首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has previously been shown that the site of production of the generator potential in Pacinian corpuscles is the receptor membrane of the non-myelinated ending, and the site of initiation of the nerve impulse, the adjacent (first) Ranvier node. Effects of membrane polarization of these sites were studied in the present work. Nerve ending and first Ranvier node were isolated by dissection, electric activity was recorded from, and polarizing currents were passed through them. All observations were done at steady levels of polarization, seconds after onset of current flow. The following results were obtained: The amount of charge transferred through the excited receptor membrane is a function of the electrical gradients across the membrane. The generator potential in response to equal mechanical stimuli increases with resting potential of the receptor membrane. The refractory state of the generator potential is not affected by polarization. The electrical threshold for impulse firing at the first Ranvier node (measured by the minimal amplitude of generator potential which elicits a nodal impulse) is nearly minimal at normal resting potential of the node. Both, hyperpolarization and depolarization lead to a rise in nodal threshold. For any level of polarization of nodal and receptor membrane, the threshold for production of impulses by adequate (mechanical) stimulation appears determined by the generator potential-stimulus strength relation and by the electrical threshold of the node.  相似文献   

2.
Charge transfer through the receptor membrane of the nonmyelinated ending of Pacinian corpuscles is markedly affected by temperature. The rate of rise and the amplitude of the generator potential in response to a constant mechanical stimulus increase with temperature coefficients of 2.5 and 2.0 respectively. The duration of the falling phase, presumably a purely passive component, and the rise time of the generator potential are but little affected by temperature. The following interpretation is offered: Mechanical stimulation causes the conductance of the receptor membrane to increase and ions to flow along their electrochemical gradients. An energy barrier of about 16,000 cal/mole limits the conductance change. The latter increases, thus, steeply with temperature, causing both the rate of rise and the intensity of the generator current to increase. The membrane of the adjacent Ranvier node behaves in a distinctly different manner. The amplitude of the nodal action potential is little changed over a wide range of temperature, while the durations of its rising and falling phases increase markedly. The electrical threshold of the nodal membrane is rather constant between 40 and 12°C. Below 12°C the threshold rises, and the mechanically elicited generator current fails to meet the threshold requirements of the first node. Cold block of nerve impulse initiation then ensues, although the receptor membrane still continues to produce generator potentials in response to mechanical stimulation.  相似文献   

3.
A period of supernormal excitability is left by a propagated impulse in a Pacinian corpuscle. The increase in excitability is found 6 to 10 msec. after an impulse occurs in the corpuscle. Supernormality is produced by either mechanically elicited dromic impulses, or by electrically excited antidromic impulses. Generator potentials do not cause supernormality. Local potentials discharged spontaneously by the corpuscle, and which fall on the supernormal trail left by an antidromic impulse, become enhanced in amplitude, an eventually are turned into propagated dromic potentials. The supernormal period is interpreted as caused by a negative after-potential left at the first intracorpuscular node of Ranvier which outlasts both the recovery time of the firing level and that of the generator potential during the corpuscle's relative refractory period.  相似文献   

4.
The sites for mechano-electric conversion in a Pacinian corpuscle   总被引:4,自引:4,他引:0       下载免费PDF全文
The sensory nerve ending in the Pacinian corpuscle is surrounded by a non-nervous capsular structure which occupies about 99.9 per cent of the corpuscle's entire mass. After extirpation of practically all of the non-nervous structure, the sense organ's remains continue to function as a mechano-receptor, namely to produce generator and all-or-nothing potentials in response to mechanical stimuli. Compression of the first intracorpuscular node of Ranvier abolishes the production of "all-or-nothing" potentials in the corpuscle. Graded generator potentials constitute then the only response to mechanical stimulation. This reveals that the first node is the site of origin of the all-or-nothing potential and that the non-myelinated ending is incapable of producing all-or-nothing responses in response to mechanical stimulation. Compression of the entire length of non-myelinated ending suppresses the production of generator potentials. Partial compression of the ending abolishes mechano-responsiveness only of the compressed part. The intact remains of the ending continue to give generator potentials upon mechanical stimulation. This suggests that the generator potential arises at functionally independent membrane parts distributed all over the non-myelinated nerve ending. 24 to 36 hours after denervation of the corpuscle by transection of its sensory axon, no sign of electric activity is detected. Failure of mechano-reception at the nerve ending precedes that of conduction at the degenerating myelinated axon.  相似文献   

