首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Agroinfiltration and PVX agroinfection are two efficient transient expression assays for functional analysis of candidate genes in plants. The most commonly used agent for agroinfiltration is Agrobacterium tumefaciens, a pathogen of many dicot plant species. This implies that agroinfiltration can be applied to many plant species. Here, we present our protocols and expected results when applying these methods to the potato (Solanum tuberosum), its related wild tuber-bearing Solanum species (Solanum section Petota) and the model plant Nicotiana benthamiana. In addition to functional analysis of single genes, such as resistance (R) or avirulence (Avr) genes, the agroinfiltration assay is very suitable for recapitulating the R-AVR interactions associated with specific host pathogen interactions by simply delivering R and Avr transgenes into the same cell. However, some plant genotypes can raise nonspecific defense responses to Agrobacterium, as we observed for example for several potato genotypes. Compared to agroinfiltration, detection of AVR activity with PVX agroinfection is more sensitive, more high-throughput in functional screens and less sensitive to nonspecific defense responses to Agrobacterium. However, nonspecific defense to PVX can occur and there is a risk to miss responses due to virus-induced extreme resistance. Despite such limitations, in our experience, agroinfiltration and PVX agroinfection are both suitable and complementary assays that can be used simultaneously to confirm each other''s results.  相似文献   

2.
Background Plants are hotbeds for parasites such as arthropod herbivores, which acquire nutrients and energy from their hosts in order to grow and reproduce. Hence plants are selected to evolve resistance, which in turn selects for herbivores that can cope with this resistance. To preserve their fitness when attacked by herbivores, plants can employ complex strategies that include reallocation of resources and the production of defensive metabolites and structures. Plant defences can be either prefabricated or be produced only upon attack. Those that are ready-made are referred to as constitutive defences. Some constitutive defences are operational at any time while others require activation. Defences produced only when herbivores are present are referred to as induced defences. These can be established via de novo biosynthesis of defensive substances or via modifications of prefabricated substances and consequently these are active only when needed. Inducibility of defence may serve to save energy and to prevent self-intoxication but also implies that there is a delay in these defences becoming operational. Induced defences can be characterized by alterations in plant morphology and molecular chemistry and are associated with a decrease in herbivore performance. These alterations are set in motion by signals generated by herbivores. Finally, a subset of induced metabolites are released into the air as volatiles and function as a beacon for foraging natural enemies searching for prey, and this is referred to as induced indirect defence.Scope The objective of this review is to evaluate (1) which strategies plants have evolved to cope with herbivores and (2) which traits herbivores have evolved that enable them to counter these defences. The primary focus is on the induction and suppression of plant defences and the review outlines how the palette of traits that determine induction/suppression of, and resistance/susceptibility of herbivores to, plant defences can give rise to exploitative competition and facilitation within ecological communities “inhabiting” a plant.Conclusions Herbivores have evolved diverse strategies, which are not mutually exclusive, to decrease the negative effects of plant defences in order to maximize the conversion of plant material into offspring. Numerous adaptations have been found in herbivores, enabling them to dismantle or bypass defensive barriers, to avoid tissues with relatively high levels of defensive chemicals or to metabolize these chemicals once ingested. In addition, some herbivores interfere with the onset or completion of induced plant defences, resulting in the plant’s resistance being partly or fully suppressed. The ability to suppress induced plant defences appears to occur across plant parasites from different kingdoms, including herbivorous arthropods, and there is remarkable diversity in suppression mechanisms. Suppression may strongly affect the structure of the food web, because the ability to suppress the activation of defences of a communal host may facilitate competitors, whereas the ability of a herbivore to cope with activated plant defences will not. Further characterization of the mechanisms and traits that give rise to suppression of plant defences will enable us to determine their role in shaping direct and indirect interactions in food webs and the extent to which these determine the coexistence and persistence of species.  相似文献   

