首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Five genes for tryptophan biosynthesis, trpE, trpD, trpC, trpB, and trpA of Brevibacterium lactofermentum, a coryne form glutamic acid-producing bacterium, were cloned as a 9.6 kb BamHl DNA fragment by colony hybridization. A previously cloned 1.2 kb Pst I DNA fragment containing a major part of the trpE gene was used as a probe. By complementation tests using the subclones of this 9.6 kb BamHl fragment and various tryptophan auxotrophs of B. lactofermentum and Escherichia coli, this fragment was found to contain a gene cluster composed of trpE, trpD, trpC, trpB, and trpA in this order. It suggests that genes for tryptophan biosynthesis in B. lactofermentum may be an operon.  相似文献   

2.
Summary A 0.7 kb DNA fragment of the Escherichia coli K12 chromosome was shown to contain the structural gene for RNAse III (rnc). The DNA sequence of the gene was determined and its alteration in an RNAse III defective mutant, AB301-105, was identified. DNA sequence analysis also showed that a secondary-site suppressor of a temperature-sensitive mutation in the E. coli ribosomal protein gene, rpsL, occurred within the rnc gene, providing genetic evidence for the interaction of ribosomal proteins with RNAse III, which in turn acts on the nascent ribosomal RNA during assembly of ribosomes in E. coli.  相似文献   

3.
Three different two-dimensional polyacrylamide gel electrophoretic systems were employed for identification of individual ribosomal proteins of Streptomyces aureofaciens. Proteins of small subunits were resolved into 21 spots. Larger ribosomal subunits contained 35 proteins. The separated ribosomal proteins from 50 S subunits were transferred on nitrocellulose membranes for immunochemical estimations. Antibodies developed against 50 S proteins of S. aureofaciens and Escherichia coli were used for identification of structural homologies between 50 S proteins of the two species. Results of the experiments indicate that about one half of the 50 S proteins of S. aureofaciens share common immunochemical determinants with corresponding proteins of 50 S subunits of E. coli. Evidence is presented that acidic ribosomal protein SL5 of large ribosomal subunits of S. aureofaciens can be assembled to E. coli P0 cores lacking proteins L7/L12. Reconstitution of the P0 cores with proteins SL5 or L7/L12 led to restoration of 78% activity in polyphenylalanine synthesis.  相似文献   

4.
Comparison of ribosomal proteins of chloroplast from spinach and of E. coli   总被引:5,自引:0,他引:5  
Summary A comparison of ribosomal proteins from Escherichia coli and from chloroplasts of Spinach was made using two separate methods: electrophoretic migration and immunochemical cross-reaction between blotted E. coli ribosomal proteins and chloroplast ribosomal subunits antisera. It is shown that L2 from E. coli (E-12) and L4 from chloroplasts (CS-L4) comigrated and that E-L4 immunologically cross-reacted with the isolated CS-L4 antibody. Co-migration was observed for three additional couples of 50S ribosomal proteins. It is also shown that at least one 30S E. coli ribosomal protein immuno-cross reacted with a 30S chloroplast antiserum and that three couples of 30S ribosomal proteins comigrated.  相似文献   

5.
1. 70 S ribosomes isolated from strains of Escherichia coli 113-3, K12 and B take part in vitamin B-12 biosynthesis from AdoCbi-GDP, NAD and dimethylbenzimidazole in the presence of enzymes of the cytosol fraction. 2. 70 S ribosomes from E. coli 113-3 bind Ado[58Co]Cbi-GDP. This reaction is independent of fusidic acid. 3. Proteins from 5 S RNA complex as well as L2 protein isolated from E. coli 113-3 ribosomes catalyze vitamin B-12 biosynthesis. The main catalytic function in this reaction is performed by protein L18.4. Vitamin B-12 biosynthesis proceeding in the presence of isolated ribosomal proteins is inhibited by fusidic acid, chloramphenicol and vernamycin but not by erythromycin. 5. Vitamin B-12 synthesized in the presence of isolated ribosomal proteins is biologically active.  相似文献   

6.
The rplI gene encoding the ribosomal protein L9 was found 4 kbp downstream from the desA gene, but on the opposite strand, in the genome of the cyanobacterium Synechocystis PCC6803. The deduced amino acid sequence is homologous to the sequences of the L9 proteins from Escherichia coli and chloroplasts of Arabidopsis and pea. The gene is present as a single copy in the chromosome and is transcribed as a mRNA of 0.64 kb. An open reading frame of unknown function (ORF291) was found in the upstream region of the rplI gene.  相似文献   

7.
Summary A ribosome preparation from E. coli made without stringent washing procedures has been shown to contain the same relative amounts of nearly all the ribosomal proteins as ribosomes in intact cells. Stoichiometric measurements on all the proteins of this preparation except for L8, L20, L31 and L34 have been made using an isotope dilution technique. When the scatter of the values obtained, the uncertainty in the molecular weights, and the losses occurring during extraction are taken into account, none of the proteins except L7/L12 is present at a level significantly different from one molecule per ribosome. There are multiple copies of L7/L12. These data suggest that the ribosomes of Escherichia coli are homogeneous in vivo.  相似文献   