5.
Response patterns resulting from repetitive mechanical stimulation of the corpuscle depend on (1) the time course of recovery of the generator potential, on (2) the recovery of critical firing height, and on (3) the stimulus strength/generator potential function. By either augmenting stimulus frequency at constant strength, or by reducing strength at constant frequency, a sequence of propagated potentials is turned into a pattern of alternating regenerative and generator responses. In such a pattern an extra impulse can be set up whenever an extra stimulus produces a generator potential of enough amplitude to reach the firing height of the corresponding period. The new requirements of firing height introduced by the refractory trail of the extra impulse determine resetting of periodicity and appearance of a "compensatory pause." The decay time of the single generator potential is independent of stimulus duration. This is interpreted as a factor determining receptor adaptation. Upon repetitive stimulation at intervals above ½ decay time of the single generator potential, a compound generator potential is built up which shows no spontaneous decline. However, in spite of being considerably greater than the firing height for single impulses, the constant level of depolarization of the compound generator potential is unable to produce propagated potentials. A hypothesis is brought forward which considers the generator potential to arise from membrane units with fluctuating excitability scattered over the non-myelinated nerve ending.  相似文献   

6.
A propagated potential produced in the Pacinian corpuscle in response to mechanical stimuli leaves a refractory state of 7 to 10 msec. duration. The refractory state is presumably produced at the first intracorpuscular node of Ranvier. The recovery of receptor excitability for producing an all-or-none response to mechanical stimulation follows the same time course as that of the electrically excited axon. Upon progressive reduction of stimulus interval (mechanical), the propagated potential falls progressively to 75 per cent of its resting magnitude and becomes finally blocked within the corpuscle. A non-propagated all-or-none potential, presumably corresponding to activity of the first node, is then detected. The critical firing level for all-or-none potentials increases progressively during the relative refractory period of the all-or-none potential, as the stimulus interval is shortened. Thus generator potentials up to 85 per cent of a propagated potential can be produced in absence of all-or-none activity. Generator potentials show: gradual over-all increase in amplitude and rate of rise as a function of stimulus strength; constant latency; and spontaneous fluctuations in amplitude. A generator potential leaves a refractory state (presumably at the non-myelinated ending) so that the amplitude of a second generator response which falls on its refractory trail is directly related to the time elapsed after the first generator response and inversely to its amplitude. The generator potential develops independently of any refractory state left by a preceding all-or-none potential.  相似文献   

7.
Repetitive mechanical stimulation causes depression of excitability in isolated Pacinian corpuscles: the mechanical threshold of the sense organ for producing nerve impulses increases progressively with time of repetitive stimulation. The effect is completely reversible; it can be elicited with repetitive stimuli of less than threshold strength. Within certain limits, the depression increases as a function of strength and frequency of the repetitive stimuli.  相似文献   