3.
The cellular factors involved in mRNA degradation and translation repression can aggregate into cytoplasmic domains known as GW bodies or mRNA processing bodies (P-bodies). However, current understanding of P-bodies, especially the regulatory aspect, remains relatively fragmentary. To provide a framework for studying the mechanisms and regulation of P-body formation, maintenance, and disassembly, we compiled a list of P-body proteins found in various species and further grouped both reported and predicted human P-body proteins according to their functions. By analyzing protein-protein interactions of human P-body components, we found that many P-body proteins form complex interaction networks with each other and with other cellular proteins that are not recognized as P-body components. The observation suggests that these other cellular proteins may play important roles in regulating P-body dynamics and functions. We further used siRNA-mediated gene knockdown and immunofluorescence microscopy to demonstrate the validity of our in silico analyses. Our combined approach identifies new P-body components and suggests that protein ubiquitination and protein phosphorylation involving 14-3-3 proteins may play critical roles for post-translational modifications of P-body components in regulating P-body dynamics. Our analyses provide not only a global view of human P-body components and their physical interactions but also a wealth of hypotheses to help guide future research on the regulation and function of human P-bodies.  相似文献   

4.
目的:研究红花水提取液对系统性硬皮病(SSc)模型小鼠的防治作用及相关机制研究。方法:60只 BALB /C小鼠随机分为对照组、模型组、强的松组、红花低、中、高剂量组,每组10只。对照组背部注射生理盐水,其余5组均背部皮下注射100 μl浓度为 200 μg /ml的注射用盐酸博来霉素,每天1次,连续注射28 d,制备SSc模型;造模同时对照组和模型组给予生理盐水10 ml/kg灌胃,强的松组给予强的松溶液4.5 mg/kg (10 ml/kg)灌胃,红花低、中、高剂量组分别给予红花1.5、3、6 g/kg (10 ml/kg)灌胃,各组均连续灌胃28 d。给药28 d后,取各组小鼠背部注射博来霉素区皮肤组织切片测量真皮厚度,采用水解法检测皮肤组织羟脯氨酸(HYP)含量;采用ELISA法检测皮肤组织结缔组织生长因子(CTGF)、转化生长因子-β(TGF-β)含量及血清白细胞介素-6(IL-6)、白细胞介素-17(IL-17)水平。结果:与对照组比较,模型组皮肤真皮厚度,皮肤组织CTGF、TGF-β、HYP含量及血清 IL-6、IL-17 水平明显升高(P<0.05);与模型组比较,强的松组、红花低、中、高剂量组皮肤真皮厚度,皮肤组织 CTGF、TGF-β、HYP含量及血清 IL-6、IL-17水平明显降低(P<0.05)。结论:红花水提取液可改善SSc小鼠皮肤状况(或真皮厚度),其作用机制可能与减轻免疫炎症反应有关。  相似文献   

5.

Background

Plants in over one hundred families in habitats worldwide bear extrafloral nectaries (EFNs). EFNs display a remarkable diversity of evolutionary origins, as well as diverse morphology and location on the plant. They secrete extrafloral nectar, a carbohydrate-rich food that attracts ants and other arthropods, many of which protect the plant in return. By fostering ecologically important protective mutualisms, EFNs play a significant role in structuring both plant and animal communities. And yet researchers are only now beginning to appreciate their importance and the range of ecological, evolutionary and morphological diversity that EFNs exhibit.

Scope

This Highlight features a series of papers that illustrate some of the newest directions in the study of EFNs. Here, we introduce this set of papers by providing an overview of current understanding and new insights on EFN diversity, ecology and evolution. We highlight major gaps in our current knowledge, and outline future research directions.