8.
Summary The in vitro synthesis of Escherichia coli ribosomal proteins, L10 and L7/12, is specifically repressed by the addition of the L10-L7/12 complex, while that of other ribosomal proteins encoded by the neighboring operons is not affected. Thus the expression of the rpoBC operon is controlled by two autorepression systems, one for the two ribosomal proteins and the other for RNA polymerase and subunits, both operating probably at the translational level.  相似文献   

9.
Summary Two 50s (50-10 and 50-12) and two 30s (30-4 and 30-7) ribosomal proteins could be distinguished between Shigella dysenteriae Sh/s and Escherichia coli K-12 JC411 with CMC column chromatography. On the other hand, E. coli K-12 AT2472 was shown to have a 30s ribosomal protein, 30-6(AT), which is specific to this strain and distinguishable from 30-6 of other E. coli K-12 strains. Transduction experiments by phage Plkc between Sh. dysenteriae Sh/s and E. coli ATSPCO1, a spectinomycin resistant mutant derived from AT2472 in which the 30-4 protein is altered, indicated that the genes specifying the above five ribosomal protein components are located in the streptomycin region on the E. coli chromosome.The gene order for three 50s (50-8, 50-10 and 50-12) and three 30s [str (30-?), 30-4 and 30-6] ribosomal proteins on the chromosome was determined by transduction technique between Sh. dysenteriae Sh/s and E. coli ATSPC01, between E. coli ATSPC01 and E. coli ER05 (an erythromycin resistant strain in which the 50-8 protein is altered), and between Sh. dysenteriae Sh/s and E. coli ERSPC14 (str s spc r ery r), respectively. It was found that these protein genes are arranged on the chromosome in the order of str (30-?)-30-4-30-6-50-8-50-10-50-12.  相似文献   

10.
《Gene》1996,171(1):95-98
A 6.5-kb DNA fragment containing the gene (rpoB) encoding the RNA polymerase (RNAP) β subunit, from the mollicute Spiroplasma citri (Sc), was cloned and sequenced. The classical eubacterial organization, with the genes (rpIK, A, J and L) encoding ribosomal proteins L11, L1, L10 and L12 located immediately upstream from rpoB, was not found in the Sc DNA. Instead, an open reading frame (hsdS) potentially encoding a component of a type I restriction and modification system was identified upstream from rpoB, and sequences showing similarities with insertion elements were found between hsdS and rpoB.  相似文献   

11.
Some structural and functional properties of ribosomes from the hydrogen-oxidizing bacterium Alcaligenes eutrophus were studied in order to investigate the background of expression of genetic information at the translational level. Ribosomal proteins from 30S subunits of A. eutrophus H16 were separated by two-dimensional gel electrophoresis into 21 spots, those from 50S subunits into 32 spots. While electrophoretic mobilities of several ribosomal proteins differed markedly from those of Escherichia coli, proteins sharing common immunological determinants with E. coli ribosomal proteins S1 and L7/L12 were found in A. eutrophus. Shifting from heterotrophic to autotrophic conditions of growth had no influence on the ribosomal protein pattern. Ribosomes of A. eutrophus had similar requirements for Mg2+ and poly(U) concentrations for optimum polyphenylalanine synthesis as those of E. coli. Protein synthesis elongation factors Tu from A. eutrophus and E. coli were immunologically similar. Efficiency of the A. eutrophus polyphenylalanine-synthesizing system was comparable to that of an analogous system derived from E. coli. This suggests that A. eutrophus could be employed for efficient expression of recombinant DNA.  相似文献   

12.
Summary High level lincomycin resistant strains of Escherichia coli were isolated and screened for altered ribosomal proteins and functions. Amongst 58 strains investigated by electrophoresis one had an altered ribosomal protein S7, another one a mutated L14 and two showed altered L15 proteins.A correlation between these alterations and lincomycin resistant growth could not be demonstrated by genetic analysis for any of the mutants. In vitro, however, extracts from the two L15 mutants were less sensitive to inhibition by the drug. A gene locus (lin R) responsible for the lincomycin resistance phenotype was mapped at min 30 of the Escherichia coli chromosome near tyrR; it seems to be identical to the previously described linB locus (Apirion, 1967); however, in contrast to these reports it does not seem to alter any ribosomal function.  相似文献   

13.
Many Salmonella typhimurium genes are required for bacterial entry into host cells. P22 transduction analysis has localized several invasion loci near minute 59 on the S. typhimurium chromosome. To further characterize the 59–60 min chromosomal region, we determined the physical and genetic map of 85 kb of S. typhimurium DNA between srl and cysC. It was previously shown that some of the invasion genes from this region are not present in Escherichia coli K-12. We examined whether other S. typhimurium genes on the 85 kb of DNA were similarly absent from E. coli We found that a contiguous 40 kb fragment of the S. typhimurium chromosome which encodes invasion genes is absent from the corresponding region of the E. coli K-12 chromosome and may represent a pathogenicity island. We speculate that acquisition of the 40 kb region must have significantly advanced the evolution of Salmonella as a pathogen.  相似文献   