8.
Synaptic inhibition in an isolated nerve cell   总被引:5,自引:0,他引:5       下载免费PDF全文
Following the preceding studies on the mechanisms of excitation in stretch receptor cells of crayfish, this investigation analyzes inhibitory activity in the synapses formed by two neurons. The cell body of the receptor neuron is located in the periphery and sends dendrites into a fine muscle strand. The dendrites receive innervation through an accessory nerve fiber which has now been established to be inhibitory. There exists a direct peripheral inhibitory control mechanism which can modulate the activity of the stretch receptor. The receptor cell which can be studied in isolation was stimulated by stretch deformation of its dendrites or by antidromic excitation and the effect of inhibitory impulses on its activity was analyzed. Recording was done mainly with intracellular leads inserted into the cell body. 1. Stimulation of the relatively slowly conducting inhibitory nerve fiber either decreases the afferent discharge rate or stops impulses altogether in stretched receptor cells. The inhibitory action is confined to the dendrites and acts on the generator mechanism which is set up by stretch deformation. By restricting depolarization of the dendrites above a certain level, inhibition prevents the generator potential from attaining the "firing level" of the cell. 2. The same inhibitory impulse may set up a postsynaptic polarization or a depolarization, depending on the resting potential level of the cell. The membrane potential at which the inhibitory synaptic potential reverses its polarity, the equilibrium level, may vary in different preparations. The inhibitory potentials increase as the resting potential is displaced in any direction from the inhibitory equilibrium. 3. The inhibitory potentials usually rise to a peak in about 2 msec. and decay in about 30 msec. After repetitive inhibitory stimulation a delayed secondary polarization phase has frequently been seen, prolonging the inhibitory action. Repetitive inhibitory excitation may also be followed by a period of facilitation. Some examples of "direct" excitation by the depolarizing action of inhibitory impulses are described. 4. The interaction between antidromic and inhibitory impulses was studied. The results support previous conclusions (a) that during stretch the dendrites provide a persisting "drive" for the more central portions of the receptor cell, and (b) that antidromic all-or-none impulses do not penetrate into the distal portions of stretch-depolarized dendrites. The "after-potentials" of antidromic impulses are modified by inhibition. 5. Evidence is presented that inhibitory synaptic activity increases the conductance of the dendrites. This effect may occur in the absence of inhibitory potential changes.  相似文献   

9.
The present investigation continues a previous study in which the soma-dendrite system of sensory neurons was excited by stretch deformation of the peripheral dendrite portions. Recording was done with intracellular leads which were inserted into the cell soma while the neuron was activated orthodromically or antidromically. The analysis was also extended to axon conduction. Crayfish, Procambarus alleni (Faxon) and Orconectes virilis (Hagen), were used. 1. The size and time course of action potentials recorded from the soma-dendrite complex vary greatly with the level of the cell's membrane potential. The latter can be changed over a wide range by stretch deformation which sets up a "generator potential" in the distal portions of the dendrites. If a cell is at its resting unstretched equilibrium potential, antidromic stimulation through the axon causes an impulse which normally overshoots the resting potential and decays into an afternegativity of 15 to 20 msec. duration. The postspike negativity is not followed by an appreciable hyperpolarization (positive) phase. If the membrane potential is reduced to a new steady level a postspike positivity appears and increases linearly over a depolarization range of 12 to 20 mv. in various cells. At those levels the firing threshold of the cell for orthodromic discharges is generally reached. 2. The safety factor for conduction between axon and cell soma is reduced under three unrelated conditions, (a) During the recovery period (2 to 3 msec.) immediately following an impulse which has conducted fully over the cell soma, a second impulse may be delayed, may invade the soma partially, or may be blocked completely. (b) If progressive depolarization is produced by stretch, it leads to a reduction of impulse height and eventually to complete block of antidromic soma invasion, resembling cathodal block, (c) In some cells, when the normal membrane potential is within several millivolts of the relaxed resting state, an antidromic impulse may be blocked and may set up within the soma a local potential only. The local potential can sum with a second one or it may sum with potential changes set up in the dendrites, leading to complete invasion of the soma. Such antidromic invasion block can always be relieved by appropriate stretch which shifts the membrane potential out of the "blocking range" nearer to the soma firing level. During the afterpositivity of an impulse in a stretched cell the membrane potential may fall below or near the blocking range. During that period another impulse may be delayed or blocked. 3. Information regarding activity and conduction in dendrites has been obtained indirectly, mainly by analyzing the generator action under various conditions of stretch. The following conclusions have been reached: The large dendrite branches have similar properties to the cell body from which they arise and carry the same kind of impulses. In the finer distal filaments of even lightly depolarized dendrites, however, no axon type all-or-none conduction occurs since the generator potential persists to a varying degree during antidromic invasion of the cell. With the membrane potential at its resting level the dendrite terminals contribute to the prolonged impulse afternegativity of the soma. 4. Action potentials in impaled axons and in cell bodies have been compared. It is thought that normally the over-all duration of axon impulses is shorter. Local activity during reduction of the safety margin for conduction was studied. 5. An analysis was made of high frequency grouped discharges which occasionally arise in cells. They differ in many essential aspects from the regular discharges set up by the generator action. It is proposed that grouped discharges occur only when invasion of dendrites is not synchronous, due to a delay in excitation spread between soma and dendrites. Each impulse in a group is assumed to be caused by an impulse in at least one of the large dendrite branches. Depolarization of dendrites abolishes the grouped activity by facilitating invasion of the large dendrite branches.  相似文献   

