首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The standard technique for determination of the ribosomal site location of bound tRNA, viz. the puromycin reaction, has been analyzed with regard to its applicability under tRNA saturation conditions. The criteria derived have been used to re-examine the exclusion principle for peptidyl-tRNA binding, which states that only one peptidyl-tRNA (AcPhe-tRNA) can be bound per ribosome although in principle two sites (A and P site) are available. The following results were obtained. The puromycin reaction is only appropriate for a site determination if the reaction conditions prevent one ribosome from performing more than one puromycin reaction. With an excess of AcPhe-tRNA over ribosomes, and in the absence of EF-G, this criterion is fulfilled at 0 degree C, where the P-site-bound material reacts with puromycin (quantitative reaction after 50 h), while the A-site-bound material does not. In contrast, at 37 degrees C the extent of the puromycin reaction can exceed the binding values by 2-4-fold ('repetitive reaction'). In the presence of EF-G a repetitive puromycin reaction is seen even at 0 degree C, i.e. EF-G can already promote a translocation reaction at 0 degree C. However, the extent of translocation becomes negligibly low for short incubation times (up to 60 min) at 0 degree C, if only catalytic amounts of EF-G are used. Using the criteria outlined above, the validity of the exclusion principle for Escherichia coli ribosomes was confirmed pursuing two different experimental strategies. Ribosomes were saturated with AcPhe-tRNA at one molecule per 70S ribosome, and a quantitative puromycin reaction demonstrated the exclusive P-site location of the AcPhe-tRNA. The same result was also found in the presence of viomycin, which blocks the translocation reaction. These findings also indicate that here nearly 100% of the ribosomes participate in AcPhe-tRNA binding to the P site. Precharging the P sites of 70S ribosomes with one Ac[14C]Phe-tRNA molecule per ribosome prevented additional Ac[3H]Phe-tRNA binding. In contrast, 70S particles carrying one molecule of [14C]tRNAPhe per ribosome were able to bind up to a further 0.64 molecule Ac[3H]Phe-tRNA per ribosome.  相似文献   

2.
We have measured the binding isotherms of C--A--C--C--A(3'NH)-[14C]Phe to the 70S ribosomes and 50S subunits of Escherichia coli and proposed a theoretical model for adsorption when cooperative interaction occurs between ligands that are adsorbed on ribosomes. Analysis of the experimental binding isotherms leads to the following conclusions. A ribosome (or subunit) binds two C--A--C--C--A(3'NH)-Phe molecules. The binding of C--A--C--C--A(3'NH)-Phe to a ribosome (or subunit) is a cooperative process, characterized by a cooperativity coefficient tau = 40 +/- 5 or more. The binding of C--A--C--C--A(3'NH)-AcPhe at the donor site of the peptidyltransferase center (association binding constant 1.5 X 10(6) M-1) and the binding of puromycin at the acceptor site also occur cooperatively with a coefficient of 10-25, the association binding constant of puromycin at the acceptor site being (1-2) X 10(4) M-1. The puromycin association binding constant at the donor site multiplied by the cooperativity coefficient of two interacting puromycin molecules absorbed on a ribosome equals 100-200 M-1.  相似文献   

3.
Treatment of rats with the aminonucleoside of puromycin, which increases the incorporation of labelled phenylalanyl-tRNA into polypeptide chains in liver ribosome preparations studied in vitro, did not change the factor-dependent binding of fMet-tRNA f Met to ribosomes nor the peptidyl transferase function of the ribosomes. Peptidyl transferase function, as measured by fMet-tRNA f Met-puromycin formation, was comparable in the free and bound ribosome preparations. Similarly, the factor-dependent binding of fMet-tRNA f Met to ribosomes was the same in free ribosome preparations obtained from rat liver as it was in bound ribosome preparations that had been freed of membranes by puromycin incubation and high salt wash.  相似文献   

