首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present paper reports the distribution of lymphoid and non-lymphoid cell types in the thymus of mice. To this purpose, we employed scanning electron microscopy and immunohistology. For immunohistology we used the immunoperoxidase method and incubated frozen sections of the thymus with 1) monoclonal antibodies detecting cell-surface-differentiation antigens on lymphoid cells, such as Thy-1, T-200, Lyt-1, Lyt-2, and MEL-14; 2) monoclonal antibodies detecting the major histocompatibility (MHC) antigens, H-2K, I-A, I-E, and H-2D; and 3) monoclonal antibodies directed against cell-surface antigens associated with cells of the mononuclear phagocyte system, such as Mac-1, Mac-2, and Mac-3. The results of this study indicate that subsets of T lymphocytes are not randomly distributed throughout the thymic parenchyma; rather they are localized in discrete domains. Two major and four minor subpopulations of thymocytes can be detected in frozen sections of the thymus: 1) the majority of cortical thymocytes are strongly Thy-1+ (positive), strongly T-200+, variable in Lyt-1 expression, and strongly Lyt-2+; 2) the majority of medullary thymocytes are weakly Thy-1+, strongly T-200+, strongly Lyt-1+, and Lyt-2- (negative); 3) a minority of medullary cells are weakly Thy-1+, T-200+, strongly Lyt-1+, and strongly Lyt-2+; 4) a small subpopulation of subcapsular lymphoblasts is Thy-1+, T-200+, and negative for the expression of Lyt-1 and Lyt-2 antigens; 5) a small subpopulation of subcapsular lymphoblasts is only Thy-1+ but T-200- and Lyt-; and 6) a small subpopulation of subcapsular lymphoblasts is negative for all antisera tested. Surprisingly, a few individual cells in the thymic cortex, but not in the medulla, react with antibodies directed to MEL-14, a receptor involved in the homing of lymphocytes in peripheral lymphoid organs. MHC antigens (I-A, I-E, H-2K) are mainly expressed on stromal cells in the thymus, as well as on medullary thymocytes. H-2D is also expressed at a low density on cortical thymocytes. In general, anti-MHC antibodies reveal epithelial-reticular cells in the thymic cortex, in a fine dendritic staining pattern. In the medulla, the labeling pattern is more confluent and most probably associated with bone-marrow-derived interdigitating reticular cells and medullary thymocytes. We discuss the distribution of the various lymphoid and non-lymphoid subpopulations within the thymic parenchyma in relation to recently published data on the differentiation of T lymphocytes.  相似文献   

2.
The effect of injection of a range of doses of dexamethasone on the distribution of T-cell subpopulations and stromal cells in the thymus of BALB/c mice was investigated with flowcytometry and immunohistology. To this purpose we used monoclonal antibodies directed to the T-cell differentiation antigens Thy-1, T200, Lyt-1, Lyt-2, T4, MEL-14, and monoclonal antibodies directed to various classes of stromal cells. Injection of dexamethasone in increasing doses of 5-130 mg/kg body weight gradually leads to a depletion of the cortical thymocyte population, i.e., bright Thy-1 + ve, dull T-200 + ve, bright Lyt-2 + ve, and bright T4 + ve cells. These cortical cells are very dull MEL-14 + and express variable numbers of Lyt-1 molecules. Also the medulla is affected by dexamethasone although to a lesser extent. Dexamethasone injection at 130 mg/kg selects for a dull Thy-1 + ve, bright T-200 + ve, and bright Lyt-1 + ve medullary population. These cells are either T4 + ve Lyt-2-ve or T4-ve Lyt-2 + ve. Under these conditions, MEL-14 + ve cells were no longer present in the cortex but accumulated in medullary perivascular spaces. Staining of sequential sections showed that this particular subpopulation has a typical "helper" phenotype. This observation provides strong evidence that perivascular compartments are an exit pathway for emigrating T cells. The medullary population contains a phenotypically distinct, dexamethasone-sensitive subpopulation. This conclusion is based on two findings: 130 mg/kg dexamethasone depletes the thymus of all but 4% of the thymocytes, which form a much smaller subpopulation than the population of dull Thy-1 + ve cells (amounting to 15% of the total thymocytes). The medulla contains a subpopulation of dull Lyt-2 + ve cells, which are resistant to 20 mg/kg dexamethasone, but depleted by 130 mg/kg. Dexamethasone also has a severe effect on thymic nonlymphoid cells. Even at low doses, dexamethasone induces TR4 + ve cortical epithelial-reticular cells to become spherical ("nurse cell-like") structures, depleted of lymphoid cells. These stromal cells no longer express MHC antigens in a membrane-bound fashion. In contrast, the medullary epithelial cells appear morphologically unaffected even at a dexamethasone dose of 130 mg/kg.  相似文献   

