首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of diacylglycerol (DG) as a source of arachidonic acid during gonadotropin-releasing hormone (GnRH) stimulation of gonadotropin secretion was analyzed in primary cultures of rat anterior pituitary cells. An inhibitor of DG lipase (RHC 80267, RHC) caused dose-dependent blockade of GnRH-stimulated luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion. The DG lipase inhibitor did not alter gonadotropin responses to arachidonic acid, and addition of arachidonic acid reversed its inhibition of GnRH-stimulated LH and FSH release. In [3H]arachidonic acid-prelabeled cells, incubation with RHC increased the accumulation of [3H]DG. These results suggest that DG lipase participates in GnRH action and that arachidonic acid mobilization from DG is involved in the mechanism of gonadotropin release. Gonadotropin responses to tetradecanoyl phorbol acetate and dioctanoyl glycerol were not altered by RHC, and the addition of these activators of protein kinase C (Ca2+- and phospholipid-dependent enzyme) did not prevent the inhibition of GnRH-induced gonadotropin release by RHC. Activation of phospholipase A2 by melittin increased LH and FSH secretion, whereas blockade of this enzyme by quinacrine reduced GnRH-stimulated hormone release. However, RHC did not diminish the gonadotropin response to melittin. The inhibitory actions of RHC and quinacrine were additive and were reversed by concomitant treatment with arachidonic acid. Ionomycin also increased LH and FSH release, and the gonadotropin responses to the ionophore were unaltered by RHC but were reduced by quinacrine. Incubation of cells in Ca2+-depleted (+/- [ethylenebis(oxyethylenenitrilo)]tetraacetic acid) medium reduced but did not abolish the LH and FSH releasing activity of GnRH. Treatment with RHC also reduced the gonadotropin responses to GnRH under Ca2+-depleted conditions. These observations indicate that RHC inhibition of GnRH action is not due to nonspecific actions on Ca2+ entry, protein kinase C activation and actions, nor phospholipase A2 enzyme activity. The results of this study provide further evidence for an extracellular Ca2+-independent mechanism of GnRH action, and suggest that GnRH causes mobilization of arachidonic acid by two distinct lipases, namely, phospholipase A2 and DG lipase, during stimulation of gonadotropin secretion.  相似文献   

2.
The demonstration that activators of the Ca2+-activated, phospholipid-dependent protein kinase (protein kinase C), such as phorbol esters and diacylglycerols, can provoke luteinizing hormone (LH) release from pituitary gonadotropes, suggests a possible role for protein kinase C in stimulus-release coupling. We now report that administration of phorbol myristate acetate (PMA) to pituitary cell cultures causes a sustained reduction in Triton X-100-extracted protein kinase C activity. Further, phorbol ester- and diacylglycerol-stimulated LH release, as well as inhibition by PMA of gonadotropin-releasing hormone (GnRH)-stimulated inositol phosphate production, were reduced by pretreatment with PMA. The effects of phorbol ester pretreatment on PMA-stimulated LH release and protein kinase C activity were dose-dependent, sustained (greater than or equal to 24 h) and specific (no measurable effect with 4 alpha-phorbol didecanoate). The effect on PMA-stimulated LH release was apparently Ca2+-independent. In pituitary cell cultures with reduced protein kinase C activity, the gonadotropes have reduced responsiveness to PMA but release a similar proportion of cellular LH in response to Ca2+-mobilizing secretagogues (GnRH and A23187) as do control cells. The normal responsiveness to GnRH of cells with reduced responsiveness to protein kinase C activators calls into question the requirement for this enzyme for GnRH-stimulated LH release.  相似文献   