4.
In a medium of high ionic strength, rat liver rough microsomes can be nondestructively disassembled into ribosomes and stripped membranes if nascent polypeptides are discharged from the bound ribosomes by reaction with puromycin. At 750 mM KCl, 5 mM MgCl2, 50 mM Tris·HCl, pH 7 5, up to 85% of all bound ribosomes are released from the membranes after incubation at room temperature with 1 mM puromycin. The ribosomes are released as subunits which are active in peptide synthesis if programmed with polyuridylic acid. The ribosome-denuded, or stripped, rough microsomes (RM) can be recovered as intact, essentially unaltered membranous vesicles Judging from the incorporation of [3H]puromycin into hot acid-insoluble material and from the release of [3H]leucine-labeled nascent polypeptide chains from bound ribosomes, puromycin coupling occurs almost as well at low (25–100 mM) as at high (500–1000 mM) KCl concentrations. Since puromycin-dependent ribosome release only occurs at high ionic strength, it appears that ribosomes are bound to membranes via two types of interactions: a direct one between the membrane and the large ribosomal subunit (labile at high KCl concentration) and an indirect one in which the nascent chain anchors the ribosome to the membrane (puromycin labile). The nascent chains of ribosomes specifically released by puromycin remain tightly associated with the stripped membranes. Some membrane-bound ribosomes (up to 40%) can be nondestructively released in high ionic strength media without puromycin; these appear to consist of a mixture of inactive ribosomes and ribosomes containing relatively short nascent chains. A fraction (~15%) of the bound ribosomes can only be released from membranes by exposure of RM to ionic conditions which cause extensive unfolding of ribosomal subunits, the nature and significance of these ribosomes is not clear.  相似文献   

5.
Despite remarkable recent progress in our chemical and structural understanding of the mechanisms of peptide bond formation by the ribosome, only very limited information is available about whether amino acid side chains affect the rate of peptide bond formation. Here, we generated a series of peptidyl-tRNAs that end with different tRNA-attached amino acids in the P-site of the Escherichia coli ribosome and compared their reactivity with puromycin, a rapidly A-site-accessing analog of aminoacyl-tRNAs. Among the 20 amino acids examined, proline was found to receive exceptionally slow peptidyl transfer to puromycin. These results raise a possibility that the peptidyl transferase activity of the ribosome may have some specificity with regard to the P-site amino acids.  相似文献   

6.
The major function of the ribosome is its ability to catalyze formation of peptide bonds, and it is carried out by the ribosomal peptidyltransferase. Recent evidence suggests that the catalyst of peptide bond formation is the 23S rRNA of the large ribosomal subunit. We have developed an in vitro system for the determination of peptidyltransferase activity in yeast ribosomes. Using this system, a kinetic analysis of a model reaction for peptidyltransferase is described with Ac-Phe-tRNA as the peptidyl donor and puromycin as the acceptor. The Ac-Phe-tRNA-poly(U)-80S ribosome complex (complex C) was isolated and then reacted with excess puromycin to give Ac-Phe-puromycin. This reaction (puromycin reaction) followed first-order kinetics. At saturating concentrations of puromycin, the first-order rate constant (k(3)) is identical to the catalytic rate constant (k(cat)) of peptidyltransferase. This k(cat) from wild-type yeast strains was equal to 2.18 min(-1) at 30 degrees C. We now present for the first time kinetic evidence that yeast ribosomes lacking a particular protein of the 60S subunit may possess significantly altered peptide bond-forming ability. The k(cat) of peptidyltransferase from mutants lacking ribosomal protein L24 was decreased 3-fold to 0.69 min(-1), whereas the k(cat) from mutants lacking L39 was slightly increased to 3.05 min(-1) and that from mutants lacking both proteins was 1.07 min(-1). These results suggest that the presence of ribosomal proteins L24 and, to a lesser extent, L39 is required for exhibition of the normal catalytic activity of the ribosome. Finally, the L24 or L39 mutants did not affect the rate or the extent of the translocation phase of protein synthesis. However, the absence of L24 caused increased resistance to cycloheximide, a translocation inhibitor. Translocation of Ac-Phe-tRNA from the A- to P-site was inhibited by 50% at 1.4 microM cycloheximide for the L24 mutant compared to 0.7 microM for the wild type.  相似文献   

