首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was designed to test the hypothesis that myosin heavy (MHC) and light chain (MLC) plasticity resulting from hindlimb suspension (HS) is an age-dependent process. By using an electrophoretic technique, the distribution of MHC and MLC isoforms was quantitatively evaluated in the soleus muscles from 3- or 12-wk-old rats after 1-3 wk of HS treatment was maintained. In normal 12- and 15-wk-old rats, the soleus muscles contained a predominance of MHCI ( approximately 94%) with small amounts of MHCIIa, but not MHCIId or MHCIIb. The suspended muscles of adult rats were characterized by the appearance of MHCIIb and MHCIId, the latter reaching approximately 6% after 3 wk of HS treatment. In contrast to changes in MHC, HS did not induce a transition in the MLC pattern in the soleus muscles from adult rats. Compared with adult rats, in juveniles HS had a much more pronounced effect on the shift toward faster MHC and MLC isoform expression. The soleus muscles of 6-wk-old rats after 3 wk of HS were composed of 37.0% MHCI, 19.1% MHCIIa, 23.7% MHCIId, and 20.2% MHCIIb. Changes in MLC isoforms consisted of an increase in MLC1f and MLC2f concomitant with a decrease in MLC2s. These results indicate the existence of a differential effect of HS on MHC and MLC transitions that appears to be age dependent. They also suggest that the suspended soleus muscles from young rats may acquire the intrinsic contractile properties that are intermediate between those in the normal soleus and typical fast-twitch skeletal muscles.  相似文献   

2.
Fiber type composition of four hindlimb muscles of adult Fisher 344 rats   总被引:8,自引:0,他引:8  
 The limb and trunk muscles of adult rats express four myosin heavy chain (MHC) isoforms, one slow (MHCI) and three fast (MHCIIa, MHCIId, and MHCIIb). The distribution of these isoforms correlates with fiber types delineated using myofibrillar actomyosin adenosine triphosphatase (mATPase) histochemistry. For example, type I fibers express MHCI and fiber types IIA, IID, and IIB express MHCIIa, MHCIId, and MHCIIb, respectively. Fibers containing only one MHC isoform have been termed ”pure” fibers. Recent evidence suggests that a population of ”hybrid” fibers exist in rat skeletal muscle which contain two MHC isoforms. The purpose of the present investigation was to document the entire range of histochemically defined ”pure” and ”hybrid” fiber types in untreated muscles of the young adult Fisher 344 rat hindlimb. The selected hindlimb muscles (soleus, tibialis anterior, extensor digitorum longus, and gastrocnemius muscles) were removed from 12 male rats and analyzed for muscle fiber type distribution, cross-sectional area, and MHC content. Care was taken to delineate eight fiber types (I, IC, IIC, IIA, IIAD, IID, IIDB, and IIB) using refined histochemical techniques. Hybrid fibers were found to make up a considerable portion of the muscles examined (a range of 8.8–17.8% of the total). The deep red portion of the gastrocnemius muscle contained the largest number of hybrid fibers, most of which were the fast types IIAD (8.5±2.8%) and IIDB (5.2±2.3%). In conclusion, hybrid fibers make up a considerable portion of normal rat limb musculature and are an important population that should not be ignored. Accepted: 15 October 1998  相似文献   

3.
This study investigated the effects of exercise training duration on the myosin heavy chain (MHC) isoform distribution in rat locomotor muscles. Female Sprague-Dawley rats (120 days old) were assigned to either a sedentary control group or to one of three endurance exercise training groups. Trained animals ran on a treadmill at approximately 75% maximal O2 uptake for 10 wk (4-5 days/wk) at one of three different exercise durations (30, 60, or 90 min/day). Training resulted in increases (P < 0.05) in citrate synthase activity in the soleus and extensor digitorum longus in both the 60 and 90 min/day duration groups and in the plantaris (Pla) in all three exercise groups. All durations of training resulted in a reduction (P < 0.05) in the percentage of MHCIIb and an increase (P < 0.05) in the percentage of MHCIIa in the Pla. The magnitude of change in the percentage of MHCIIb in the Pla increased as a function of the training duration. In the extensor digitorum longus, 90 min of daily exercise promoted a decrease (P < 0.05) in percentage of MHCIIb and increases (P < 0.05) in the percentages of MHCI, MHCIIa, and MHCIId/x. Finally, training durations >/=60 min resulted in an increase (P < 0.05) in the percentage of MHCI and a concomitant decrease (P < 0.05) in the percentage of MHCIIa in the soleus. These results demonstrate that increasing the training duration elevates the magnitude of the fast-to-slow shift in MHC phenotype in rat hindlimb muscles.  相似文献   