3.
The formation and role of arachidonic acid (AA) and its metabolites during gonadotropin releasing hormone- (GnRH-) induced gonadotropin secretion were investigated in primary cultures of rat pituitary cells. Prelabeled cells ([3H]AA) responded to GnRH challenge with increased formation (about 2-fold) of the leukotrienes LTC4, LTD4, and LTE4 as well as 5- and 15-eicosatetraenoic acids (5- and 15-HETE) as identified by HPLC. Formation of leukotrienes and 15-HETE was further verified by specific radioimmunoassays. No significant increase in the formation of 12-HETE or of the cyclooxygenase products prostaglandin E (PGE) and thromboxane A2 by GnRH was noticed. Addition of physiological concentrations of LTC4 enhanced basal LH release, while subphysiological concentrations of LTC4 (10(-15)-10(-12) M) inhibited GnRH-induced LH release by about 35% (p less than 0.02). Using specific lipoxygenase inhibitors L-656,224 and MK 886, we found inhibition of GnRH-induced LH release by about 40% at concentrations known to specifically inhibit the 5-lipoxygenase pathway. The peptidoleukotriene receptor antagonist ICI 198,615 inhibited LTC4- and LTE4-induced LH release and surprisingly also the effect of GnRH on LH release by 40%. The data strongly suggest a role for AA and its lipoxygenase metabolites in the on/off reactions of GnRH upon LH release. The data also present a novel amplification cycle in which newly formed leukotrienes become first messengers and establish an autocrine/paracrine loop.  相似文献   

4.
Zymosan and phorbol ester induced in liver macrophages the release of arachidonic acid, prostaglandin E2, and superoxide; the calcium ionophore A 23187 elicited a release of arachidonic acid and prostaglandin E2 but not of superoxide, and exogenously added arachidonic acid led to the formation of prostaglandin E2 only. The zymosan- and phorbol-ester-induced release of arachidonic acid, prostaglandin E2, and superoxide was dose-dependently inhibited by staurosporine and K252a, two inhibitors of protein kinase C, and by pretreatment of the cells with phorbol ester which desensitized protein kinase C. The release of arachidonic acid or prostaglandin E2 following the addition of A 23187 or arachidonic acid was not affected by these treatments. Zymosan and phorbol ester but not A 23187 or arachidonic acid induced a translocation of protein kinase C from the cytosol to membranes in intact cells. These results demonstrate an involvement of protein kinase C in the zymosan- and phorbol-ester-induced release of arachidonic acid, prostaglandin E2, and superoxide; the release of arachidonic acid and prostaglandin E2 elicited by A 23187 and the formation of prostaglandin E2 from exogenously added arachidonic acid, however, is independent of an activation of protein kinase C.  相似文献   

5.
Abstract: The effects of arachidonic acid and phorbol esters in the Ca2+-dependent release of glutamate evoked by 4-aminopyridine (4-AP) in rat cerebrocortical synaptosomes were studied. In the absence of arachidonic acid, high concentrations (500 n M ) of 4β-phorbol dibutyrate (4β-PDBu) were required to enhance the release of glutamate. However, in the presence of arachidonic acid, low concentrations of 4β-PDBu (1–50 n M ) were effective in potentiating glutamate exocytosis. This potentiation of glutamate release by phorbol esters was not observed with the methyl ester of arachidonic acid, which does not activate protein kinase C. Moreover, pretreatment of synaptosomes with the protein kinase inhibitor staurosporine also prevented the stimulatory effect by arachidonic acid and phorbol esters. These results suggest that the activation of protein kinase C by both arachidonic acid and phorbol esters may play a role in the potentiation of glutamate exocytosis.  相似文献   

6.
The feedback regulatory control mechanism exerted by activated Ca2+/phospholipid-dependent protein C kinase upon gonadotropin releasing hormone (GnRH) binding, stimulation of phosphoinositide turnover and gonadotropin secretion was investigated in cultured pituitary cells. Addition of the tumor promoter phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), at concentrations which activate pituitary protein C kinase, to cultured pituitary cells resulted in up-regulation of GnRH receptors (155% at 4 h). The stimulatory effect of GnRH on [3H]inositol phosphates (Ins-P) production in myo-[2-3H]inositol prelabeled pituitary cells was not inhibited by prior treatment of the cells with TPA (10(-9)-10(-7) M). Higher concentrations of TPA (10(-6)-10(-5) M) inhibited the effect of GnRH on [3H]Ins-P production. Increasing concentrations of TPA or the permeable analog of diacylglycerol 1-oleoyl-2-acetylglycerol (OAG) stimulated luteinizing hormone (LH) release from cultured pituitary cells with ED50 values of 5 x 10(-9) M and 10 micrograms/ml, respectively. No consistent inhibition or additivity of LH release was observed when increasing doses of TPA or OAG were added with a submaximal dose of GnRH. These results suggest that protein C kinase might mediate the known homologous up-regulation of GnRH receptors during the reproductive cycle. Protein C kinase is positively involved in mediating the process of gonadotropin secretion. Unlike many other systems, activation of protein C kinase in pituitary gonadotrophs is not involved in negative feed-back regulation of stimulus-secretion-coupling mechanisms in GnRH-stimulated gonadotrophs.  相似文献   