Conclusions

Our understanding of the roles EFNs play in plant biology is being revolutionized with the use of new tools from developmental biology and genomics, new modes of analysis allowing hypothesis-testing in large-scale phylogenetic frameworks, and new levels of inquiry extending to community-scale interaction networks. But many central questions remain unanswered; indeed, many have not yet been asked. Thus, the EFN puzzle remains an intriguing challenge for the future.  相似文献   

6.
S-Adenosyl-l-methionine (AdoMet or SAM)-dependent methyltransferases (MTase) catalyze the transfer of the activated methyl group from AdoMet to specific positions in DNA, RNA, proteins and small biomolecules. This natural methylation reaction can be expanded to a wide variety of alkylation reactions using synthetic cofactor analogues. Replacement of the reactive sulfonium center of AdoMet with an aziridine ring leads to cofactors which can be coupled with DNA by various DNA MTases. These aziridine cofactors can be equipped with reporter groups at different positions of the adenine moiety and used for Sequence-specific Methyltransferase-Induced Labeling of DNA (SMILing DNA). As a typical example we give a protocol for biotinylation of pBR322 plasmid DNA at the 5’-ATCGAT-3’ sequence with the DNA MTase M.BseCI and the aziridine cofactor 6BAz in one step. Extension of the activated methyl group with unsaturated alkyl groups results in another class of AdoMet analogues which are used for methyltransferase-directed Transfer of Activated Groups (mTAG). Since the extended side chains are activated by the sulfonium center and the unsaturated bond, these cofactors are called double-activated AdoMet analogues. These analogues not only function as cofactors for DNA MTases, like the aziridine cofactors, but also for RNA, protein and small molecule MTases. They are typically used for enzymatic modification of MTase substrates with unique functional groups which are labeled with reporter groups in a second chemical step. This is exemplified in a protocol for fluorescence labeling of histone H3 protein. A small propargyl group is transferred from the cofactor analogue SeAdoYn to the protein by the histone H3 lysine 4 (H3K4) MTase Set7/9 followed by click labeling of the alkynylated histone H3 with TAMRA azide. MTase-mediated labeling with cofactor analogues is an enabling technology for many exciting applications including identification and functional study of MTase substrates as well as DNA genotyping and methylation detection.  相似文献   

7.
Background Peroxisomes are highly dynamic, metabolically active organelles that used to be regarded as a sink for H2O2 generated in different organelles. However, peroxisomes are now considered to have a more complex function, containing different metabolic pathways, and they are an important source of reactive oxygen species (ROS), nitric oxide (NO) and reactive nitrogen species (RNS). Over-accumulation of ROS and RNS can give rise oxidative and nitrosative stress, but when produced at low concentrations they can act as signalling molecules.Scope This review focuses on the production of ROS and RNS in peroxisomes and their regulation by antioxidants. ROS production is associated with metabolic pathways such as photorespiration and fatty acid β-oxidation, and disturbances in any of these processes can be perceived by the cell as an alarm that triggers defence responses. Genetic and pharmacological studies have shown that photorespiratory H2O2 can affect nuclear gene expression, regulating the response to pathogen infection and light intensity. Proteomic studies have shown that peroxisomal proteins are targets for oxidative modification, S-nitrosylation and nitration and have highlighted the importance of these modifications in regulating peroxisomal metabolism and signalling networks. The morphology, size, number and speed of movement of peroxisomes can also change in response to oxidative stress, meaning that an ROS/redox receptor is required. Information available on the production and detection of NO/RNS in peroxisomes is more limited. Peroxisomal homeostasis is critical for maintaining the cellular redox balance and is regulated by ROS, peroxisomal proteases and autophagic processes.Conclusions Peroxisomes play a key role in many aspects of plant development and acclimation to stress conditions. These organelles can sense ROS/redox changes in the cell and thus trigger rapid and specific responses to environmental cues involving changes in peroxisomal dynamics as well as ROS- and NO-dependent signalling networks, although the mechanisms involved have not yet been established. Peroxisomes can therefore be regarded as a highly important decision-making platform in the cell, where ROS and RNS play a determining role.  相似文献   