3.
Thymuses of CBA/H mice were investigated up to 570 days after whole-body irradiation with 2.5 Gy fast fission neutrons or 6.0 Gy X rays. A number of these thymuses, observed 220-270 days after neutron irradiation, have two equal sized lobes, one of which has an abnormal T cell distribution. The present paper reports on the distribution of lymphoid and stromal cell types in these thymuses. For this purpose, we employed immunohistology using the indirect immunoperoxidase method. We incubated frozen sections of these aberrant thymuses with monoclonal antibodies directed to cell surface differentiation antigens on lymphoid cells, such as Thy-1, T-200, MT-4, Lyt-1, Lyt-2, and MEL-14; monoclonal antibodies directed to major histocompatibility complex (MHC) antigens, such as I-A and H-2K; and monoclonal antibodies directed to determinants in various thymic stromal cell types. The results of this study show a T cell differentiation arrest in only one of the two thymic lobes. T cells in the aberrant lobe express Thy-1, T-200, and MEL-14 antigens but are MT-4- and Lyt-1-. In some lobes, a weak Lyt-2 expression was observed. The observed T cell maturation arrest is mainly restricted to the cortex since in the medulla, in addition to cells with an aberrant cortical phenotype, normal T cell phenotypes are observed. This indicates that cortex and medulla have independent generation kinetics in T cell maturation. The stromal cell composition in these abnormal lobes is not different from that in the normal lobe, but the size of the medulla tends to be smaller. Furthermore, the I-A expression on the cortical epithelial cells does not reveal the characteristic reticular staining pattern that is observed in the normal lobe, since the I-A determinants are not strictly confined to the epithelial cells. In addition, cortical lymphoid and stromal cells in these lobes are slightly H-2K+. These alterations in MHC expression in the cortex are discussed in relation to the observed T cell maturation arrest.  相似文献   

4.
Thymocytes that express high levels of homing receptors for peripheral lymph nodes can be detected with the monoclonal antibody MEL-14. We have shown that in adult mice these rare MEL-14hi thymocytes a) are cortical in location and typically constitute 1 to 3% of the total thymocyte population, b) may be a major source of thymus emigrants, and c) contain a high frequency of precursors of alloreactive cytotoxic T lymphocytes. In this study we have analyzed the phenotype of the MEL-14hi thymocyte subset. Most normal adult MEL-14hi thymocytes are midsize and express the mature phenotype typical of thymus emigrants, medullary thymocytes, and peripheral T cells: they are predominantly PNAlo, H-2K+, Thy-1+, Ly-1hi, and either Lyt-2-/L3T4+ or Lyt-2+/L3T4-. These findings argue strongly for the presence of rare MEL-14hi immunocompetent cortical thymocytes that, aside from their homing receptor expression, are phenotypically indistinguishable from medullary thymocytes. However, a minority (20 to 30%) of MEL-14hi thymocytes are large and phenotypically nonmature: they express intermediate to high levels of PNA binding sites, and are H-2K- to H-2Klo, Thy-1hi, Ly-1+, and either Lyt-2+/L3T4+ or Lyt-2-/L3T4-. Through a technique that selectively labels outer cortical cells, phenotypically nonmature MEL-14hi thymocytes have been shown to be concentrated in the subcapsular blast region of the outer cortex. Although we have no direct evidence of a precursor-product relationship, we consider it likely that the phenotypically nonmature outer cortical MEL-14hi lymphoblasts give rise to phenotypically mature MEL-14hi cells located deeper in the cortex. These results are consistent with our previous proposal that MEL-14hi thymocytes are a major source of thymus emigrants, and indicate that expression of high levels of MEL-14-defined homing receptors may be closely linked to the intrathymic selection process.  相似文献   