7.
Dinos GP  Kalpaxis DL 《Biochemistry》2000,39(38):11621-11628
The inhibition of peptide bond formation by tylosin, a 16-membered ring macrolide, was studied in a model system derived from Escherichia coli. In this cell-free system, a peptide bond is formed between puromycin (acceptor substrate) and AcPhe-tRNA (donor substrate) bound at the P-site of poly(U)-programmed ribosomes. It is shown that tylosin inhibits puromycin reaction as a slow-binding, slowly reversible inhibitor. Detailed kinetic analysis reveals that tylosin (I) reacts rapidly with complex C, i.e., the AcPhe-tRNA. poly(U).70S ribosome complex, to form the encounter complex CI, which then undergoes a slow isomerization and is converted to a tight complex, CI, inactive toward puromycin. These events are described by the scheme C + I <==> (K(i)) CI <==> (k(4), k(5)) CI. The K(i), k(4), and k(5) values are equal to 3 microM, 1.5 min(-1), and 2.5 x 10(-3) min(-1), respectively. The extremely low value of k(5) implies that the inactivation of complex C by tylosin is almost irreversible. The irreversibility of the tylosin effect on peptide bond formation is significant for the interpretation of this antibiotic's therapeutic properties; it also renders the tylosin reaction a useful tool in the study of other macrolides failing to inhibit the puromycin reaction but competing with tylosin for common binding sites on the ribosome. Thus, the tylosin reaction, in conjunction with the puromycin reaction, was applied to investigate the erythromycin mode of action. It is shown that erythromycin (Er), like tylosin, interacts with complex C according to the kinetic scheme C + Er <==> (K(er)) CEr <==> (k(6), k(7)) C*Er and forms a tight complex, CEr, which remains active toward puromycin. The determination of K(er), k(6), and k(7) enables us to classify erythromycin as a slow-binding ligand of ribosomes.  相似文献   

8.
The photoincorporation of p-azido[3H]puromycin [6-(dimethylamino)-9-[3'-deoxy-3'-[(p-azido-L-phenylalanyl)amino]-beta-D-ribofuranosyl]purine] into specific ribosomal proteins and ribosomal RNA [Nicholson, A. W., Hall, C. C., Strycharz, W. A., & Cooperman, B. S. (1982) Biochemistry (preceding paper in this issue)] is decreased in the presence of puromycin, thus demonstrating that labeling is site specific. The magnitudes of the decreases in incorporation into the major labeled 50S proteins found on addition of different potential ribosome ligands parallel the abilities of these same ligands to inhibit peptidyltransferase. This result provides evidence that p-azidopuromycin photoincorporation into these proteins occurs at the peptidyltransferase center of the 50S subunit, a conclusion supported by other studies of ribosome structure and function. A striking new finding of this work is that puromycin aminonucleoside is a competitive inhibitor of puromycin in peptidyltransferase. The photoincorporation of p-azidopuromycin is accompanied by loss of ribosomal function, but photoincorporated p-azidopuromycin is not a competent peptidyl acceptor. The significance of these results is discussed. Photolabeling of 30S proteins by p-azidopuromycin apparently takes place from sites of lower puromycin affinity than that of the 50S site. The possible relationship of the major proteins labeled, S18, S7, and S14, to tRNA binding is considered.  相似文献   