8.
Guo Y  Fourcaud T  Jaeger M  Zhang X  Li B 《Annals of botany》2011,107(5):723-727
Over the last decade, a growing number of scientists around the world have invested in research on plant growth and architectural modelling and applications (often abbreviated to plant modelling and applications, PMA). By combining physical and biological processes, spatially explicit models have shown their ability to help in understanding plant–environment interactions. This Special Issue on plant growth modelling presents new information within this topic, which are summarized in this preface. Research results for a variety of plant species growing in the field, in greenhouses and in natural environments are presented. Various models and simulation platforms are developed in this field of research, opening new features to a wider community of researchers and end users. New modelling technologies relating to the structure and function of plant shoots and root systems are explored from the cellular to the whole-plant and plant-community levels.  相似文献   

9.
Chemostats are continuous culture systems in which cells are grown in a tightly controlled, chemically constant environment where culture density is constrained by limiting specific nutrients.1,2 Data from chemostats are highly reproducible for the measurement of quantitative phenotypes as they provide a constant growth rate and environment at steady state. For these reasons, chemostats have become useful tools for fine-scale characterization of physiology through analysis of gene expression3-6 and other characteristics of cultures at steady-state equilibrium.7 Long-term experiments in chemostats can highlight specific trajectories that microbial populations adopt during adaptive evolution in a controlled environment. In fact, chemostats have been used for experimental evolution since their invention.8 A common result in evolution experiments is for each biological replicate to acquire a unique repertoire of mutations.9-13 This diversity suggests that there is much left to be discovered by performing evolution experiments with far greater throughput. We present here the design and operation of a relatively simple, low cost array of miniature chemostats—or ministats—and validate their use in determination of physiology and in evolution experiments with yeast. This approach entails growth of tens of chemostats run off a single multiplexed peristaltic pump. The cultures are maintained at a 20 ml working volume, which is practical for a variety of applications. It is our hope that increasing throughput, decreasing expense, and providing detailed building and operation instructions may also motivate research and industrial application of this design as a general platform for functionally characterizing large numbers of strains, species, and growth parameters, as well as genetic or drug libraries.  相似文献   

10.
11.
Physiological data are needed for life history studies on krill, and as parameters for input into energy budgets and models. In conjunction with moult and growth data, these may also prove useful for assessing the fishable biomass of krill. Here, the development of physiological concepts in experimental krill research is briefly evaluated, with emphasis on the gaps to be filled. Krill growth is very flexible, as well as strongly temperature and nutrition dependent. The polar Antarctic krill Euphausia superba grows as fast as the boreal species Meganyctiphanes norvegica, at least during the first 2.5 years, and the species are comparable in terms of physiological plasticity. Accordingly, as krill appear to adjust quickly to specific laboratory conditions, short-term experiments are essential if field conditions are to be reflected as closely as possible. Furthermore, direct comparisons between laboratory experiments and swarming studies in the field are advantageous. For these, M. norvegica is particularly well-suited, as swarms can be followed over longer times and more easily than in E. superba. For example, processes of moult and reproduction were found to be highly coordinated in swarms and populations of Northern krill. For this species a conceptual model of reproduction was developed based on a combination of short-term laboratory observations coupled with field data on moult and ovary stages. In further physiological experiments krill should be studied as groups when swarming. Using proxies, that is applying physiological and/or biochemical methods side by side, is a promising way to enhance the reliability of life history data.  相似文献   

12.
董玮  武文君  张徐波 《昆虫学报》2022,65(8):1068-1074
平衡棒(haltere)是双翅目昆虫后翅特化而成的结构,可在飞行中起重要作用。平衡棒基部的感受器可以检测到飞行中的惯性力,向运动神经元提供反馈,迅速地平衡身体并纠正航向。昆虫的平衡棒由成虫盘发育形成,其特化受HOX基因(Ultrabithorax,Ubx)调控。发育成熟的平衡棒由两层上皮细胞组成,末端球状结构内部充满高度空泡化的细胞,基部具有大量感器。平衡棒的运动由独立的肌肉控制,相对于同侧的翅反向移动,翅与平衡棒的协同运动对于昆虫起飞和维持平衡十分重要。近年来,平衡棒的导航原理越来越多地应用于仿生学研究中,基于果蝇平衡棒的结构和功能,研制出多种飞行器的导航设备。本文结合近年来相关领域的研究成果,就平衡棒的发育、形态结构、功能和仿生应用等方面的研究进展进行综述,为深入理解昆虫平衡棒的发育机制和生物学功能提供参考。  相似文献   

13.