4.
To investigate the plasticityof slow and fast muscles undergoing slow-to-fast transition, rat soleus(SOL), gastrocnemius (GAS), and extensor digitorum longus (EDL) muscleswere exposed for 14 days to 1) unweighting by hindlimbsuspension (HU), or 2) treatment with the2-adrenergic agonist clenbuterol (CB), or 3)a combination of both (HU-CB). In general, HU elicited atrophy, CBinduced hypertrophy, and HU-CB partially counteracted the HU-induced atrophy. Analyses of myosin heavy (MHC) and light chain (MLC) isoformsrevealed HU- and CB-induced slow-to-fast transitions in SOL (increasesof MHCIIa with small amounts of MHCIId and MHCIIb) and theupregulation of the slow MHCIa isoform. The HU- and CB-induced changesin GAS consisted of increases in MHCIId and MHCIIb("fast-to-faster transitions"). Changes in the MLC composition ofSOL and GAS consisted of slow-to-fast transitions and mainlyencompassed an exchange of MLC1s with MLC1f. In addition, MLC3f waselevated whenever MHCIId and MHCIIb isoforms were increased. Becausethe EDL is predominantly composed of type IID and IIB fibers, HU, CB,and HU-CB had no significant effect on the MHC and MLC patterns.

  相似文献   

5.
This study investigates effects of chronic low frequency stimulation (CLFS) on myosin heavy (MHC) and light chain (MLC) expression in fast-twitch muscles in hypothyroid, euthyroid, and hyperthyroid rats. The changes at both the mRNA and protein level indicated antagonistic effects of thyroid hormone and CLFS: under euthyroid conditions, CLFS mainly elicited a MHCIIb----MCHIId----MHCIIa transition. Whereas CLFS did not induce the slow MHCI in the euthyroid state, this isoform was present in the hypothyroid state and was further enhanced with CLFS indicating the suppressive effect of thyroid hormone to be stronger than the inductive influence of CLFS. Hyperthyroidism alone suppressed the expression MHCIIa and enhanced a MHCIId to MHCIIb transition. This shift to the faster MHC isoforms was only partially counteracted by CLFS. Thus, it appeared that thyroid hormone had a graded suppressive effect on the expression of MHC isoforms in the order MHCIId less than MHCIIa less than MHCI. Elevated neuromuscular activity partially counteracted these hormone effects. Changes in MLC mRNAs were consistent with those in the MHC pattern, i.e. increases or decreases in MHCIIb led to corresponding changes in the expression of MLC3f. A similar relationship existed for the slow MHCI and the slow MLC isoforms.  相似文献   

6.
Electrophoretic analyses of muscle proteins in whole musclehomogenates and single muscle fiber segments were used to examine myosin heavy chain (MHC) and myosin light chain 2 (MLC2) isoform composition and fiber type populations in soleus muscles from spontaneously hypertensive rats (SHRs) and their age-matchednormotensive controls [Wistar-Kyoto (WKY) rats], at threestages in the development of high blood pressure (4 wk, 16 wk, and 24 wk of age). Demembranated (chemically skinned with 2% Triton X-100),single fiber preparations were used to determine the maximumCa2+-activated force percross-sectional area, calcium sensitivity, and degree of cooperativityof the contractile apparatus andCa2+-regulatory system withrespect to Ca2+. The results showthat, at all ages examined, 1) SHRsoleus contained a lower proportion of MHCI and MLC2 slow (MLC2s) and ahigher proportion of MHCIIa, MHCIId/x, and MLC2 fast (MLC2f )isoforms than the age-matched controls;2) random dissection of single fibers from SHR and WKY soleus produced four populations of fibers: type I (expressing MHCI), type IIA (expressing MHCIIa), hybrid typeI+IIA (coexpressing MHCI and MHCIIa), and hybrid type IIA+IID (coexpressing MHCIIa and MHCIId/x); and3) single fiber dissection from SHRsoleus yielded a lower proportion of type I fibers, a higher proportionof fast-twitch fibers (types IIA and IIA+IID), and a higher proportionof hybrid fibers (types I+IIA and IIA+IID) than the homologous musclesfrom the age-matched WKY rats. Because the presence of hybrid fibers isviewed as a marker of muscle transformation, these data suggest thatSHR soleus undergoes transformation well into adulthood. Our data showalso that, for a given fiber type, there are no significant differencesbetween SHR and WKY soleus muscles with respect to any of theCa2+-activation propertiesexamined. This finding indicates that the lower specific tensionsreported in the literature for SHR soleus muscles are not due tostrain- or hypertension-related differences in the function of thecontractile apparatus or regulatory system.  相似文献   