9.
Studies on the catalytic rate constant of ribosomal peptidyltransferase   总被引:3,自引:0,他引:3  
A detailed kinetic analysis of a model reaction for the ribosomal peptidyltransferase is described, using fMet-tRNA or Ac-Phe-tRNA as the peptidyl donor and puromycin as the acceptor. The initiation complex (fMet-tRNA X AUG X 70 S ribosome) or (Ac-Phe-tRNA X poly(U) X 70 S ribosome) (complex C) is isolated and then reacted with excess puromycin (S) to give fMet-puromycin or Ac-Phe-puromycin. This reaction (puromycin reaction) is first order at all concentrations of S tested. An important asset of this kinetic analysis is the fact that the relationship between the first order rate constant kobs and [S] shows hyperbolic saturation and that the value of kobs at saturating [S] is a measure of the catalytic rate constant (k cat) of peptidyltransferase in the puromycin reaction. With fMet-tRNA as the donor, this kcat of peptidyltransferase is 8.3 min-1 when the 0.5 M NH4Cl ribosomal wash is present, compared to 3.8 min-1 in its absence. The kcat of peptidyltransferase is 2.0 min-1 when Ac-Phe-tRNA replaces fMet-tRNA in the presence of the ribosomal wash and decreases to 0.8 min-1 in its absence. This kinetic procedure is the best method available for evaluating changes in the activity of peptidyltransferase in vitro. The results suggest that peptidyltransferase is subjected to activation by the binding of fMet-tRNA to the 70 S initiation complex.  相似文献   

10.
A cell-free system derived from Escherichia coli has been used in order to study the kinetics of inhibition of peptide bond formation with the aid of the puromycin reaction in solution. A similar study has been carried out earlier on a solid support matrix with the same inhibitors. We find that the overall pattern of the kinetics of inhibition is the same in the two systems. At low concentrations of inhibitor there is a competitive phase of inhibition, whereas at higher concentrations of inhibitor the type of inhibition becomes mixed noncompetitive. The values of Ki of the competitive phase in the system in solution are: 5.8 microM (amicetin), 0.2 microM (blasticidin S), 0.5 microM (chloramphenicol), and 0.5 microM (tevenel). The inhibitors amicetin, blasticidin S, and tevenel interact with the ribosome in a reaction which is slower than that of the substrate puromycin, showing clear-cut characteristics of slow-onset inhibition in both systems. Chloramphenicol, on the other hand does not easily show such a delay in solution. It interacts with the ribosome relatively faster than the other three antibiotics. Despite this, chloramphenicol too shows characteristics of time-dependent inhibition.  相似文献   

11.
The mode of attachment of 70S ribosomes to thylakoid membranes from pea leaves was studied by determining the proportion of the bound RNA which was released by various incubation conditions. The results supported a model in which several classes of bound ribosomes could be distinguished: (a) very tightly bound, not released by any conditions yet tested (20% of the total); (b) monomeric ribosomes attached by electrostatic interaction with the membranes (30 to 40% of the total) and released by high salt; and (c) polysomes, with some of the ribosomes attached by a combination of electrostatic interactions and insertion of the nascent polypeptide chain into the membrane. These required a combination of puromycin and high salt for release. Other ("hanging") ribosomes of the polysomes were inferred to be attached through mRNA but not actually attached to the membranes directly; they could be released by RNase under low salt conditions, as well as by puromycin plus high salt.To obtain these results, chloroplasts had to be prepared in media containing 0.2 molar Tris at pH 8.5. Using Tricine buffers at pH 7.5 yielded thylakoid membranes whose ribosomes were removed almost completely by high salt alone; these showed no response to puromycin. However, pH 7.5 had to be used in all cases for ribosome dissociation in high salt media, as the ribosome structure appeared to be degraded by high salt at pH 8.5, and release then occurred without the need for puromycin.The kinetics of ribosome release by high salt showed a rapid initial phase with a half-life of 20 seconds. The extent of release by high salt was very dependent on the temperature of the incubation. Plotting the data according to the Arrhenius interpretation shows a significant break at about 15 C, with apparent activation energy of 20 kilocalories per mole below that temperature and 5 kilocalories per mole above that temperature. This result suggests that membrane fluidity might be an important factor permitting release of ribosomes under high salt conditions.Electron microscope pictures of the washed thylakoids showed polysomes closely associated with the outer membranes of grana stacks, and with the stroma lamellae. Following digitonin treatment of the membranes and centrifugation, fractions enriched in Photosystem I and presumed stroma lamellae were also enriched in bound RNA.  相似文献   