10.
Summary Antidromic electrical stimulation of the lingual branch of the glossopharyngeal (IX) nerve of the frog was carried out while recording intracellular potentials of taste disc cells.Antidromic activation of sensory fibers resulted in depolarization of cells of the upper layer of the disc and most commonly in hyperpolarization of the cells in the lower layer. These changes in potential exhibited latencies greater than 1 s (Fig. 3), and thus cannot be due to electrotonic effects of action potentials in terminals of IX nerve fibers, which have much shorter conduction times. These cell potentials also showed summation, adaptation and post-stimulus rebound (Figs. 3, 4).Depending upon the chemical stimulus used, antidromic activity produced either depression or enhancement of gustatory fiber discharge in response to taste stimuli (Fig. 5).Alteration of the resting membrane potential by current injection did not significantly modify the antidromically evoked potentials (Fig. 8), whereas chemical stimulation of the tongue did (Fig. 7), indicating that these potential changes are not the result of passive electrical processes.These experimental results indicate that the membrane potential of taste disc cells can be modified by antidromic activity in their afferent nerves. This mechanism may be responsible for peripheral interactions among gustatory units of the frog tongue.The research was supported in part by NIH grant NS-09168.  相似文献   

11.
Electrical stimulation of the central nervous system creates both orthodromically propagating action potentials, by stimulation of local cells and passing axons, and antidromically propagating action potentials, by stimulation of presynaptic axons and terminals. Our aim was to understand how antidromic action potentials navigate through complex arborizations, such as those of thalamic and basal ganglia afferents-sites of electrical activation during deep brain stimulation. We developed computational models to study the propagation of antidromic action potentials past the bifurcation in branched axons. In both unmyelinated and myelinated branched axons, when the diameters of each axon branch remained under a specific threshold (set by the antidromic geometric ratio), antidromic propagation occurred robustly; action potentials traveled both antidromically into the primary segment as well as "re-orthodromically" into the terminal secondary segment. Propagation occurred across a broad range of stimulation frequencies, axon segment geometries, and concentrations of extracellular potassium, but was strongly dependent on the geometry of the node of Ranvier at the axonal bifurcation. Thus, antidromic activation of axon terminals can, through axon collaterals, lead to widespread activation or inhibition of targets remote from the site of stimulation. These effects should be included when interpreting the results of functional imaging or evoked potential studies on the mechanisms of action of DBS.  相似文献   

12.
新生大鼠离体脊髓薄片侧角中间外侧核细胞的电生理特性   总被引:1,自引:0,他引:1  
祝延  马如纯 《生理学报》1989,41(1):63-69
在新生大鼠离体脊髓薄片的中间外侧核作细胞内记录,研究细胞膜的静态与动态电生理特性。细胞的静息电位(RP)变动于-46—-70mV,膜的输入阻抗为108.3±67.9MΩ(X±SD,下同),时间常数9.9±5.6ms,膜电容138.6±124.2pF。用去极化电流进行细胞内刺激时,大部份细胞(85.4%)能产生高频率连续发放,其余细胞(15.6%)仅产生初始单个发放。胞内直接刺激引起的动作电位(AP)幅度为63.4±9.0mV,时程2.4±0.6ms,阈电位水平在RP基础上去极18.7±6.2mV。大部份细胞的锋电位后存在明显的超极化后电位,其幅度为5.1±2.7mV、持续90±31.8ms。刺激背根可在记录细胞引起EPSP或顺向AP,少数细胞尚出现IPSP。而刺激腹根则可引起逆向AP。  相似文献   