7.
The phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), a potent activator of Ca(2+)- and phospholipid-dependent protein kinase (C kinase), stimulates luteinizing hormone (LH) release from rat pituitary cells. The actions of TPA upon LH release were compared with those of the GnRH superagonist [D-Ala6] des-Gly10-GnRH N-ethylamide (GnRHa) in cultured pituitary cells. LH release was stimulated by 0.1 nM TPA and the maximum response at 10 nM TPA was 50% of the LH response to GnRHa. The ED50 values for TPA and GnRHa were 1.2 and 0.037 nM, respectively, and the maximum stimulatory effects of TPA and GnRHa on LH release were not additive. GnRHa-stimulated LH release was decreased by calmodulin (CaM) antagonists including pimozide, trifluoperazine, W5 and W7, being most effectively reduced (by 70%) by 10 microM pimozide. In contrast to their inhibition of GnRH action, these antagonists enhanced TPA-stimulated LH release, so that 10 microM pimozide and W7 doubled the maximum LH response. The potent GnRH antagonist [Ac-D-p-Cl-Phe1.2, D-Trp3, D-Lys6, D-Ala10]GnRH, which completely inhibited GnRHa-stimulated LH release with ID50 of 6.8 nM, also reduced maximum TPA-stimulated LH release by about 50%. These results suggest that both Ca2+/CaM and C kinase pathways are involved in the LH release mechanism, and indicate that C kinase plays a major role in the action of GnRH upon gonadotropin secretion. The synergism between CaM antagonists and TPA suggests that blockade of CaM-mediated processes leads to enhanced activation of the C kinase pathway, possibly by removal of an inhibitory influence. Furthermore, the partial inhibition of TPA-stimulated LH release by a GnRH antagonist suggests that the pathway(s), specifically connected with LH release in the diverse effects of C kinase, might be locked by the continuous receptor inactivation by antagonist and indicates the complicated pathways which diverge from the receptor and converge into specific cellular response.  相似文献   

8.
Exposure of osteoblast-like MC3T3-E1 cells to sodium arsenite (arsenite) increased the level of heat shock protein 27 (hsp27). The effect of arsenite was dose-dependent in the range of 50 to 200 μM. Arsenite also stimulated arachidonic acid release dose-dependently in the range between 50 and 200 μM in these cells. Both indomethacin, an inhibitor of cyclooxygenase, and nordihydroguaiaretic acid, a lipoxygenase inhibitor, significantly enhanced the arsenite-induced accumulation of hsp27. Melittin, an activator of phospholipase A2, significantly enhanced the arsenite-induced accumulation of hsp27. 12-O-Tetradecanoylphorbol-13-acetate (TPA), a protein kinase C (PKC)-activating phorbol ester, inhibited the arsenite-induced accumulation of hsp27. In contrast, 4α-phorbol 12, 13-didecanoate (4α-PDD), a PKC-nonactivating phorbol ester, had little effect. TPA suppressed the arsenite-induced arachidonic acid release, but 4α-PDD had little effect. Arsenite no longer affected cAMP accumulation, inositol phosphates formation nor the formation of choline and phosphocholine in these cells. These results suggest that the response to stress of hsp27 is coupled with the metabolic activity of the arachidonic acid cascade, and the activation of PKC inhibits the induction of hsp27 through the suppression of arachidonic acid release in osteoblast-like cells. © 1996 Wiley-Liss, Inc.  相似文献   

