首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
2.
Neuroactive steroids.   总被引:37,自引:0,他引:37  
S M Paul  R H Purdy 《FASEB journal》1992,6(6):2311-2322
Neuroactive steroids are natural or synthetic steroids that rapidly alter the excitability of neurons by binding to membrane-bound receptors such as those for inhibitory and (or) excitatory neurotransmitters. The best-studied neuroactive steroids are a series of sedative-hypnotic 3 alpha-hydroxy ring A-reduced pregnane steroids that include the major metabolites of progesterone and deoxycorticosterone, 3 alpha-hydroxy-5 alpha-pregnan-20-one (allopregnanolone) and 3 alpha,21-dihydroxy-5 alpha-pregnan-20-one (allotetrahydroDOC), respectively. These 3 alpha-hydroxysteroids do not interact with classical intracellular steroid receptors but bind stereoselectively and with high affinity to receptors for the major inhibitory neurotransmitter in brain, gamma-amino-butyric acid (GABA). Biochemical and electrophysiological studies have shown that these steroids markedly augment GABA-activated chloride ion currents in a manner similar (but not identical) to that of anesthetic barbiturates. Several steroids have also been observed to have convulsant or proconvulsant properties, including the synthetic amidine 3 alpha-hydroxy-16-imino-5 beta-17-azaandrostan-11-one (RU5135) and the natural sulfate esters of pregnenolone and dehydroepiandrosterone. Several of these have been shown to be bicuculline or picrotoxin-like GABAA receptor antagonists. Examples of steroids that alter neuronal excitability rapidly by augmenting or inhibiting excitatory amino acid receptor-mediated responses have also been reported. Recently, allopregnanolone and allotetrahydroDOC have also been measured in brain and plasma where their levels have been shown to fluctuate in response to stress and during the estrous and menstrual cycles of rats and humans, respectively. Although the major fraction of allopregnanolone in tissue, including brain, is of adrenal and/or ovarian origin, appreciable levels of allopregnanolone can still be measured in the brains of adrenalectomized and/or oophorectomized animals. Receptor-active neurosteroids may represent an important class of neuromodulators that can rapidly alter central nervous system excitability via novel nongenomic mechanisms.  相似文献   

3.
神经活性甾体对神经元的作用   总被引:3,自引:0,他引:3  
神经活性甾体是指神经组织中具有活性的甾体激素,根据甾体激素的作用机制可分为三类:(1)通过细胞表面离子通道型受体介导产生效应,这些受体包括GABAA受体,NMDA受体等。(2)通过G蛋白偶联的膜受体指导第二信使反应,再通过DNA结合蛋白,调节基因表达产生效应,(3)通过细胞内受体介导调控基因的表达产生效应,甾体激素的这些效应尤其是对离子通道型受体和G蛋白偶联型受体的调节作用,已引起重视。  相似文献   

4.
Intensive studies in animals established that neuroactive steroids display neuronal actions and influence behavioral functions. We describe here investigations on the role of neuroactive steroids in learning and memory processes during aging and suggest their role as biomarkers of cognitive aging. Our work demonstrated the role of the steroid pregnenolone (PREG) sulfate as a factor underlying an individual’s age-related cognitive decline in animals. As new perspectives of research we argue that knowing whether neuroactive steroids exist as endogenous neuromodulators and modulate physiologically behavioral functions is essential. To this end, a new approach using the sensitive, specific, and accurate quantitative determination of neuroactive steroids by mass spectrometry seems to have potential for examining the role of each steroid in discrete brain areas in learning and memory alterations, as observed during aging.  相似文献   

5.
Some steroids rapidly alter neuronal excitability through interaction with neurotransmitter-gated ion channels in addition to their well-known genomic effects via intracellular steroid receptors. Such effects were found in GABA receptor, nicotinic receptors, yet not investigated in P2X purinoceptors. In this study, the effects of dehydroepiandrosterone sulfate on the P2 purinoceptor was investigated. Results show that dehydroepiandrosterone sulfate acutely inhibits P2X purinoceptor functions in PC12 cells. Dehydroepiandrosterone sulfate suppressed ATP-induced cytosolic free calcium concentration ([Ca(2+)](i)) rise, cytosolic free sodium concentration ([Na(+)](i)) rise, and dopamine secretion in the presence of external calcium, but had no effect on ATP-induced [Ca(2+)](i) rise in the absence of external calcium or on UTP-induced [Ca(2+)](i) rise in the absence or presence of external calcium. Our data show that dehydroepiandrosterone sulfate exerted its effect on P2X, but not on the P2Y purinoceptors found in PC12 cells. Estradiol and estrone have similar effects on P2X purinoceptor, but dehydroepiandrosterone and progesterone do not.  相似文献   