12.
The initiation complex (t-complex) formed in a cell-free system (E. coli) from Ac-Phe-tRNA, poly(U) and washed ribosomes in the presence of initiation factors (ribosomal wash) and GTP, contains the Ac-Phe-tRNA bound quantitatively in a puromycin-reactive state. The t-complex is irreversibly inactivated by spiramycin with respect to its reactivity toward puromycin. The inactivated t-complex retains all of the Ac-Phe-tRNA bound, but it does not react with puromycin (2 x10-minus-3M) within 32 min at 25 degrees. In the case of another inhibitor protein synthesis, sparsomycin, the permanently "modified" t-complex not only retains all the bound Ac-Phe-tRNA but it can still react with puromycin. In the continuous presence of sparsomycin (1 x 10-minus-7M) the bound Ac-Phe-tRNA reacts quantitatively at a rate which is one-tenth the rate at which the t-complex reacts with puromycin, at low (6.25 x 10-minus-5M) or high (2 x 10-minus-3M) concentrations. These results are not in agreement with current views according to which aparsomycin binds to the ribosome reversibly at a single site with a KI in the range of 10-minus6-10-minus-7 M and according to which this stie is at the A'-site (puromycin site) of peptidyl transferase.  相似文献   

13.
Elongation Factor P (EF-P) is an essential component of bacterial protein synthesis, enhancing the rate of translation by facilitating the addition of amino acids to the growing peptide chain. Using purified Staphylococcus aureus EF-P and a reconstituted Escherichia coli ribosomal system, an assay monitoring the addition of radiolabeled N-formyl methionine to biotinylated puromycin was developed. Reaction products were captured with streptavidin-coated scintillation proximity assay (SPA) beads and quantified by scintillation counting. Data from the assay were used to create a kinetic model of the reaction scheme. In this model, EF-P binding to the ribosome essentially doubled the rate of the ribosomal peptidyl transferase reaction. As described here, EF-P bound to the ribosomes with an apparent K(a) of 0.75 microM, and the substrates N-fMet-tRNA and biotinylated puromycin had apparent K(m)s of 19 microM and 0.5 microM, respectively. The assay was shown to be sensitive to a number of antibiotics known to target ribosomal peptide bond synthesis, such as chloramphenicol and puromycin, but not inhibitors that target other stages of protein synthesis, such as fusidic acid or thiostrepton.  相似文献   

14.
[3H]N-Bromoacetylaminonucleoside and [3H]N-bromoacetylpuromycin have been synthesised as possible alkylating agents in order to study their interactions with rat liver ribosomes. Both compounds bind covalently to ribosomes to a considerable extent. The puromycin derivative binds to the extent of approximately 8 mol per ribosome, while the aminonucleoside derivative binds to the extent of approximately 13 mol per ribosome. Ammonium sulphate precipitation of ribosomes or treatment with puromycin, followed by washing of the ribosomes through NH4Cl-containing sucrose density gradients decreases the binding of both derivatives. Partial unfolding or denaturation of ribosomes by heating at 65 degrees C or through the action of various chemical reagents appears to expose more sites for binding. However, at 15 min of heating the binding of the puromycin derivative decreased by approximately 50% while the binding of the aminonucleoside derivative was almost zero. Binding of both labelled derivatives occurred only with the 50S ribosomal subunit. The extent of binding to the smaller 30S subunit was approximately 4% of that of the 50S subunit. Various other experiments are also described dealing with the binding of [3H]N-acetylphenylalanyl-tRNA to the A site of ribosomes following treatment with the N-bromoacetyl derivatives.  相似文献   