9.
We sought to investigate the mechanisms by which the calcium ionophore A23187 triggers arachidonic acid release in bovine pulmonary endothelial cells and to test the hypothesis that protein kinase C is involved in this process. Our results indicate that the mechanism by which A23187 increases phospholipase A2 activity and arachidonic acid release in bovine pulmonary arterial endothelial cells depends upon the concentration studied. At concentrations of 1 microM and 2.5 microM, A23187 increases phospholipase A2 activity and arachidonic acid release without stimulating protein kinase C. At concentrations of 5-12.5 microM, A23187 increases arachidonic acid release and phospholipase A2 activity in conjunction with a dose-dependent activation of membrane-bound protein kinase C. To test the hypothesis that these doses of A23187 increase phospholipase A2 activity by stimulating protein kinase C, we studied the effect of prior treatment with the protein kinase C inhibitor sphingosine. Sphingosine inhibits the increase in phospholipase A2 activity and arachidonic acid release caused by A23187 over the range 5-12.5 microM. To investigate further the potential role of protein kinase C, we studied the effects of the inactive phorbol ester 4 alpha-phorbol 12 beta-myristate 13 alpha-acetate (4 alpha-PMA) and an active phorbol ester 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (4 beta PMA). Neither 4 alpha-PMA nor 4 beta-PMA affected basal arachidonic acid release. 4 alpha-PMA also did not augment the effects of A23187. In contrast, 4 beta-PMA significantly augments the increase in phospholipase A2 activity and arachidonic acid release caused by lower doses of A23187. Under these conditions, sphingosine completely inhibits the stimulatory effects of 4 beta-PMA on protein kinase C translocation, phospholipase A2 and arachidonic acid release. Thus, at low doses (1 microM and 2.5 microM) A23187 increases phospholipase A2 activity and arachidonic acid release by a mechanism that does not involve protein kinase C. At these A23187 doses, activating membrane-bound protein kinase C with 4 beta-PMA causes a synergistic increase in phospholipase A2 activity and arachidonic acid release. At higher doses (5-12.5 microM), A23187 acts in large part by stimulating protein kinase C translocation. Overall, our results indicate that activating membrane-bound protein kinase C by itself is an insufficient stimulus to increase phospholipase A2 activity and arachidonic acid release in pulmonary endothelial cells, but activating protein kinase C can substantially augment the increase in phospholipase A2 activity and arachidonic acid caused by a small increase in intracellular calcium.  相似文献   

10.
The role of protein kinase C in luteinizing hormone (LH) release was analyzed in studies on the actions of phorbol esters and gonadotropin-releasing hormone (GnRH) in normal and protein kinase C (Ca2+/phospholipid-dependent enzyme)-depleted pituitary cell cultures. LH secretory responses of normal pituitary cells to GnRH were reduced but not abolished in Ca2+-deficient medium, consistent with the existence of extracellular Ca2+-dependent and -independent components of GnRH action. Both of these components could be elicited by treatment with 12-O-tetradecanoylphorbol 13-acetate (TPA). The LH secretory responses to TPA and GnRH were additive only at low doses and converged to a common maximum at high concentrations of the agonists in the presence or absence of extracellular Ca2+. The release of stored LH by GnRH and TPA was accompanied by secretion of newly synthesized LH from 2 to 5 h during stimulation by either of the agonists. LH synthesis was increased in a progressive and dose-dependent manner by GnRH and TPA, and the ratio between newly synthesized and released hormone was near 1:2. TPA caused rapid and complete translocation of cytosolic protein kinase C to the particulate fraction of pituitary cells, followed by a progressive decrease in total enzyme content to approximately 10% after 6 h. Partial recovery of the cytosolic enzyme (to 20%) occurred after washing and reincubation for 15 h. Such kinase C-depleted cells showed prominent, dose-dependent reductions in the actions of GnRH and TPA on LH release and synthesis in both normal and Ca2+-deficient media. These observations support the hypothesis that protein kinase C participates in LH biosynthesis and secretion in pituitary gonadotrophs and is involved in the actions of GnRH upon these processes.  相似文献   

11.
In rat PC12 pheochromocytoma cells, melittin, a phospholipase A2 activator, stimulated the release of arachidonic acid in a dose-dependent manner in the range between 0.1 and 1 microM. 12-O-Tetradecanoylphorbol-13-acetate (TPA), a protein kinase C-activating phorbol ester, inhibited the melittin-induced release of arachidonic acid dose-dependently in the range between 0.1 nM and 0.1 microM, whereas 4 alpha-phorbol 12, 13-didecanoate, which is inactive for protein kinase C, was ineffective in this capacity. Staurosporine, a protein kinase C inhibitor, recovered the inhibitory effect of TPA on the melittin-induced release of arachidonic acid. These results suggest that the activation of protein kinase C inhibits phospholipase A2 activity in PC12 pheochromocytoma cells.  相似文献   