7.
Single human muscle fibers were analysed using a combination of histochemical and biochemical techniques. Routine myofibrillar adenosine triphosphatase (mATPase) histochemistry revealed a continuum of staining intensities between the fast fiber types IIA and IIB (type IIAB fibers) after preincubation at pH 4.6. Electrophoretic analysis of single, histochemically-identified fibers demonstrated a correlation between the staining intensity and the myosin heavy chain (MHC) composition. All fibers classified as type I contained exclusively MHCI and all type IIA fibers contained only MHCIIa. Type IIAB fibers displayed variable amounts of both MHCIIa and MHCIIb; the greater the staining intensity of these fibers after preincubation at pH 4.6, the greater the percentage of MHCIIb. Those fibers histochemically classified as type IIB contained either entirely MHCIIb or, in addition to MHCIIb, a small amount of MHCIIa. These data establish a correlation between the mATPase activity and MHC content in single human muscle fibers.  相似文献   

8.
Summary Single human muscle fibers were analysed using a combination of histochemical and biochemical techniques. Routine myofibrillar adenosine triphosphatase (mATPase) histochemistry revealed a continuum of staining intensities between the fast fiber types IIA and IIB (type IIAB fibers) after preincubation at pH 4.6. Electrophoretic analysis of single, histochemically-identified fibers demonstrated a correlation between the staining intensity and the myosin heavy chain (MHC) composition. All fibers classified as type I contained exclusively MHCI and all type IIA fibers contained only MHCIIa. Type IIAB fibers displayed variable amounts of both MHCIIa and MHCIIb; the greater the staining intensity of these fibers after preincubation at pH 4.6, the greater the percentage of MHCIIb. Those fibers histochemically classified as type IIB contained either entirely MHCIIb or, in addition to MHCIIb, a small amount of MHCIIa. These data establish a correlation between the mATPase activity and MHC content in single human muscle fibers.  相似文献   

9.
10.
Time-dependent changes in myosin heavy chain(MHC) isoform expression were investigated in rat soleus muscleunloaded by hindlimb suspension. Changes at the mRNA level weremeasured by RT-PCR and correlated with changes in the pattern of MHCprotein isoforms. Protein analyses of whole muscle revealed that MHCIdecreased after 7 days, when MHCIIa had increased, reaching a transient maximum by 15 days. Longer periods led to inductions and progressive increases of MHCIId(x) and MHCIIb. mRNA analyses of whole muscle showedthat MHCIId(x) displayed the steepest increase after 4 days andcontinued to rise until 28 days, the longest time period investigated.MHCIIb mRNA followed a similar time course, although at lower levels.MHCI mRNA, present at extremely low levels in control soleus, peakedafter 4 days, stayed elevated until 15 days, and then decayed.Immunohistochemistry of 15-day unloaded muscles revealed that MHCIwas present in muscle spindles but at low amounts also in extrafusalfibers. The slow-to-fast transitions thus seem to proceed in the orderMHCI  MHCIIa  MHCIId(x)  MHCIIb. Ourfindings indicate that MHCI is transiently upregulated in somefibers as an intermediate step during the transition from MHCI to MHCIIa.

  相似文献   

11.
The myosin heavy chain (MHC)-based fibre composition of adult rat adductor magnus (AM) and tibialis anterior (TA) muscles was investigated using single fibre analysis. Microelectrophoresis performed on single fibre fragments demonstrated a predominance of pure fast MHC-based fibre types (expressing only one fast MHC). Most of the fibres analysed from both the AM (72%) and TA (50%) were pure type IIB (expressing only MHCIIb). Pure type IID fibres (expressing only MHCIId) were also abundant in AM (20%) and TA (18%). In addition, hybrid fibres coexpressing MHCIIb and MHCIId in varying proportions (fibre types IIBD and IIDB) were found, as well as fibres coexpressing MHCIId and MHCIIa with a predominance of MHCIId (type IIDA) and some C fibres (coexpressing MHCI and MHCIIa in varying proportions). Considered altogether, these data reflect the dynamic nature of adult skeletal muscle fibres and indicate a continuum of MHC-based fibre types in normal rat muscle with transitions in the order IIB IIBD IIDB IID IIDA IIAD IIA IIC IC I.  相似文献   

12.
Stretch activation kinetics were investigated in skinned mouse skeletal muscle fibers of known myosin heavy chain (MHC) isoform content to assess kinetic properties of different myosin heads while generating force. The time to peak of stretch-induced delayed force increase (t3) was strongly correlated with MHC isoforms [t3 given in ms for fiber types containing specified isoforms; means ± SD with n in parentheses: MHCI 680 ± 108 (13), MHCIIa 110.5 ± 10.7 (23), MHCIIx(d) 46.2 ± 5.2 (20), MHCIIb 23.5 ± 3.3 (76)]. This strong correlation suggests different kinetics of force generation of different MHC isoforms in the following order:MHCIIb > MHCIIx(d) > MHCIIa >> MHCI. For rat, rabbit, and human skeletal muscles the same type of correlation was found previously. The kinetics decreases slightly with increasing body mass. Available amino acid sequences were aligned to quantify the structural variability of MHC isoforms of different animal species. The variation in t3 showed a correlation with the structural variability of specific actin-binding loops (so-called loop 2 and loop 3) of myosin heads (r = 0.74). This suggests that alterations of amino acids in these loops contribute to the different kinetics of myosin heads of various MHC isoforms. isoform structure-function relationship; stretch activation; muscle mechanics  相似文献   