15.
16.
The 70 kDa heat shock proteins (Hsp70s) are a ubiquitous class of molecular chaperones. The Ssbs of Saccharomyces cerevisiae are an abundant type of Hsp70 found associated with translating ribosomes. To understand better the function of Ssb in association with ribosomes, the Ssb-ribosome interaction was characterized. Incorporation of the aminoacyl-tRNA analog puromycin by translating ribosomes caused the release of Ssb concomitant with the release of nascent chains. In addition, Ssb could be cross-linked to nascent chains containing a modified lysine residue with a photoactivatable cross-linker. Together, these results suggest an interaction of Ssb with the nascent chain. The interaction of Ssb with the ribosome-nascent chain complex was stable, as demonstrated by resistance to treatment with high salt; however, Ssb interaction with the ribosome in the absence of nascent chain was salt sensitive. We propose that Ssb is a core component of the translating ribosome which interacts with both the nascent polypeptide chain and the ribosome. These interactions allow Ssb to function as a chaperone on the ribosome, preventing the misfolding of newly synthesized proteins.  相似文献   

17.
18.
T Otaka  A Kaji 《FEBS letters》1983,153(1):53-59
When bottromycin A2 was added to an in vitro protein synthesis system carried out by naturally occurring polysomes, it inhibited protein synthesis effectively. Examination of the 3 steps of peptide chain elongation revealed that the binding of aminoacyl-tRNA to the polyribosomes was inhibited by bottromycin A2. In contrast, we concluded that the peptide bond formation and the translocation steps in this system were not inhibited by bottromycin A2 on the basis of the following observations: (1) The break-down of polysomes, which is dependent on EFG, puromycin and RR (ribosome releasing) factor, was insensitive to bottromycin A2; (2) The puromycin dependent release of polypeptide from polysomes, with or without EFG, was not inhibited by bottromycin A2. Thus bottromycin specifically interferes with proper functioning of the A sites of polysomes. This is consistent with the results obtained using the model system with synthetic polynucleotides.  相似文献   

19.
Concanavalin A (ConA) seleclively enhanced the incorporation of [3H]leucine into a range of proteins of thymocytes incubated in vitro. At the same time ConA seemed to selectively enhance the synthesis of proteins that occurred on membrane-bound ribosomes (extracted from the mitochondrial fraclion with 1% Triton X-100 buffer). The protein synthetic ‘commitment’ of ribosomes was assessed from the stability of ribosomes in 500 mM KC1 before and after puromycin treatment. This indirect method was necessary because of some polysome degradation in the case of membrane-bound ribosomes. Membrane-bound ribosomes were found to be more than 3 times as ‘committed’ as were free ribosomes and ConA increased their commitment by 37–54%. These observations indicate the potential importance of membrane-bound ribosomes in the regulation of thymocyte protein synthesis, particularly during ‘antigenic’ activation, even though this ribosome fraction constituted less than 20% of the total ribosome population.  相似文献   

20.
Translocation, the directional movement of transfer RNA (tRNA) and messenger RNA (mRNA) substrates on the ribosome during protein synthesis, is regulated by dynamic processes intrinsic to the translating particle. Using single-molecule fluorescence resonance energy transfer (smFRET) imaging, in combination with site-directed mutagenesis of the ribosome and tRNA substrates, we show that peptidyl-tRNA within the aminoacyl site of the bacterial pretranslocation complex can adopt distinct hybrid tRNA configurations resulting from uncoupled motions of the 3'-CCA terminus and the tRNA body. As expected for an on-path translocation intermediate, the hybrid configuration where both the 3'-CCA end and body of peptidyl-tRNA have moved in the direction of translocation exhibits dramatically enhanced puromycin reactivity, an increase in the rate at which EF-G engages the ribosome, and accelerated rates of translocation. These findings provide compelling evidence that the substrate for EF-G catalyzed translocation is an intermediate wherein the bodies of both tRNA substrates adopt hybrid positions within the translating ribosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号