6.
Recent experimental evidence indicates that some steroid hormones, apart from their well-documented genomic actions, could produce non-genomic rapid effects, and are potent modulators of the plasma membrane proteins, including voltage- and ligand-operated ion channels or G protein-coupled receptors. Neuroactive steroids, 17beta-estradiol, testosterone, pregnenolone sulfate and dehydroepiandrosterone sulfate, after a short-time incubation directly modulated the activity of plasma membrane Ca2+-ATPase purified from synaptosomal membranes of rat cortex. The sulfate derivatives of dehydroepiandrosterone and pregnenolone applied at concentrations of 10-11-10-6 M, showed an inverted U-shape potency in the regulation of Ca2+-ATPase activity. At physiologically relevant concentrations (10-8-10-9 M) a maximal enhancement of the basal activity reached 200%. Testosterone (10-11-10-6 M) and 17beta-estradiol (10-12-10-9 M) caused a dose-dependent increase in the hydrolytic ability of Ca2+-ATPase, and the activity with the highest concentration of steroids reached 470% and 200%, respectively. All examined steroids decreased the stimulatory effect of a naturally existing activator of the calcium pump, calmodulin. The present study strongly suggests that the plasma membrane calcium pump could be one of the possible membrane targets for a non-genomic neuroactive steroid action.  相似文献   

7.
Concentrations of neurosteroids may be influenced by some physiological or pathological factors. We investigated neuroactive steroids in the serum of women suffering from anxiety-depressive disorder treated with fluoxetine and in a control group, in both the follicular and the luteal phases of the menstrual cycle. Two groups of neuroactive steroids were measured by radioimmunoassays: 1) the positive allosteric modulator of GABAA receptors, allopregnanolone with its precursor progesterone and 2) pregnenolone sulfate and dehydroepiandrosterone sulfate (DHEAS) acting on GABAA receptors by an opposite mechanism. Significantly higher levels of pregnenolone sulfate (p < 0.0001) were found in patients in both phases of the menstrual cycle. Significantly higher values were recorded in pregnenolone (p < 0.001) and 17-hydroxy-pregnenolone (p < 0.01) levels in the patients group in the follicular phase. Our results indicate that imbalance in neuroactive steroids may play a negative role in origin and course of psychiatric and neurological disorders.  相似文献   

8.
The introduction of a 16 alpha-hydroxyl function into the steroid nucleus was studied in resting cells of Streptomyces roseochromogenes NRRL B-1233. The oxidation product of dehydroepiandrosterone (DHEA) was identified as 16 alpha-hydroxy DHEA by using thin-layer and gas-liquid chromatography. A linear relation between cell concentration and 16 alpha-OH-DHEA formation was observed. 16 alpha-Hydroxylase showed good activity at pH 8.0 for 16 alpha-OH-DHEA formation. The enzyme showed good activity at 3.1 x 10(-4) M DHEA. The oxidation products of pregnenolone, 4-androstene-3,17-dione, estrone, and 5-androstene-3 beta,17 beta-diol as well as of other substrates were identified as the 16 alpha-hydroxy steroid, respectively. The rates of microbial 16 alpha-hydroxylation were as follows: 76.9% for DHEA, 50.4% for pregnenolone, 43.9% for 4-androstene-3,17-dione, 34.3% for estrone, and 19.6% for 5-androstene-3 beta,17 beta-diol. The organism tested catalyzes 16 alpha-hydroxylation of a wide variety of steroids.  相似文献   