5.
When cell populations from the thymus were studied with FACS, it was found consistently that the brightly labeled Thy-1.2+ populations contained very few T colony-forming cells (CFC), while these latter cells were numerous in the cell populations showing lower Thy-1.2 antigen density. This was paralleled by findings after peanut agglutinin (PNA) separation that showed enrichment of CFC in the PNA-negative medullary population, and by sorting based on TL, T-200, and H-2 determinants or light scatter properties of the cells. By FACS sorting of Lyt-labeled thymic cells, it was also shown that CFC were predominantly present in cell populations that were brightly Lyt-1+, and exclusively in populations that were Lyt-2+ and Lyt-3+. After FACS sorting of lymph node cells, no major differences in colony formation were found between dully- and brightly-labeled Thy-1.2+ or Lyt-1+ populations, or between lymphoid cells showing different light scatter characteristics. In addition, it was shown that CFC--like thymic CFC--were of the Lyt-1,2,3+ phenotype. It is concluded that the CFC may be present in several differentiation steps of Lyt-1,2,3+ cell lines, and that the frequency of these cells increases from the thymic cortex via the medulla and to peripheral lymphoid tissues.  相似文献   

6.
Young adult CBA/H mice were exposed to graded doses of whole-body irradiation with either fast fission neutrons or 300 kVp X rays at center-line dose rates of 0.1 and 0.3 Gy/min, respectively. Dose-response curves were determined at Days 2 and 5 after irradiation for the total thymic cell survival and for the survival of thymocytes defined by monoclonal anti-Thy-1, -Lyt-1, -Lyt-2, and -T-200 antibodies as measured by flow cytofluorometric analysis. Cell dose-response curves of thymocytes show, 2 days after irradiation, a two-component curve with a radiosensitive part and a part refractory to irradiation. The radiosensitive part of the dose survival curve of the Lyt-2+ cells, i.e., mainly cortical cells, has a D0 value of about 0.26 and 0.60 Gy for neutrons and X rays, respectively, whereas that of the other cell types has corresponding D0 values of about 0.30 and 0.70 Gy. The radiorefractory part of the dose-response curves cannot be detected beyond 5 days after irradiation. At that time, the Lyt-2+ cells are again most radiosensitive with a D0 value of 0.37 and 0.99 Gy for neutrons and X rays, respectively. The other measured cell types have corresponding D0 values of about 0.47 Gy. The fission neutron RBE values for the reduction in the thymocyte populations defined by either monoclonal anti-Thy-1, -Lyt-1, -Lyt-2, or -T-200 antibodies to 1.0% vary from 2.6 to 2.8. Furthermore, the estimated D0 values of the Thy-1-, T-200- intrathymic precursor cells which repopulate the thymus during the bone marrow independent phase of the biphasic thymus regeneration after whole-body irradiation are 0.64-0.79 Gy for fission neutrons and 1.32-1.55 Gy for X rays.  相似文献   

