have received little attention. Radiation in the UVB range (300–320 nm) is damaging because it is absorbed directly by proteins and DNA. UVB should be toughest on immobile or small life stages, such as eggs or early larval instars. In the present study, the effects of UVB radiation on eggs and larvae of the tobacco hornworm Manduca sexta L. (Lepidoptera: Sphingidae) are examined. The present study aimed to address: what natural levels of UV do they experience; how does UVB affect the performance of eggs; and how does it affect the performance of larvae? In addition, do M. sexta larvae use behaviour to avoid UVB exposure and, consequently, are they physiologically less robust to UVB? In these experiments, eggs and late larval instars of M. sexta are found to be robust to natural levels of UV radiation. By contrast, young larvae are not only more susceptible to damage from UVB, but also they use behavioural means to avoid it. The strategy of using behaviour may relax selection pressures on morphological and physiological mechanisms for preventing (or recovering from) damage by environmental UV radiation.  相似文献   

16.
Irradiation with UVB (290–320 nm) initiates a systemic immunosuppression detectable as suppression of contact hypersensitivity (CHS). We investigated susceptibility to UV suppression in reciprocal F1-hybrid and backcross mice derived from BALB/c (low susceptibility) and C57BL/6 (high susceptibility) inbred strains. CB6F1 male mice exhibited high susceptibility and B6CF1 male mice exhibited low susceptibility, indicating a major X-linked effect in the genetic control of UV immune suppression. Females of either F1 hybrid showed intermediate suppression, consistent with random X-inactivation. A model of monogenic X-linked control was not sufficient, and evidence for the action of two genetically unlinked autosomal genes was found in parental backcross animals. Both sexes of (BALB/c × CB6F1) mice showed a 1 high: 1 low ratio of phenotypes, indicating control by a major autosomal locus, Uvs1, confirmed by propagation of the high phenotype through selective backcrossing for nine generations to BALB/c. Uvs1 was not genetically linked to 12 chromosomal markers including the pigment genes b (brown) and c (albino). Backcross animals (C57BL/6 × CB6F1) showed a significant sex difference, male mice giving a 3 high: 1 low ratio of phenotypes, compatible with the action of a second autosomal locus, Uvs2, in this hybrid. The findings are compatible with a model in which high phenotype (Uvs1 b/Uvs1 b) is dominant when subjected to recessive epistatis by the X-chromosome locus Uvs3, or by the autosomal locus Uvs2. The finding of genetic control by interacting autosomal and X-linked genes is unique. Genetically determined high susceptibility to UV immunosuppression may be an important risk factor for UV-related human diseases.  相似文献   

17.
Irradiation with ultraviolet B (UVB; 290–320 nm) initiates systemic immunosuppression of contact hypersensitivity (CHS). UV dose-responses for suppression of CHS to trinitrochlorobenzene were established in 18 strains of inbred mice. Three phenotypes with significantly different susceptibilities to UV suppression were identified. The phenotypes were: high (HI) susceptibility, 50% suppression with 0.7–2.3 kJ/m2 UV (C57BL/6, C57BL/10, and C57L and NZB females); low (LO) susceptibility, 50% suppression with 9.6–12.3 kJ/m2 UV (BALB/c, AKR, SJL and NZW), and intermediate (INT) susceptibility, 50% suppression with 4.7–6.9 kJ/m2 UV (DBA/2, C57BR, C3H/HeJ, C3H/HeN, CBA/N and A/J). UV suppression was not correlated with skin pigmentation or with the magnitude of the CHS response in non-irradiated animals. Major histocompatibility complex (MHC) haplotype was not correlated with UV suppression in MHC congenic strains B10.D2/oSnJ, B10.D2/nSnJ, B10.BR/SgSnJ, and A.BY/SnJ. There were no sex differences in UV suppression in BALB/c, C57BL/6, or NZW animals. In the autoimmune NZB strain, however, male mice (LO) were seven times less sensitive to UV suppression than NZB female mice (HI). Both sexes of (NZB × NZW)F1 and (NZW × NZB)F1 mice were HI, supporting dominance of HI over LO. Thus there are genetic factors and interacting sex-limited factors determining susceptibility to UV suppression. These findings may be of relevance to UV-related diseases such as photosensitive lupus and skin cancer. Correspondence to: F. P. Noonan.  相似文献   