Background and Aims

Versatility in the reproductive development of pseudoviviparous grasses in response to growth conditions is an intriguing reproduction strategy. To better understand this strategy, this study examined variation in flowering and pseudovivipary among populations, co-occurring clones within populations, and among tillers in individual clones of Poa bulbosa, a summer-dormant geophytic grass that reproduces sexually by seed, and asexually by basal tiller bulbs and bulbils formed in proliferated panicles.

Methods

Clones were collected from 17 populations across a rainfall gradient. Patterns of reproduction were monitored for 11 years in a common garden experiment and related to interannual differences in climatic conditions. Intraclonal variation in flowering and pseudovivipary was studied in a phytotron, under daylengths marginal for flowering induction.

Key Results

Clones showed large temporal variability in their reproductive behaviour. They flowered in some years but not in others, produced normal or proliferated panicles in different years, or became dormant without flowering. Proliferating clones did not show a distinct time sequence of flowering and proliferation across years. Populations differed in incidence of flowering and proliferation. The proportion of flowering clones increased with decreasing rainfall at the site of population origin, but no consistent relationship was found between flowering and precipitation in the common garden experiment across years. In contrast, flowering decreased at higher temperatures during early growth stages after bulb sprouting. Pulses of soil fertilization greatly increased the proportion of flowering clones and panicle production. High intraclonal tiller heterogeneity was observed, as shown by the divergent developmental fates of daughter plants arising from bulbs from the same parent clone and grown under similar conditions. Panicle proliferation was enhanced by non-inductive 8 h short days, while marginally inductive 12 h days promoted normal panicles.

Conclusions

Interannual variation in flowering and proliferation in P. bulbosa clones was attributed to differences in the onset of the rainy season, resulting in different daylength and temperature conditions during the early stages of growth, during which induction of flowering and dormancy occurs.  相似文献   

14.
Peroxiredoxin I and II are both 2-Cys members of the peroxiredoxin family of antioxidant enzymes and inactivate hydrogen peroxide. On western blotting, both enzymes appeared as 22-kD proteins and were present in the sclera, retina and iris. Immunohistochemistry showed strong cytoplasmic labeling in the basal cells of the corneal epithelial layer and the corneoscleral limbus. The melanocytes within the stroma of the iris and the anterior epithelial cells of the lens also showed strong cytoplasmic labeling. The fibrous structure of the stroma and the posterior surface of the ciliary body were also labeled. There was also strong labeling for both enzymes in the photoreceptors and the inner and outer plexiform layers of the retina. There was increased labeling of peroxiredoxin I and II in pterygium. In normal conjunctiva and cornea, only the basal cell layer showed labeling for peroxiredoxin I and II, whereas, in pterygia, there was strong cytoplasmic labeling in most cells involving the full thickness of the epithelium. Co-localization of the DNA oxidation product 8-hydroxy-2’-deoxyguanosine antibody with the nuclear dye 4’,6’-diamidino-2-phenylindole dihydrochloride indicated that the majority of the oxidative damage was cytoplasmic; this suggested that the mitochondrial DNA was most affected by the UV radiation in this condition.  相似文献   