7.
The effect of irradiation on the supportive role of the thymic stroma in T cell differentiation was investigated in a transplantation model using athymic nude mice and transplanted irradiated thymuses. In this model, neonatal CBA/H mice were exposed to graded doses of whole-body irradiation with fast fission neutrons of 1 MeV mean energy or 300 kVp X rays. The doses used varied from 2.75 up to 6.88 Gy fission neutrons and from 6.00 up to 15.00 Gy X rays at center-line dose rates of 0.10 and 0.30 Gy/min, respectively. Subsequently, the thymus was excised and a thymus lobe was transplanted under the kidney capsule of H-2 compatible nude mice. One and two months after transplantation, the T cell composition of the thymic transplant was investigated using immunohistology with monoclonal antibodies directed to the cell surface differentiation antigens Thy-1, Lyt-1, Lyt-2, MT-4, and T-200. Furthermore, the stromal cell composition of the thymic transplant was investigated with monoclonal antibodies directed to MHC antigens and with monoclonal antibodies defining different subsets of thymic stromal cells. To investigate the reconstitution capacity of the thymic transplant, the peripheral T cell number was measured using flow cytofluorometric analysis of nude spleen cells with the monoclonal antibodies anti-Thy-1, anti-Lyt-2, and anti-MT-4. The results of this investigation show that a neonatal thymus grafted in a nude mouse has a similar stromal and T cell composition as that of a normal thymus in situ. In addition, grafting of such a thymus results in a significant increase of the peripheral T cell number. Irradiation of the graft prior to transplantation has no effects on the stromal and T cell composition but the graft size decreases. This reduction of size shows a linear dose-response curve after neutron irradiation. The X-ray curve is linear for doses in excess of 6.00 Gy. The RBE for fission neutrons for the reduction of the relative thymic graft size to 10% was equal to 2.1. Furthermore, the peripheral T cell number decreases with increasing doses of irradiation given to the graft prior to transplantation. The present data indicate that the regenerative potential of thymic stromal cells is radiosensitive and is characterized by D0 values equal to 2.45 and 3.68 Gy for neutrons and X rays, respectively. In contrast, the ability of the thymic stromal cells to support T cell maturation is highly radioresistant.  相似文献   

8.
Immunohistochemical studies were made on the regeneration of T cells of host- and donor-type in the thymus and spleen of radiation bone marrow chimeras by using B10- and B10.BR-Thy-1 congenic mice. Both the thymic cortex and the medulla were first repopulated with thymocytes of irradiated host origin, restoring the normal histologic appearance by days 11 to 14, regardless of the H-2 compatibility between the donor and the host. In Thy-1 congenic chimeras, thymocytes of donor bone marrow origin, less than 100 cells in one thymic lobe, were first recognized at day 7, when the thymus involuted to the smallest size after the irradiation. The thymocytes of donor-type then proliferated exponentially, showing a slightly faster rate when higher doses of bone marrow cells were used for reconstitution, reaching a level of 100 million by day 17 and completely replacing the cortical thymocytes of host origin by day 21. The replacement of cortical thymocytes started from the subcapsular layer in a sporadic manner. The replacement of medullary thymocytes from host- to donor-type occurred gradually between days 21 and 35, after the replacement in the cortex was completed. In the spleen, about 1 million survived cells were recovered at day 3 after the irradiation, and approximately 60% of them were shown to be host-type T cells that were observed in the white pulp areas. The host-type T cells in the spleen increased gradually after day 10, due to the influx of host-type T cells from the regenerating thymus. Thus a pronounced increase of T cells of host-type was immunohistochemically observed in the splenic white pulp between days 21 and 28, when thymocytes of host-type were present mainly in the thymic medulla. These host-type T cells were shown to persist in the spleen for a long time, as long as 420 days after the treatment. Phenotypically, they were predominantly Lyt-1+2+ when examined at day 28, but 5 mo later, they were about 50% Lyt-1+2+ and 50% Lyt-1+2-. Donor-type T cells in the spleen began to appear at about day 14 in chimeras that were transplanted with a larger dose of bone marrow cells, whereas this was slightly delayed in those grafted with a smaller dose of bone marrow cells, starting at about day 28.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
The stromal cells of the thymus of sham-irradiated and sublethal fission neutron-irradiated CBA/H mice were analyzed with immunohistology, using monoclonal antibodies directed to I-A and H-2K antigens as well as specific determinants for cortical and medullary stromal elements. In the control thymuses, I-A expression in the thymus shows a reticular staining pattern in the cortex and a confluent staining pattern in the medulla. In contrast, H-2K expression is mainly confluently located in the medulla. Whole body irradiation with 2.5 Gy fission neutrons reduces within 24 hr the cortex to a rim of vacuolized "nurse cell-like" epithelial cells, largely depleted of lymphoid cells. The localization of I-A antigens changes in the cortex and I-A determinants are no longer associated with or localized on epithelial reticular cells. Medullary stromal cells, however, are more or less unaffected. A high rate of phagocytosis is observed during the first 3 days after irradiation. About 5 days after irradiation, the thymus becomes highly vascularized and lymphoid cells repopulate the cortex. The repopulation of the thymic cortex coincides with the appearance of a bright H-2K expression in the cortex which is associated with both stromal cells as well as lymphoid blasts. During the regeneration of the thymus, the thymic stromal architecture is restored before the expression of cell surface-associated reticular MHC staining patterns. The observed sequential changes in the thymic microenvironment are related to the lymphoid repopulation of the thymus.  相似文献   