9.
Long-term alcohol consumption results in menstrual irregularities due to the inhibition of progesterone secretion. Some progesterone metabolites, including three pregnanolone isomers (PI), abate, while pregnenolone sulfate (PregS) and dehydroepiandrosterone sulfate (DHEAS) increase, alcohol tolerance. The rationale of this study was to evaluate how the neuroactive steroids reflect the impaired progesterone formation in premenopausal women treated for alcohol addiction, and whether detoxification therapy could restore female reproductive functions and psychosomatic stability by reinstatement of the steroid biosynthesis. Accordingly, serum allopregnanolone (3alpha-hydroxy-5alpha-pregnan-20-one (P3alpha5alpha)), pregnanolone (P3alpha5beta), isopregnanolone (P3beta5alpha) and epipregnanolone (P3beta5beta), progesterone, PregS, pregnenolone, 17alpha-hydroxy-pregnenolone (Preg17), 17alpha-hydroxy-progesterone (Prog17), DHEA, DHEAS, cortisol and estradiol were measured in 20 women during the therapy (start, 3 days, 14 days, 1 month, 4 months), and in 17 controls, using GC-MS or RIA and evaluated by age-adjusted ANCOVA with status and phase of the menstrual cycle (PMC) as factors, and status-PMC interaction. The patients exhibited depressed progesterone, Prog17, PI, and estradiol, a decreased progesterone/pregnenolone ratio, a decreased ratio of neuroinhibiting P3alpha5alpha to neuroactivating PregS, and an elevated PregS and PregS/pregnenolone ratio. The treatment mostly restored the indices. The reduction of neuroinhibiting pregnanolone isomers in the patients is primarily associated with the impairment in ovarian steroid biosynthesis. Nevertheless, changes in enzyme activities connected with the formation of PI and the influence of altered physiological requirements on the balance between endogenous neuroinhibiting and neuroactivating steroids are also likely. The reinstatement of serum estradiol, progesterone, and PI during the therapy demonstrates its favorable effect on both reproductive functions and the psychosomatic stability of the patients.  相似文献   

10.
The effects of social isolation on behavior, neuroactive steroid concentrations, and GABA(A) receptor function were investigated in rats. Animals isolated for 30 days immediately after weaning exhibited an anxiety-like behavioral profile in the elevated plus-maze and Vogel conflict tests. This behavior was associated with marked decreases in the cerebrocortical, hippocampal, and plasma concentrations of pregnenolone, progesterone, allopregnanolone, and allotetrahydrodeoxycorticosterone compared with those apparent for group-housed rats; in contrast, the plasma concentration of corticosterone was increased in the isolated animals. Acute footshock stress induced greater percentage increases in the cortical concentrations of neuroactive steroids in isolated rats than in group-housed rats. Social isolation also reduced brain GABA(A) receptor function, as evaluated by measuring both GABA-evoked Cl(-) currents in XENOPUS: oocytes expressing the rat receptors and tert-[(35)S]butylbicyclophosphorothionate ([(35)S]TBPS) binding to rat brain membranes. Whereas the amplitude of GABA-induced Cl(-) currents did not differ significantly between group-housed and isolated animals, the potentiation of these currents by diazepam was reduced at cortical or hippocampal GABA(A) receptors from isolated rats compared with that apparent at receptors from group-housed animals. Moreover, the inhibitory effect of ethyl-beta-carboline-3-carboxylate, a negative allosteric modulator of GABA(A) receptors, on these currents was greater at cortical GABA(A) receptors from socially isolated animals than at those from group-housed rats. Finally, social isolation increased the extent of [(35)S]TBPS binding to both cortical and hippocampal membranes. The results further suggest a psychological role for neurosteroids and GABA(A) receptors in the modulation of emotional behavior and mood.  相似文献   

11.
Recent experimental evidence indicates that some steroid hormones, apart from their well-documented genomic actions, could produce non-genomic rapid effects, and are potent modulators of the plasma membrane proteins, including voltage- and ligand-operated ion channels or G protein-coupled receptors. Neuroactive steroids, 17β-estradiol, testosterone, pregnenolone sulfate and dehydroepiandrosterone sulfate, after a short-time incubation directly modulated the activity of plasma membrane Ca2+-ATPase purified from synaptosomal membranes of rat cortex. The sulfate derivatives of dehydroepiandrosterone and pregnenolone applied at concentrations of 10?11–10?6 M, showed an inverted U-shape potency in the regulation of Ca2+-ATPase activity. At physiologically relevant concentrations (10?8–10?9 M) a maximal enhancement of the basal activity reached 200%. Testosterone (10?11–10?6 M) and 17β-estradiol (10?12–10?9 M) caused a dose-dependent increase in the hydrolytic ability of Ca2+-ATPase, and the activity with the highest concentration of steroids reached 470% and 200%, respectively. All examined steroids decreased the stimulatory effect of a naturally existing activator of the calcium pump, calmodulin. The present study strongly suggests that the plasma membrane calcium pump could be one of the possible membrane targets for a non-genomic neuroactive steroid action.  相似文献   