12.
The effect of phorbol esters on calcium-activated, phospholipid-dependent kinase (protein kinase C) and luteinizing hormone (LH) secretion was examined in cultured rat anterior pituitary cells. The potent tumor promoter 12-O-tetra-decanoylphorbol-13-acetate (TPA) stimulated LH secretion and activated pituitary protein kinase C in the presence of calcium and phosphatidylserine. The enzyme activity present in cytosol and particulate fractions was eluted at about 0.05 M NaCl during DE52-cellulose chromatography. Preincubation of pituitary cells with TPA markedly decreased cytosolic protein kinase C activity and increased enzyme activity in the particulate fraction. The maximal TPA-induced change in enzyme activity, with a 76% decrease in cytosol and a 4.3-fold increase in the particulate fraction, occurred within 10 min. The dose-dependent changes in protein kinase C redistribution in TPA-treated cells were correlated with the stimulation of LH release by the phorbol ester. These results suggest that activation of protein kinase C by TPA is associated with intracellular redistribution of the enzyme and is related to the process of secretory granule release from gonadotrophs.  相似文献   

13.
The distribution of calcium-activated, phospholipid-dependent protein kinase (protein kinase C) between cytosol and membrane fractions was analyzed in cultured pituitary gonadotrophs during treatment with gonadotropin-releasing hormone (GnRH). In pituitary cells purified by centrifugal elutriation, the extent of protein kinase C redistribution during GnRH stimulation was correlated with the enrichment of gonadotrophs. GnRH-stimulated release of luteinizing hormone (LH) from gonadotroph-enriched cells was accompanied by a rapid and dose-dependent decrease in cytosolic protein kinase C and by a corresponding increase in protein kinase C activity in the particulate fraction. Retinal directly inhibited the activity of cytosolic protein kinase C and also attenuated the release of LH from GnRH-stimulated gonadotrophs. These findings, and the ability of GnRH to cause rapid translocation of cytosolic protein kinase C to a membrane-associated form, suggest that hormonal activation of protein kinase C is an intermediate step in the stimulation of pituitary LH secretion by GnRH.  相似文献   

14.
The relationship between catecholamine secretion and arachidonic acid release from digitonin-treated chromaffin cells was investigated. Digitonin renders permeable the plasma membranes of bovine adrenal chromaffin cells to Ca2+, ATP, and proteins. Digitonin-treated cells undergo exocytosis of catecholamine in response to micromolar Ca2+ in the medium. The addition of micromolar Ca2+ to digitonin-treated chromaffin cells that had been prelabeled with [3H]arachidonic acid caused a marked increase in the release of [3H]arachidonic acid. The time course of [3H]arachidonic acid release paralleled catecholamine secretion. Although [3H]arachidonic acid release and exocytosis were both activated by free Ca2+ in the micromolar range, the activation of [3H]arachidonic acid release occurred at Ca2+ concentrations slightly lower than those required to activate exocytosis. Pretreatment of the chromaffin cells with N-ethylmaleimide (NEM) or p-bromophenacyl bromide (BPB) resulted in dose-dependent inhibition of 10 microM Ca2+-stimulated [3H]arachidonic acid release and exocytosis. The IC50 of NEM for both [3H]arachidonic acid release and exocytosis was 40 microM. The IC50 of BPB for both events was 25 microM. High concentrations (5-20 mM) of Mg2+ caused inhibition of catecholamine secretion without altering [3H]arachidonic acid release. A phorbol ester that activates protein kinase C, 12-O-tetradecanoylphorbol-13-acetate (TPA), caused enhancement of both [3H]arachidonic acid release and exocytosis. The findings demonstrate that [3H]arachidonic acid release is stimulated during catecholamine secretion from digitonin-treated chromaffin cells and they are consistent with a role for phospholipase A2 in exocytosis from chromaffin cells. Furthermore the data suggest that protein kinase C can modulate both arachidonic acid release and exocytosis.  相似文献   