10.
11.
By using monoclonal antibodies to Thy-1, Lyt-2, and Qa-5 differentiation antigens, we demonstrated a heterogeneity of cytotoxic cells developed in allogeneic mixed lymphocyte responses that lyse tumor cells syngeneic with the responder cells. There are minimally two Thy-1+ populations, one of which is Lyt-2+ and the other Lyt-2-. There is probably also a Thy-1- population. Most of the Lyt-2- tumor killer cells are Qa-5+, and most of the Lyt-2+ tumor killer cells are Qa-5-.  相似文献   

12.
Carbohydrate differentiation antigens (CT antigens) which previously had been shown to be associated with cytotoxic T cells were found at high levels on intestinal intraepithelial lymphocytes (IEL) and on the intestinal epithelium. Histological examination of intestinal sections demonstrated that the CT1 MAb defined epitopes on IEL and on epithelial cells located in the base of the villi crypts. The CT2 MAb reacted with IEL but also bound to the majority of cells in the intestinal epithelium. When isolated intestinal cell populations were analyzed by flow cytometry, two major size classes of cells were evident. The smaller cells, corresponding to lymphocytes, were primarily Lyt-2+, with a high proportion expressing CT antigens. Another differentiation antigen defined by the MAb J11d was absent from IEL, indicating that those IEL of T cell origin are likely to be mature because thymocytes, but not peripheral T cells, express the J11d antigen. Two-color fluorescence analysis indicated that the CT determinants were present on the Thy-1+, Lyt-2+, and the Thy-1-, Lyt-2+ subsets of IEL. However, the small percentage of L3T4+ IEL were CT-, further supporting our previous demonstration of a correlation between CT expression and Lyt-2 expression. Interesting phenotypic characteristics of IEL other than CT antigen expression were also detected. IEL did not express the MEL-14 lymphocyte homing receptor, and the cell surface level of LFA-1 was significantly lower than that of other peripheral lymphocytes. It was also shown that a small percentage of IEL express a T cell receptor allotypic marker, indicating that at least some of the cells are mature in terms of T cell receptor gene rearrangements. The large intestinal cells, although CT+, were not hematopoietic in origin because they were T200- and were shown by using chimeric mice not to be bone marrow-derived. In contrast to previously reported results, the cytotoxic activity of IEL was negligible with detectable lysis against NK-sensitive cells and other tumor cells, being observed in only one of seven experiments. Thus, the expression of the CT determinants was not indicative of cytotoxic ability, as previously suggested. The presence of specific carbohydrate residues on the cell surface of a subset of lymphocytes in an anatomically distinct immune compartment suggests that a unique differentiation pathway is followed by these cells.  相似文献   