12.
Bicíková M  Klak J  Hill M  Zizka Z  Hampl R  Calda P 《Steroids》2002,67(5):399-402
Allopregnanolone and pregnenolone sulfate, which are neuroactive steroids that differentially modulate the sensitivity of GABA(A) and NMDA receptors, were measured simultaneously in maternal and fetal sera and in amniotic fluid for the first time during the second trimester of gravidity. The study included 33 pregnant women, who underwent cordocentesis due to suspicion of fetal abnormality or alloimmunization. Allopregnanolone concentrations in maternal and fetal sera were similar and close to the previously found levels in healthy controls at 20 weeks of gestation The levels of pregnenolone sulfate in maternal serum were 2-3 times higher and in fetal serum, as much as 10-25 times higher than those found by others in the serum of healthy, non-pregnant women. A positive correlation between maternal and fetal allopregnanolone indicate similar 5alpha-reductase activities or the efficient transport of allopregnanolone between the two subjects. No correlation of pregnenolone sulfate levels between mother and fetus was found. This finding suggests the autonomous production of pregnenolone sulfate in mother and fetus.  相似文献   

13.
Neurosteroids, pregnenolone (Preg), dehydroepiandrosterone (DHEA) and their sulfates (PregS and DHEAS) are reported to exert their modulatory effects of neuronal excitability and synaptic plasticity via amino acid receptors, which affect and regulate the learning and memory process, mood, and depression. Although the brain levels of these steroids have been reported in rodents, the strain differences of the levels of these steroids have not been demonstrated. We examined the concentrations of Preg, 17-OH-Preg, DHEA, androstenediol (ADIOL) and their sulfates in whole brains from DBA/2, C57BL/6, BALB/c, ddY and ICR mice, the genetic backgrounds of which are different. No differences in the brain levels of Preg and DHEA were found among the strains. In contrast, PregS levels in DBA/2 were significantly lower than in the others, while DHEAS concentrations in DBA/2 were significantly higher than those in other strains. Strain differences were found in 17-OH-Preg, ADIOL and 17-OH-PregS but not in ADIOLS levels. The ranges of Preg and PregS levels were the highest among the steroids studied. Further, we measured serum these steroid levels. Although strain differences were also found in serum steroids, correlation study between brain and serum levels revealed that brain neurosteroids studied may not come from peripheral circulation. In conclusion, this is the first report of demonstrating mammalian brain levels of 17-OH-Preg, ADIOL, 17-OH-PregS and ADIOLS and the strain differences in neurosteroid levels in mice brains. The differences in levels may involve the strain differences in their behavior, e.g. aggression, adaptation to stress or learning, in mice.  相似文献   

14.
Neuroactive steroids such as dehydroepiandrosterone sulfate and pregnenolone inhibit lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF) production. Corticosteroids not only inhibit TNF production but their levels are increased in vivo after endotoxin injection, thus representing a feedback system that limits TNF production. We wondered whether the same could be true for neuroactive steroids. Thus, the possibility that neuroactive steroids might be increased concomitantly to TNF induction in vivo in mice treated with LPS was investigated. Increased plasma and hippocampal levels of allopregnanolone (but not of dehydroepiandrosterone or pregnenolone) were found 90 min after LPS injection. Allopregnanolone and progesterone (IC50 10- 7 and 10- 9 M, respectively) also inhibited TNF production by mouse peritoneal macrophages in vitro at concentrations in the range of those detected in vivo. These findings suggest that neuroactive steroids may act as endogenous inhibitors of cerebral and systemic TNF production.  相似文献   

15.
Neurosteroids may play a major role in the regulation of various neurophysiological and behavioural processes. However, while the biochemical pathways involved in the synthesis of neuroactive steroids in the central nervous system are now elucidated, the mechanisms controlling the activity of neurosteroid-producing cells remain almost completely unknown. In the present study, we have investigated the effect of the octadecaneuropeptide (ODN), an endogenous ligand of benzodiazepine receptors, in the control of steroid biosynthesis in the frog hypothalamus. Glial cells containing ODN-like immunoreactivity were found to send their thick processes in the close vicinity of neurones expressing the steroidogenic enzyme 3 beta-hydroxysteroid dehydrogenase. Exposure of frog hypothalamic explants to graded concentrations of ODN (10(-10)-10(-5) M) produced a dose-dependent increase in the conversion of tritiated pregnenolone into various radioactive steroids, including 17-hydroxypregnenolone, progesterone, 17-hydroxyprogesterone, dehydroepiandrosterone and dihydrotestosterone. The ODN-induced stimulation of neurosteroid biosynthesis was mimicked by the central-type benzodiazepine receptor (CBR) inverse agonists methyl beta-carboline-3-carboxylate (beta-CCM) and methyl 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM). The stimulatory effects of ODN, beta-CCM and DMCM on steroid formation was markedly reduced by the CBR antagonist flumazenil. The ODN-evoked stimulation of neurosteroid production was also significantly attenuated by GABA. Collectively, these data indicate that the endozepine ODN, released by glial cell processes in the vicinity of 3 beta-hydroxysteroid dehydrogenase-containing neurones, stimulates the biosynthesis of neurosteroids through activation of central-type benzodiazepines receptors.  相似文献   