13.
The depressant action of antidromic volleys of impulses on gustatory nerve signals from the tongues of bullfrogs was studied. Electrical stimulation of the glossopharyngeal nerve at a rate of 100 Hz for 10 s and at supramaximal intensity slightly depressed the integrated glossopharyngeal nerve responses to quinine and to mechanical taps to the tongue. The same antidromic stimuli resulted in a 30-40% reduction in the responses to salt, acid, water, and warmed saline, but depressed greater than 80% of the afferent impulses firing spontaneously. The magnitude of responses to quinine and NaCl and the number of spontaneous discharges decreased gradually with an increase in either the frequency or the duration of antidromic stimuli. Similar results were obtained with intensities above the threshold for exciting gustatory and slowly adapting mechanosensitive fibers. The time required to recover from termination of the antidromic stimuli to two-thirds of the maximal amount of depression ranged between 6 and 7 min, with no significant differences among the depressions. The possible mechanisms involved in the antidromic depression of gustatory nerve signals are discussed.  相似文献   

14.
The present study demonstrates the enhanced efficacy of impulse initiation among the hindlimb alpha motoneurons of flexor and extensor origins (n = 35) upon electrical stimulation of the locus coeruleus (LC) in decerebrate cats. When combined with the LC-evoked excitatory postsynaptic potential (EPSP), intracellular hyperpolarization-induced partial and total blocks of antidromic invasion were overcome, resulting in full-spike generation in all cells (n = 21). In three other cells, partial blocks, representing the motoneuron refractoriness resulting from double stimulation at close intervals, were relieved by the concomitant LC-EPSP. When an antidromic volley occurred at a time when the somadendritic (SD) membrane was near threshold, LC stimulation was shown to increase the probability of full-spike initiation as well as to shorten the initial segment (IS)-SD delay, suggesting a coerulospinal enhancement of the safety factor for IS-SD impulse conduction. When coincident with the LC-EPSPs, group Ia EPSPs of flexor and extensor origins were demonstrated to reach the threshold of discharging the cells (n = 4). In those cells exhibiting prominent depolarizing synaptic noise (n = 10), LC stimulation was sufficient to cause the cell to fire action potentials presumably by interacting with concomitant excitatory synaptic drive. The present results advocate that the descending LC excitatory drive has engaged in the action potential initiation process of the alpha motoneuron, facilitating its reaching the firing threshold during concurrent depressed membrane excitability as well as subthreshold converging inputs.  相似文献   

15.
Ventral roots of the newborn rat spinal cord were stimulated while recording intracellularly from motoneurons. In many cells, stimulation subthreshold for an antidromic action potential in the impaled cell produced a small, short-latency depolarization, which was unaffected by membrane polarization. This response (antidromic synaptic potential, a.s.p.) was also seen, in some cells, on stimulating the ventral root of an adjacent segment. Replacement of Ca2+ (2 mM) with Mn2+ (3 mM) or Mg2+ (10 mM) completely abolished orthodromic synaptic potentials, but the a.s.p. persisted. These results strongly suggest that the a.s.p. is produced by an electrical interaction between motoneurons.  相似文献   

16.
Effects of a new antiarrhytmic compound KC 3791 on sodium (INa) and potassium (IK) currents were studied in frog myelinated nerve fibres under voltage clamp conditions. When applied externally to the node of Ranvier, KC 3791 (KC) at concentrations of 10(-5)-10(-4) mol.l-1 produced both tonic and cumulative (use-dependent) inhibition of INa. An analysis of the frequency-, voltage- and time dependence of cumulative block by KC suggested that this block resulted from a voltage-dependent interaction of the drug with open Na channels. The progressive decrease in INa during repetitive pulsing was due to accumulation of Na channels in the resting-blocked state: closing of the activation gate after the end of each depolarizing pulse stabilized the KC-"receptor" complex. To unblock these channels a prolonged washing of the node had to be combined with a subsequent repetitive stimulation of the membrane; this suggested that channel could not become cleared of the blocker unless the activation gate has opened. KC also proved to be capable of blocking open K channels at outwardly directed potassium currents (IK). This block increased during membrane depolarization. Unblocking of K channels after the end of a depolarizing pulse proceeded much faster than unblocking of Na channels under identical conditions. Cumulative inhibition of outward IK during high-frequency membrane stimulation was therefore readily reversible upon a decrease in pulsing frequency.  相似文献   