13.
A proportion of Pgp-1+ cells in the thymus have been shown to have progenitor activity. In adult AKR/Cum mice the total Pgp-1+ population in the thymus differs from that of the bulk of thymocytes and is antigenically heterogeneous when examined by flow cytometry. Pgp-1+ thymocytes are enriched for several minor cell populations compared to total thymocytes: B2A2-, interleukin-2-receptor+ (IL-2R+), and Lyt-2-, L3T4-. However, these subsets are still a minor proportion of the Pgp-1+ cells, the majority being Lyt-2+ and/or L3T4+ and B2A2+. Pgp-1+ thymocytes also differ from the bulk of thymocytes in having lower amounts of Thy-1 and in showing a higher proportion of single positive (Lyt-2+, L3T4- or Lyt-2-, L3T4+) cells. Populations of adult thymocytes that are enriched in progenitor cells can be isolated by cytotoxic depletion using either anti-Thy-1 antibody (Thy-1 depletion) or anti-Lyt-2 and anti-L3T4 antibody (Lyt-2, L3T4 depletion). Pgp-1+ cells in progenitor cell-enriched populations are also phenotypically heterogeneous. Pgp-1+ cells in both populations may be IL-2R+ or IL-2R- and B2A2+ or B2A2-. The population of Pgp-1+ cells in progenitor cell-enriched populations in the adult differs from that of the fetus at 14 days of gestation in that in the 14-day fetus, most Pgp-1+ cells are IL-2R+. By Day 15 of gestation, distinct populations of Pgp-1+, IL-2R-; Pgp-1+, IL-2R+; and Pgp-1-, IL-2R+ cells are observed. In the 15-day fetus, as in the adult, many Pgp-1+ thymocytes express low to moderate levels of Thy-1. The total percentage of Pgp-1+ cells in the thymus varies among different mouse strains, ranging from 4 to 35% in the thymus of young adult mice. Pgp 1.1 strains contain more detectably Pgp-1+ thymocytes than Pgp 1.2 strains; however, there is variability in the proportion of Pgp-1+ cells, even among Pgp 1.2 strains. In contrast to AKR/Cum mice, the Pgp-1+ thymocyte population in BALB/c mice, which contain a high proportion of Pgp-1+ thymocytes, closely resembles the total thymocyte population.  相似文献   

14.
The monoclonal antibody MEL-14 recognizes a lymphocyte surface structure (the MEL-14 antigen) involved in migration of lymphocytes into lymph nodes. Its use as a maturation marker for T cells within the thymus led to the view that a small population (1 to 2%) of MEL-14high thymocytes located in the inner cortex represented fully mature cells about to exit as thymus emigrants. The medulla, in this view, contained only the phenotypically mature but MEL-14low cells, and was not the source of thymus emigrants. The data we present, derived from flow-cytometric analysis of suspension-stained CBA mouse thymocytes, is not in accordance with this view. A high proportion (approximately 20%) of thymocytes express relatively high levels of MEL-14; these include some immature Ly-2- L3T4- and nonmature Ly-2+ L3T4+ thymocytes. Among the 12 to 14% thymocytes of mature phenotype (PNAlow or H-2Khigh or Ly-2+ L3T4- and Ly-2- L3T4+), more than half express relatively high levels of MEL-14. The mature phenotype and MEL-14moderate-to-high cells (8% of thymocytes) appear too numerous to account for the few percent MEL-14high cells seen in the cortex in frozen sections, and the mature phenotype but MEL-14low cells (2 to 3% of thymocytes) too few to fill the medulla; however, both together account numerically for the medullary population. By section staining, the medulla contains Ly-2- L3T4+ and Ly-2+ L3T4- cells in a characteristic 2:1 ratio; by suspension staining this ratio agrees with that of the total mature phenotype population, but not with that of the MEL-14low subset previously claimed to represent medullary cells. Another paradox is apparent when suspension staining and section staining are compared: suspension staining reveals that many mature phenotype cells coexpress high levels of both MEL-14 and H-2K, yet section staining reveals H-2Khigh cells in the medulla but not in the inner cortex, and reveals scattered MEL-14high cells throughout the cortex but not in the medulla. We suggest that section staining for MEL-14 fails to locate the mature cells that stain for MEL-14 in suspension; the few MEL-14high cells localized in both the inner and the outer cortex on section staining are predominantly immature Ly-2- L3T4- and nonmature Ly-2+ L3T4+ thymocytes; the majority of thymocytes of mature phenotype, whether MEL-14high or MEL-14low on suspension staining, are of medullary location; the medulla is the most likely immediate source of thymic emigrants.  相似文献   