15.
Deterioration in the ability to perform "Activities of daily living" (ADL) is an early sign of Alzheimer's disease (AD). Preclinical behavioural screening of possible treatments for AD currently largely focuses on cognitive testing, which frequently demands expensive equipment and lots of experimenter time. However, human episodic memory (the most severely affected aspect of memory in AD) is different to rodent memory, which seems to be largely non-episodic. Therefore the present ways of screening for new AD treatments for AD in rodents are intrinsically unlikely to succeed. A new approach to preclinical screening would be to characterise the ADL of mice. Fortuitously, several such assays have recently been developed at Oxford, and here the three most sensitive and well-characterised are presented. Burrowing was first developed in Oxford. It evolved from a need to develop a mouse hoarding paradigm. Most published rodent hoarding paradigms required a distant food source to be linked to the home cage by a connecting passage. This would involve modifying the home cage as well as making a mouse-proof connecting passage and food source. So it was considered whether it would be possible to put the food source inside the cage. It was found that if a container was placed on the floor it was emptied by the next morning., The food pellets were, however, simply deposited in a heap at the container entrance, rather than placed in a discrete place away from the container, as might be expected if the mice were truly hoarding them. Close inspection showed that the mice were performing digging ("burrowing") movements, not carrying the pellets in their mouths to a selected place as they would if truly hoarding them. Food pellets are not an essential substrate for burrowing; mice will empty tubes filled with sand, gravel, even soiled bedding from their own cage. Moreover, they will empty a full tube even if an empty one is placed next to it. Several nesting protocols exist in the literature. The present Oxford one simplifies the procedure and has a well-defined scoring system for nest quality. A hoarding paradigm was later developed in which the mice, rather than hoarding back to the real home cage, were adapted to living in the "home base" of a hoarding apparatus. This home base was connected to a tube made of wire mesh, the distal end of which contained the food source. This arrangement proved to yield good hoarding behaviour, as long as the mice were adapted to living in the "home base" during the day and only allowed to enter the hoarding tube at night.  相似文献   

16.
药物成瘾是一种慢性复发性脑病,主要表现为不可控制的对药物持续渴求和戒断后的高复吸。目前观点认为,成瘾是中脑腹侧被盖(ventral tegmental area,VTA)到伏隔核(nucleus accumbens,NAc)脑区多巴胺能奖赏通路中神经可塑性发生改变而导致的一种神经精神疾病。基因表达变化在神经可塑性中发挥着重要作用,但成瘾药物导致相关脑区结构和功能改变的机制还不甚清楚。微小RNAs(microRNAs,miRNAs)是一类非编码RNA,主要通过结合靶基因mRNA 3′非翻译区(3′untranslated region,3′UTR),在转录后水平阻断其翻译成蛋白质或触发其不稳定而降解。越来越多的研究证实,miRNAs参与调节成瘾相关神经可塑性的变化。本文较系统地阐述miRNAs在药物成瘾中的作用研究进展,将为深入阐明药物成瘾的机制以及药物成瘾临床有效干预和诊治提供新思路。  相似文献   

17.
Background Anthropogenic climate change (ACC) will influence all aspects of plant biology over coming decades. Many changes in wild species have already been well-documented as a result of increased atmospheric CO2 concentrations, warming climate and changing precipitation regimes. A wealth of available data has allowed the use of meta-analyses to examine plant–climate interactions on more sophisticated levels than before. These analyses have revealed major differences in plant response among groups, e.g. with respect to functional traits, taxonomy, life-history and provenance. Interestingly, these meta-analyses have also exposed unexpected mismatches between theory, experimental, and observational studies.Scope We reviewed the literature on species’ responses to ACC, finding ∼42 % of 4000 species studied globally are plants (primarily terrestrial). We review impacts on phenology, distributions, ecophysiology, regeneration biology, plant–plant and plant–herbivore interactions, and the roles of plasticity and evolution. We focused on apparent deviations from expectation, and highlighted cases where more sophisticated analyses revealed that unexpected changes were, in fact, responses to ACC.Conclusions We found that conventionally expected responses are generally well-understood, and that it is the aberrant responses that are now yielding greater insight into current and possible future impacts of ACC. We argue that inconclusive, unexpected, or counter-intuitive results should be embraced in order to understand apparent disconnects between theory, prediction, and observation. We highlight prime examples from the collection of papers in this Special Issue, as well as general literature. We found use of plant functional groupings/traits had mixed success, but that some underutilized approaches, such as Grime''s C/S/R strategies, when incorporated, have improved understanding of observed responses. Despite inherent difficulties, we highlight the need for ecologists to conduct community-level experiments in systems that replicate multiple aspects of ACC. Specifically, we call for development of coordinating experiments across networks of field sites, both natural and man-made.  相似文献   