17.
In acute experiments on rats, studies have been made on impulse activity of single fibres of n. ischiadicus evoked by stimulation of the receptive fields of the sole by focused ultrasound. Mechanical effects were produced by rectangular ultrasonic stimuli, thermal ones--by trapezoid ones. With respect to the magnitude of a threshold response to a rectangular stimuli, the receptor structures were divided into three groups, i.e. low, mean and high threshold ones. Low and mean threshold receptor units responded to local thermal stimulation. Mean threshold units exhibited an increase of the threshold to mechanical stimulation after local thermal one. In human subjects, the structures which are functionally similar to mean threshold units, evoke thermal sensations, and may be classified not only as temperature dependent, but also as temperature sensitive.  相似文献   

18.
Courtship clasping, a reproductive behavior in male roughskin newts (Taricha granulosa), is rapidly blocked by an action of corticosterone (CORT) at a specific neuronal membrane receptor. The CORT-induced impairment of clasping in behaving newts appears to be mediated partly by an elimination of clasping-related activity in medullary reticulospinal neurons. Previous studies of rapid CORT actions in Taricha have focused on the brain, so existence of CORT action in the spinal cord or peripheral nervous system has not been assessed. The present study used newts with a high cervical spinal transection to examine potential spinal or peripheral CORT effects on clasping by the hindlimbs in response to pressure on the cloaca. Spinal transection causes clasps elicited by cloacal stimulation to be very sustained beyond the termination of the eliciting stimulus. In spinally transected newts, CORT caused a dose-dependent depression in the duration as well as quality of the clasp that appeared within 10 min of injection. CORT selectively impaired the usual sustained maintenance of a clasp after termination of cloacal stimulation, but not clasp elicitation during stimulation. These effects were not produced by dexamethasone, a synthetic glucocorticoid that binds poorly to the CORT membrane receptor. The CORT effect on clasp maintenance but not clasp elicitation implies selective action on an intraspinal generator for clasping but not on sensory or efferent neuromuscular aspects of the response. These results indicate the presence in the newt spinal cord of the CORT membrane receptor that exerts functional effects distinctly different from those on the brainstem.  相似文献   

19.
Cortical pyramidal neurons alter their responses to input signals depending on behavioral state. We investigated whether changes in somatic inhibition contribute to these alterations. In layer 5 pyramidal neurons of rat visual cortex, repetitive firing from a depolarized membrane potential, which typically occurs during arousal, produced long-lasting depression of somatic inhibition. In contrast, slow membrane oscillations with firing in the depolarized phase, which typically occurs during slow-wave sleep, produced long-lasting potentiation. The depression is mediated by L-type Ca2+ channels and GABA(A) receptor endocytosis, whereas potentiation is mediated by R-type Ca2+ channels and receptor exocytosis. It is likely that the direction of modification is mainly dependent on the ratio of R- and L-type Ca2+ channel activation. Furthermore, somatic inhibition was stronger in slices prepared from rats during slow-wave sleep than arousal. This bidirectional modification of somatic inhibition may alter pyramidal neuron responsiveness in accordance with behavioral state.  相似文献   

20.
The effects of N-methyl-D-aspartate (NMDA) glutamate receptor antagonists on the mechanisms of nociceptive sensitization were studied in LPl1 and RPl1 neurons of the semiintact preparation of a Helix lucorum snail. Application of sensitizing stimuli on the head part of the control preparation led to a depolarization of the membrane and increase in its excitability. A depression of responses of neurons evoked by tactile or chemical sensory stimulation during the short-term period and significant facilitation of responses during the long-term period of sensitization were observed. Sensitization performed under conditions of application of NMDA antagonists (AP5 or MK801) produced similar changes in membrane potential, membrane excitability, and neuronal responses evoked by tactile stimulation of the head or foot. However, the chemical stimulation of the head under these conditions evoked a significant depression of responses during the short- and long-term sensitization periods. The results suggest that the NMDA glutamate receptor antagonists selectively affect the plasticity induction mechanisms of the command neuron synaptic inputs, which mediate the chemical sensory stimulation from the snail's head.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号