15.
The dynamics of lymphoid cell subpopulations in bronchoalveolar lavage fluid (BALF) and the systemic lymphoid organs of mice after intravenous injection of B16 melanoma cells were examined with a fluorescence-activated cell sorter. The lymphoid cell subpopulations of BALF and mediastinal lymph nodes showed significant changes in numbers and proportions, while those of other lymphoid organs including inguinal lymph nodes, thymus and spleen, showed little change. In week 1, the cells with a Thy-1.2+, Lyt-1+, L3T4-, Lyt-2- phenotype and asialo-Gm1+ cells in BALF significantly increased and L3T4+ cells slightly increased in number. By week 3, the numbers of Lyt-2+ cells in BALF markedly increased in number (by about 90 times) compared with controls. The number of Thy-1.2+ cells in mediastinal lymph nodes also increased significantly by week 3. Mice that had been pretreated with an immunosuppressive dose of cyclophosphamide were also inoculated intravenously with B16 melanoma cells. In these mice, a significantly increased number of pleural tumors developed and the number of Thy-1.2+ cells in BALF was markedly reduced from week 1 to 3. The results indicate that L3T4 and Lyt-2 double negative T-cells and natural killer (NK) cells may be generated and/or mobilized to the lung in an early phase of experimental metastasis of B16 melanoma cells and that at a later stage, when multiple metastases develop, T-cells with a Lyt-2+ phenotype markedly increase, probably as an expression of a host reaction against proliferating metastatic tumor cells.  相似文献   

16.
Resistant CBA mice infected with Leishmania tropica promastigotes develop concomitant and convalescent immunity against reinfection. This can be adoptively transferred by splenic and lymph node T cells with a threshold dosage of 1 to 2.5 x 10(7). The effector cells are of Thy-1+, Lyt-1+2- phenotype. The same immune cell population also adoptively transfers specific DTH to L. tropica, which is restricted by the major histocompatibility complex. On the other hand, highly susceptible BALB/c mice infected with L. tropica develop antigen-specific suppressor T (Ts) cells (previously shown to inhibit the induction and expression of DTH), which are capable, on transference, of reversing the healing of lesions induced by prior sublethal irradiation of BALB/c mice. As few as 10(6) of these T cells are effective in abrogating the potent prophylactic effect of 550 rad. The Ts cells are of Thy-1+, Lyt-1+2-, and I-J- phenotype. Sublethally irradiated and infected BALB/c mice produce antibody responses quantitatively and isotypically similar during the critical first 40 days after infection whether or not they are injected with 10(7) Ts cells (nonhealing vs healing). Thus, impairment of DTH and curative immune responses in BALB/c mice cannot be attributed to a helper function of these Thy-1+, Lyt-1+2- cells for the formation of suppressive antibody.  相似文献   

17.
The inability of established antigen-specific murine T lymphocyte clones to recirculate well in vivo has been attributed to loss of the surface glycoprotein gp90MEL-14, which is important for specific adherence to post-capillary high endothelial venules in peripheral lymph nodes (LN). Defective recirculation of clones may contribute to inefficient adoptive immunotherapy when compared with fresh immune spleen or LN populations. To optimize models of adoptive immunotherapy, we sought to improve recirculation of Thy-1.2+, L3T4+ clones by inducing reexpression of MEL-14 antigen (gp90MEL-14). Clones were analyzed after treatment with differentiating agents, incubation in the presence or absence of recombinant interleukin 2 (rIL 2), coincubation in vitro with nonirradiated Thy-1.1 LN or thymus cells, or adoptive transfer into Thy-1.1 hosts. We were unable to demonstrate induction of gp90MEL-14 in any case. However, although clones remained MEL-14 negative, they were able to disseminate widely after subcutaneous adoptive transfer in the presence of clone-specific antigen and rIL 2 into Thy-1.1 mice pretreated with cyclophosphamide. Withdrawal of exogenous rIL 2 was associated with rapid disappearance of clones from all sites. We conclude that murine T cell clones undergo a step in terminal differentiation that precludes surface expression of gp90MEL-14 and that these clones would be unlikely to provide a source of long-lived recirculating memory T lymphocytes. However, under appropriate circumstances it is possible for antigen-specific clones to disseminate widely among host LN and mediate short-term immune responses.  相似文献   