16.
Metabolism of the neuroactive steroids pregnenolone (PREG), progesterone (PROG), dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulphate (DHEAS) was investigated in day-old chick brain following direct injection of the 3H-labelled compounds into the intermediate medial mesopallium and sampling at times known to be crucial for memory formation in this brain region. 3H-label from these steroids was cleared rapidly from the brain, decreasing to barely detectable levels within 5 h. Following extraction and fractionation, the 3H-labelled brain steroids were identified by TLC, coupled with acetylation and/or separation in different solvent systems. PREG and PROG were converted within 10 min mostly to 20β-dihydropregnenolone (20β-DHPREG) and 5β-dihydroprogesterone, respectively. There was no detectable metabolism of DHEA. Label from DHEAS persisted for longer (half-time 18.9 min) than the free steroid but with no detectable metabolism other than a small amount (4%) of desulphation to DHEA. Further investigation of chick brain steroid metabolism by incubation of subcellular fractions (1–3 h, 37°C) with PREG, PROG or DHEA plus NADPH led to the formation of the following compounds: 20β-DHPREG from PREG (particularly in cytosol); 5β-dihydroprogesterone and 3α,5β-tetrahydroprogesterone from PROG and no detectable metabolism of DHEA. Following incubation of the same brain fractions and labelled steroids with NAD+, there was no detectable metabolism of PREG or PROG but some conversion of DHEA to androstenedione, especially in the nuclear fraction. The results suggest direct actions of DHEA(S) on the early stages of memory formation in the chick and introduce the possibility that PREG may act indirectly via 20β-DHPREG.  相似文献   

17.
18.
Neuropathy and encephalopathy represent important complications of diabetes. Recent observations obtained in experimental models have suggested that, in male rats, neuroactive steroids are protective agents and that their levels in peripheral (PNS) and central (CNS) nervous system are strongly affected by the disease.It is interesting to highlight that incidence, progression and severity of diabetic neuropathy and diabetic encephalopathy are different in the two sexes. Consequently, it is important to determine the changes in neuroactive steroid levels in the PNS and the CNS of both males and females. To this aim, we have evaluated the levels of neuroactive steroids such as, pregnenolone, progesterone and its metabolites, testosterone and its metabolites, and dehydroepiandrosterone in different CNS regions (i.e., cerebral cortex, cerebellum and spinal cord) and in the sciatic nerve of control and diabetic (i.e., induced by streptozotocin) male and female rats. Data obtained by liquid chromatography-tandem mass spectrometry indicate that the levels of neuroactive steroids show sex and regional differences in control animals. Streptozotocin-induced diabetes resulted in a strong general decrease in neuroactive steroid levels, in both the PNS and the CNS. In addition, the effects of diabetes on neuroactive steroid levels also show sex and regional differences.These findings may have strong implications for the development of new sex-oriented therapies for the treatment of diabetic neuropathy and diabetic encephalopathy, based on the use of neuroactive steroids.  相似文献   

19.
20.
Levels of steroid hormones, prolactin and protein were determined in trans-cervical flushings of uteri of 73 consenting women presenting for reversal of sterilization. Median total levels of steroids (pmol), prolactin (mu i.u.) and protein (mg) in the washings were: pregnenolone, 4.22; pregnenolone sulphate, 15.1; progesterone, 1.01; dehydroepiandrosterone (DHEA), 8.92; DHEA sulphate, 368; androstenedione, 2.23; testosterone, 1.04; oestrone, less than 0.7; oestrone sulphate, 0.49; oestradiol, 0.08; prolactin, 23.8; and protein, 5.75. Levels of these components of uterine flushings did not vary significantly between Days 6-10, 11-14, 15-20 and 21-28 after the onset of the previous menstrual period (P greater than 0.05). Uniform levels of free steroids in uterine washings throughout the menstrual cycle, and low free steroid/total protein ratios (all less than 3 pmol/mg), support other evidence for a paucity of steroid-binding proteins in human histotroph. The predominance of DHEA sulphate and of pregnenolone sulphate in human uterine washings is in accord with their abundance in plasma, and may provide an important precursor pool for de-novo steroidogenesis by human embryos before implantation. Our results support the view that human histotroph is a filtrate of plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号