15.
Treatment of newborn murine epidermal cells with phospholipase C results in the generation of a chemiluminescence response similar to that previously described for phorbol ester tumor promoters. Based on inhibitor studies, the oxidant, believed to be superoxide anion, is most likely generated from lipoxygenase metabolism of arachidonic acid. The specificity of the response to phospholipase C from C. perfringens and not from B. cereus or phospholipase A2 suggests specific phospholipids are involved. The response observed appears to arise from the phospholipid-protein kinase c model for phorbol ester binding and activity.  相似文献   

16.
A series of studies was conducted to evaluate the ability of several second messengers/second messenger systems to stimulate LH secretion from dispersed chicken pituitary cells. [Gln8]-LHRH-(cLHRH) stimulated LH secretion in a dose-dependent fashion; this effect was potentiated in the presence of the phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine, and was mimicked by the cAMP analog, 8-bromo-cAMP. These data indicate that the production of cAMP in response to cLHRH can stimulate LH secretion, but do not necessarily provide evidence that such production is prerequisite. The tumor-promoting phorbol ester, phorbol 12-myristate 13-acetate (PMA), and diacylglycerol analogs, 1-oleoyl-2-acetylglycerol (OAG) and 1,2-dioctanoyl-sn-glycerol (DOG), also stimulated LH release; however, only PMA (and not cLHRH or DOG) promoted an accumulation of cAMP. The putative protein kinase C inhibitor, staurosporine, completely blocked LH release stimulated by PMA, but failed to block cLHRH-induced LH secretion. Such results indicate that protein kinase C activation can promote LH secretion, but also suggest that additional second messengers may exist to fully mediate the effects of cLHRH. Both the calcium ionophore, A23187, and the intracellular calcium mobilizing agent, thapsigargin, caused a dose-dependent increase in LH secretion; furthermore, thapsigargin augmented the stimulatory effects of PMA. These data are consistent with a role for calcium in the regulation of LH release, and indicate that the mobilization of intracellular calcium alone can affect such an action.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The tumor-promoting phorbol ester 4 beta-phorbol 12-myristate 13-acetate (PMA) inhibited thrombin-stimulated arachidonic acid (AA) release in rabbit and human platelets. PMA was effective over the same concentration range that activates protein kinase C in intact rabbit platelets: IC50 vs thrombin = 0.5 nM, greater than 90% inhibition at 10 nM. Suppression of thrombin-stimulated AA release was evident within 5 min of pretreatment with 1 nM PMA. A non-tumor-promoting phorbol ester, 4-O-methyl PMA, showed a very weak ability to inhibit AA release. Thrombin-stimulated serotonin secretion was progressively inhibited by PMA pretreatment in platelets, while PMA was a stimulus for secretion at higher concentrations. 1-(5-Isoquinolinylsulfonyl)-2-methyl-piperazine (H-7), a selective inhibitor of protein kinase C, blocked PMA-induced inhibition of AA release. Furthermore, H-7 enhanced the effect of thrombin on AA release. PMA pretreatment reduced the inhibitory effect of thrombin on forskolin-stimulated cAMP accumulation, but had no effect on nonstimulated cAMP metabolism in the presence of thrombin. PMA did not inhibit AA release caused by A23187 or melittin. In digitonin-permeabilized platelets, thrombin plus guanosine 5'-(3-O-thio)triphosphate (GTP gamma S)-stimulated AA release, but not GTP gamma S- and AIF4(-)-stimulated AA release, was abolished by PMA pretreatment. These results suggest that activation of protein kinase C may exert negative feedback on the receptor-mediated activation of phospholipase A2. A possible uncoupling of thrombin receptor to GTP-binding protein leading to activation of phospholipase A2 by PMA pretreatment is discussed.  相似文献   