18.
The phenotypic and functional properties of cells in the C57BL/6 mouse thymus regenerating after a single dose of 100 mg/kg hydrocortisone acetate (H/C) are described. Functionally, the frequency of anti-H-2d cytolytic T lymphocyte precursors (CTL-P) in thymuses from individual mice was determined by limit dilution analysis of mixed leukocyte microcultures. The initial increase in CTL-P frequency, seen 48 hr post-H/C, was followed at 6 to 8 days by a phase of rapid decrease. The CTL-P frequency returned to a normal level by 28 days post-H/C. Analysis of the results from individual mice suggested that changes in total thymic CTL-P content were independent of the kinetics of thymus regeneration. Phenotypically, whereas the thymus 48 hr after H/C was considerably depleted of Lyt-2+ cells, there followed a rapid increase in the proportion of such cells to normal levels by 14 days post-H/C. In addition, as measured by FLS, a subpopulation of larger, predominantly Lyt-2+ cells was found during the phase of rapid thymic regeneration. With the use of a monoclonal anti-Thy-1.2 antibody, the weakly Thy-1-staining subpopulation of cells was absent from the thymus at 14 days post-H/C. These changes in the phenotypic properties of the post-H/C regenerating thymus were correlated with changes in their functional properties.  相似文献   

19.
In an attempt to solve the conflict concerning the correlation between the Lyt-2 phenotype of T cells subsets and the type of the MHC antigens involved in the recognition by T cells, class 2 (I region) antigen-specific CTL were studied for their Lyt phenotypes and the sensitivity to the blocking effects of anti-Lyt-2,3 antibodies. To avoid contamination by CTL to class 1 antigens such as Qa antigens, A.TH anti-A. TL attackers and A.TH anti-A attackers were tested on LPS blasts of the A strain and the A.TL stain, respectively. By using these combinations, it was shown that the majority of I region-specific killers were Thy-1+, Lyt-1+23+. Specific target cell lysis by these cells were, however, found to be far less sensitive to the blocking effects of various monoclonal antibodies to the Lyt-2,3 antigens than conventional class 1-specific CTL. This conclusion was drawn by directly comparing the sensitivity of the I region-specific and K region-specific killing by identical numbers of the same attacker cells (A.TH anti-A). No significant difference was seen between the primary and the hyperimmune CTL. Lyt-2-, Thy-1+ killer cells with I region specificity could be induced when Lyt-2-depleted A.TH responder cells were stimulated in vitro. Such Lyt-2- killer cells were not induced to the H-2K alloantigen.  相似文献   

20.
Longitudinal and cross-sectional analyses of Lyt-2+ and Thy-1+ cell populations in the peripheral blood of aging male CBA and C57BL mice revealed that the relative number of Thy-1+, Lyt-2+ cells in the peripheral blood of both mouse strains remained relatively constant during the entire lifespan. The proportion of Thy-1+, Lyt-2- cells decreases with age, which indicates that major changes in the T-cell compartment with age must be attributed to the Lyt-2- helper compartment. For individual CBA mice, a direct relation between the relative number of Thy-1+, Lyt-2- cells at a certain age and the time remaining to live is demonstrated. The changes in the proportion of Lyt-2+ of total Thy-1+ cells in CBA mice show a regular pattern of slow increase with age followed by a rapid increase phase preceding the death of the animal. In C57BL mice, the development of the proportion of Lyt-2+ T cells with age showed various patterns. Rapid changes both positive and negative in these mice seem to be indicative of approaching death. The predictive value of Lyt-2+/Thy-1+ ratios at a given age for the remaining lifespan of individual mice is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号