18.
There is a direct correlation between dermal mast cell prevalence in dorsal skin of different mouse strains and susceptibility to UVB-induced systemic immunosuppression; highly UV-susceptible C57BL/6 mice have a high dermal mast cell prevalence while BALB/c mice, which require considerable UV radiation for 50% immunosuppression, have a low mast cell prevalence. There is also a functional link between the prevalence of dermal mast cells and susceptibility to UVB- and cis-urocanic acid (UCA)-induced systemic immunosuppression. Mast cell-depleted mice are unresponsive to UVB or cis-UCA for systemic immunosuppression unless they are previously reconstituted at the irradiated or cis-UCA-administered site with bone marrow-derived mast cell precursors. cis-UCA does not stimulate mast cell degranulation directly. Instead, in support of studies showing that neither UVB nor cis-UCA was immunosuppressive in capsaicin-treated, neuropeptide-depleted mice, cis-UCA-stimulated neuropeptide release from sensory c-fibers which, in turn, could efficiently degranulate mast cells. Studies in mice suggested that histamine, and not tumor necrosis factor alpha (TNF-alpha), was the product from mast cells that stimulated downstream immunosuppression. Histamine receptor antagonists reduced by approximately 60% UVB and cis-UCA-induced systemic immunosuppression. Indomethacin administration to mice had a similar effect which was not cumulative with the histamine receptor antagonists. Histamine can stimulate keratinocyte prostanoid production. We propose that both histamine and prostaglandin E(2) are important in downstream immunosuppression; both are regulatory molecules supporting the development of T helper 2 cells and reduced expression of type 1 immune responses such as a contact hypersensitivity reaction.  相似文献   

19.
Abstract

Ultraviolet (UV) rays cause skin damage. Chronic exposure to UV irradiation causes decreased collagen synthesis, degenerative changes in collagen bundles, accumulation of elastotic material and increased epidermal thickness. Origanum hypericifolium, an endemic Turkish plant, belongs to Lamiaceae family. The main constituents of its oil are monoterpenes including cymene, carvacrol, thymol and γ-terpinene. The effects of undiluted O. hypericifolium oil on UVB irradiated skin of mice were investigated histochemically. Four groups of female BALB/c mice, whose dorsal hair was shaved, were allocated as follows: non-UVB irradiated (Group 1), UVB-irradiated (Group 2), O. hypericifolium oil treated (Group 3), and O. hypericifolium oil treated and UVB irradiated (Group 4). Sections of dorsal skin samples were stained with Mallory's phosphotungstic acid hematoxylin for collagen fibers and Taenzer-Unna orcein for elastic fibers. Sections also were stained with hematoxylin and eosin to measure epidermal thickness. We observed intense staining of collagen and homogeneous, scattered thin elastic fibers in Group 1; scattered and weakly stained collagen and curled, amorphous, accumulate elastic fibers in Group 2; and intense staining of collagen in Groups 3 and 4. Accumulation of elastic fibers in the dermis was unremarkable in Groups 3 and 4. In Groups 3 and 4, O. hypericifolium oil treatment thickened the epidermis. Epidermal thickness was greatest in Group 4. We suggest that O. hypericifolium oil may block UVB induced alterations of collagen and elastic fibers, and increase epidermal thickness.  相似文献   

20.
UVB irradiation (290-320 nm) and topical applications of arachidonic acid (AA) in mice decrease the number of identifiable Langerhans cells and alter the cutaneous immune response. Application of contact allergens such as dinitrofluorobenzene (DNFB) to irradiated or AA-treated skin induces antigen-specific tolerance. Indomethacin (IM), a cyclooxygenase inhibitor, administered orally to mice prior to UVB irradiation or prior to the topical application of arachidonic acid, abrogates suppression of contact hypersensitivity (CHS) to DNFB. This suggests a byproduct of arachidonic acid generated through the cyclooxygenase pathway may be involved in the immune suppression. Topical application of various prostaglandins (PGE2, PGD2, PGF2 alpha, and CTXA2) did not cause alterations in the population density of the identifiable Ia+ dendritic Langerhans cells. PGE2, but no other tested agent, produced a suppression of the CHS response to DNFB. These observations suggests that of the various prostaglandins, PGE2 might be one of several biochemical signals which mediate the suppression of contact hypersensitivity reactions following ultraviolet radiation exposure. However, the mechanisms by which PGE2 produces its suppressive effects have not been identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号