18.
We compared the ability of estradiol and progesterone to modulate gonadotropin-releasing hormone (GnRH) and protein kinase C (PKC)-mediated luteinizing hormone (LH) secretion. Long-term (48 h) treatment of rat pituitary cells with 1 nM estradiol enhanced GnRH and phorbol ester (TPA)-stimulated LH secretion. This positive effect was facilitated by additional short-term (4 h) treatment with progesterone (100 nM). However, long-term progesterone treatment, which inhibited GnRH-stimulated LH secretion, did not influence TPA-stimulated gonadotropin release. These steroid actions occurred without an effect on the total amount of LH in the cell cultures (total LH = LH secreted + LH remaining in the cell) and neither the secretagogues nor the steroids altered total LH. Since GnRH or TPA-induced LH secretion depends on Ca2+ influx into the gonadotroph, we also analyzed the effects of estradiol and progesterone under physiological extracellular Ca2+ concentrations and in the absence of extracellular Ca2+. The steroids were able to influence GnRH or TPA-induced LH secretion under both conditions. However, when TPA was used as stimulus in Ca(2+)-deficient medium the relative changes induced by estradiol and progesterone were more pronounced, possibly indicating that the extracellular Ca(2+)-independent component of PKC-mediated LH secretion is more important for the regulation of the steroid effects. It is concluded that estradiol and progesterone might mediate their modulatory actions on GnRH-stimulated LH secretion via an influence on PKC. This effect can occur independently from de novo synthesis of LH and Ca2+ influx into gonadotrophs.  相似文献   

19.
In intact sheep gonadotropes, the protein kinase inhibitor, staurosporine, inhibited the stimulatory effect of phorbol 12-myristate 13-acetate (PMA) on luteinizing hormone (LH) secretion. Under the same conditions staurosporine enhanced gonadotrophin-releasing hormone (GnRH)-stimulated LH exocytosis without altering the EC50 of GnRH and without affecting basal LH exocytosis. These results suggest that PKC does not play a major role in mediating acute GnRH-stimulated LH exocytosis. Furthermore, they demonstrate that staurosporine enhances GnRH stimulus-secretion coupling. Both extracellular Ca2(+)-dependent and Ca2(+)-independent components of GnRH-stimulated LH secretion were enhanced by the drug. Staurosporine had no effect on GnRH stimulation of cAMP and inositol phosphate synthesis. In permeabilized cells staurosporine did not enhance Ca2(+)- and cAMP-stimulated LH exocytosis. Based on these results we hypothesize that staurosporine inhibits a protein kinase which is activated by GnRH and which negatively modulates GnRH stimulus-secretion coupling.  相似文献   

20.
The role of protein kinase C in luteinizing hormone (LH) release was analyzed in studies on the actions of gonadotropin releasing hormone (GnRH) and phorbol esters in cultured pituitary cells. During incubation in normal medium, GnRH stimulated LH release with an ED50 of 0.35 nM. Incubation in Ca2+-deficient medium (Ca2+-free, 10 microM) substantially decreased but did not abolish the LH responses to GnRH. The extracellular Ca2+-dependent component of GnRH action could be mimicked by high K+ concentrations, consistent with the presence of voltage-sensitive calcium channels (VSCC) in pituitary gonadotrophs. Ca2+ channel agonist (Bay K 8644) and antagonist (nifedipine) analogs, respectively, enhanced or partially inhibited LH responses to GnRH and also to K+, the latter confirming the participation of two types of VSCC (dihydropyridine-sensitive and -insensitive) in K+-induced secretion. Phorbol esters, including 12-O-tetradecanoylphorbol-13-acetate (TPA), 4 beta-phorbol-12,13-dibenzoate, and 4 beta-phorbol-12,13-diacetate, stimulated LH release with ED50s of 5, 10, and 1000 nM, respectively, and with about 70% of the efficacy of GnRH. Phorbol ester-stimulated LH secretion was decreased but not abolished by progressive reduction of [Ca2+]e in the incubation medium, and the residual LH response was identical with that elicited by GnRH in Ca2+-deficient medium. TPA increased [Ca2+]i to a peak after 20 s in normal medium but not in the absence of extracellular Ca2+, indicating that protein kinase C (Ca2+/phospholipid-dependent enzyme) promotes calcium entry but can also mediate secretory responses without changes in calcium influx and [Ca2+]i. The extracellular Ca2+-dependent action of TPA on LH release was blocked by Co2+. However, nifedipine did not alter TPA action on [Ca2+]i and LH release. These observations indicate that protein kinase C can participate in GnRH-induced LH release that is independent of Ca2+ entry, but also promotes the influx of extracellular Ca2+ through dihydropyridine-insensitive Ca2+-channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号