14.
Summary Temperature-sensitive mutants of an Escherichia coli K-12 strain PA3092 have been isolated following mutagenesis with nitrosoguanidine, and their ribosomal proteins analyzed by two-dimensional gel electrophoresis This method was found to be very efficient in obtaining mutants with various structural alterations in ribosomal proteins. Thus a total of some 160 mutants with alterations in 41 different ribosomal proteins have so far been isolated. By characterizing these mutants, we could isolate, not only those mutants with alterations in the structural genes for various ribosomal proteins, but also those with impairments in the modification of proteins S5, S18 and L12. Furthermore, a mutant has been obtained which apparently lacks the protein S20 (L26) with a concomitant reduction to a great extent of the polypeptide synthetic activity of the small subunit. The usefulness of these mutants in establishing the genetic architecture of the genes coding for the ribosomal proteins and their modifiers is discussed.  相似文献   

15.
Summary An oligonucleotide mixture corresponding to the codons for conserved and repeated amino acid sequences of bacterial sialidases (Roggentin et al. 1989) was used to clone a 4.3 kb PstI restriction fragment of Clostridium septicum DNA in Escherichia coli. The complete nucleotide sequence of the sialidase gene was determined from this fragment. The derived amino acid sequence corresponds to a protein of 110000 Da. The ribosomal binding site and promoter-like consensus sequences were identified upstream from the putative ATG initiation codon. The molecular and immunological properties of the sialidase expressed by E. coli are similar to those of the sialidase as isolated from C. septicum. The newly synthesized protein is assumed to include a leader peptide of 26 amino acids. On sequence alignment, the sialidases from C. septicum, C. sordellii and C. perfringens show significant homologies. As in other bacterial sialidases, conserved amino acid sequences occur at four positions in the protein. Aside from the consensus sequences, only poor homology to other bacterial and viral sialidases was found. The consensus sequence could be identified even in other, non-sialidase proteins, indicating a common function or the evolutionary relatedness of these proteins.  相似文献   

16.
《Gene》1997,193(1):23-30
To assess the organization of the Thermus thermophilus ribosomal protein genes, a fragment of DNA containing the complete S10 region and ten ribosomal protein genes of the spc region was cloned, using an oligonucleotide coding for the N-terminal amino acid (aa) sequence of T. thermophilus S8 protein as hybridization probe. The nucleotide sequence of a 4290 bp region between the rps17 and rpl15 genes was determined. Comparative analysis of this gene cluster showed that the gene arrangement (S17, L14, L24, L5, S14, S8, L6, L18, S5, L30 and L15) is identical to that of eubacteria. However, T. thermophilus ribosomal protein genes corresponding to the Escherichia coli S10 and spc operons are not resolved into two clusters: the stop codon of the rps17 gene (the last gene of the S10 operon in E. coli) and the start codon of the rpl14 gene (the first gene of the spc operon in E. coli) overlap. Most genes, except the rps14-rps8 intergenic spacer (69 bp), are separated by very short (only 3–7 bp) spacer regions or partially overlapped. The deduced aa sequences of T. thermophilus proteins share about 51–100% identities with the sequences of homologous proteins from thermophile Thermus aquaticus and Thermotoga maritima and 27–70% identities with the sequences of their mesophile counterparts.  相似文献   

17.
Summary Ribosomal proteins L4, L5, L20 and L25 have been localized on the surface of the 50S ribosomal subunit of Escherichia coli by immuno-electron microscopy. The two 5S RNA binding proteins L5 and L25 were both located at the central protuberance extending towards its base, at the interface side of the 50S particle. L5 was localized on the side of the central protuberance that faces the L1 protuberance, whereas L25 was localized on the side that faces the L7/L12 stalk. Proteins L4 and L20 were both located at the back of the 50S subunit; L4 was located in the vicinity of proteins L23 and L29, and protein L20 was localized between proteins L17 and L10 and is thus located below the origin of the L7/L12 stalk.  相似文献   

18.
Summary A 6.5 kb region from the genome of the cyanobacterium, Anacystis nidulans 6301 was cloned using the tobacco chloroplast gene for ribosomal protein S12 as a probe. Sequence analysis revealed the presence of genes for ribosomal proteins S12 and S6 and elongation factors EF-G and EF-Tu in this DNA region. The arrangement is rps12 (124 codons)-167 bp spacer-rps7 (156 codons)-77 bp spacer-fus (694 codons)-26 bp spacer-tufA (409 codons), which is similar to that of the Escherichia coli str operon. The deduced amino acid sequences of the A. nidulans S12 and EF-Tu show high homology (72%–82%) with the E. coli and chloroplast counterparts while those of the A. nidulans S7 and EF-G give low homology (51%–59%). Striking structural homology was found between the potential S7 binding region of 16S rRNA and the beginning of S7 mRNA, suggesting that feedback regulation of rps7 expression operates in A. nidulans.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号