18.
19.
光谱和微量热法分析柑橘苷(naringin,NAR)与牛血清白蛋白(bovine serum albumin, BSA)分子间作用,构建NAR与BSA分子间作用的理论模型。采用紫外-荧光光谱法解析Fōrster方程求得NAR与BSA分子间作用及分子间作用的临界距离r,等温滴定微量热技术测定NAR与BSA分子间作用的积分量热曲线,获得Δ H并通过Gibbs-Helmholtz方程获取Δ S和Δ G。基于光谱和微量热辅助分析,构建NAR与BSA分子间作用的理论模型。结果表明,光谱法测出NAR与BSA发生分子间作用,NAR与BSA分子间作用的临界距离为2.06 nm,表明NAR与BSA分子间作用为短程分子间作用。微量热法成功测定出NAR与BSA分子间的热力学参数Δ H<0,Δ S>0,Δ G<0,说明NAR与BSA分子间作用是自发进行的放热相互作用。依据Ross理论分析NAR与BSA分子间作用力主要是疏水作用力和静电作用力。模型构建结果说明,NAR与BSA分子间作用主要发生在BSA的domain IIA区域,NAR与BSA分子间作用力主要是静电作用力,兼有范德华作用力和氢键。实验与理论模型构建结果基本一致。本研究工作可为深入了解蛋白质与大分子化合物间的作用以及研究微观药理学机制提供有益的参考。  相似文献   

20.
Top‐tier evidence on the safety/tolerability of 80 medications in children/adolescents with mental disorders has recently been reviewed in this jour­nal. To guide clinical practice, such data must be combined with evidence on efficacy and acceptability. Besides medications, psychosocial inter­ventions and brain stimulation techniques are treatment options for children/adolescents with mental disorders. For this umbrella review, we systematically searched network meta‐analyses (NMAs) and meta‐analyses (MAs) of randomized controlled trials (RCTs) evaluating 48 medications, 20 psychosocial interventions, and four brain stimulation techniques in children/adolescents with 52 different mental disorders or groups of mental disorders, reporting on 20 different efficacy/acceptability outcomes. Co‐primary outcomes were disease‐specific symptom reduction and all‐cause discontinuation (“acceptability”). We included 14 NMAs and 90 MAs, reporting on 15 mental disorders or groups of mental disorders. Overall, 21 medications outperformed placebo regarding the co‐primary outcomes, and three psychosocial interventions did so (while seven outperformed waiting list/no treatment). Based on the meta‐analytic evidence, the most convincing efficacy profile emerged for amphetamines, methylphenidate and, to a smaller extent, behavioral therapy in attention‐deficit/hyperactivity disorder; aripiprazole, risperidone and several psychosocial interventions in autism; risperidone and behavioral interventions in disruptive behavior disorders; several antipsychotics in schizophrenia spectrum disorders; fluoxetine, the combination of fluoxetine and cognitive behavioral therapy (CBT), and interpersonal therapy in depression; aripiprazole in mania; fluoxetine and group CBT in anxiety disorders; fluoxetine/selective serotonin reuptake inhibitors, CBT, and behavioral therapy with exposure and response prevention in obsessive‐compulsive disorder; CBT in post‐traumatic stress disorder; imipramine and alarm behavioral intervention in enuresis; behavioral therapy in encopresis; and family therapy in anorexia nervosa. Results from this umbrella review of interventions for mental disorders in children/adolescents provide evidence‐based information for clinical decision making.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号