13.
Histochemical and ultrastructural analyses were performed postflight on hind limb skeletal muscles of rats orbited for 12.5 days aboard the unmanned Cosmos 1887 biosatellite and returned to Earth 2 days before sacrifice. The antigravity adductor longus (AL), soleus, and plantaris muscles atrophied more than the non-weight-bearing extensor digitorum longus, and slow muscle fibers were more atrophic than fast fibers. Muscle fiber segmental necrosis occurred selectively in the AL and soleus muscles; primarily, macrophages and neutrophils infiltrated and phagocytosed cellular debris. Granule-rich mast cells were diminished in flight AL muscles compared with controls, indicating the mast cell secretion contributed to interstitial tissue edema. Increased ubiquitination of disrupted myofibrils implicated ubiquitin in myofilament degradation. Mitochondrial content and succinic dehydrogenase activity were normal, except for subsarcolemmal decreases. Myofibrillar ATPase activity of flight AL muscle fibers shifted toward the fast type. Absence of capillaries and extravasation of red blood cells indicated failed microcirculation. Muscle fiber regeneration from activated satellite cells was detected. About 17% of the flight AL end plates exhibited total or partial denervation. Thus, skeletal muscle weakness associated with spaceflight can result from muscle fiber atrophy and segmental necrosis, partial motor denervation, and disruption of the microcirculation.  相似文献   

14.
The primary purpose of this investigation was to determine the effects of microgravity on muscle fibers of the predominantly fast-twitch muscles in the rat. Cross sectional area and myosin heavy chain (MHC) composition were assessed in order to establish the acute effects of microgravity associated with spaceflight. The extensor digitorum longus (EDL) and gastrocnemius muscles were removed from 12 male Fisher 344 rats which had undergone 10 days of spaceflight aboard the space shuttle Endeavor and from 12 age- and weight-matched control animals. Both groups of animals received similar amounts of food and water and were synchronized for photoperiods, environmental temperature, and humidity. Significant (P < 0.05) reductions in muscle fiber size were observed in the gastrocnemius (fiber types I, IIA, IIDB, and IIB) and EDL (fiber type IIB) muscles after spaceflight. Significant MHC isoform transformations also resulted during this brief period of microgravity exposure with a significant decrease in MHC IId isoform in the EDL muscle. A significant decrease was also observed in the MHC IId isoform in the superficial (white) component of the gastrocnemius muscle after spaceflight, although no alterations in MHC profile were demonstrated in the deep (red) component of this muscle. These findings highlight the rapid plasticity of skeletal muscle during short-term spaceflight. If such pronounced adaptations to spaceflight also occur in humans, then astronauts are likely to suffer severe decrements in skeletal muscle performance with long-term space flight and upon return to earth after both short- and long-term missions. Thus, countermeasures aimed at slowing or even preventing muscle fiber atrophy are warranted.  相似文献   

15.
Skeletal muscle adaptations to microgravity exposure in the mouse.   总被引:4,自引:0,他引:4  
To investigate the effects of microgravity on murine skeletal muscle fiber size, muscle contractile protein, and enzymatic activity, female C57BL/6J mice, aged 64 days, were divided into animal enclosure module (AEM) ground control and spaceflight (SF) treatment groups. SF animals were flown on the space shuttle Endeavour (STS-108/UF-1) and subjected to approximately 11 days and 19 h of microgravity. Immunohistochemical analysis of muscle fiber cross-sectional area revealed that, in each of the muscles analyzed, mean muscle fiber cross-sectional area was significantly reduced (P < 0.0001) for all fiber types for SF vs. AEM control. In the soleus, immunohistochemical analysis of myosin heavy chain (MHC) isoform expression revealed a significant increase in the percentage of muscle fibers expressing MHC IIx and MHC IIb (P < 0.05). For the gastrocnemius and plantaris, no significant changes in MHC isoform expression were observed. For the muscles analyzed, no alterations in MHC I or MHC IIa protein expression were observed. Enzymatic analysis of the gastrocnemius revealed a significant decrease in citrate synthase activity in SF vs. AEM control.  相似文献   

16.
The effect of microgravity on skeletal muscles has so far been examined in rat and mice only after short-term (5-20 day) spaceflights. The mice drawer system (MDS) program, sponsored by Italian Space Agency, for the first time aimed to investigate the consequences of long-term (91 days) exposure to microgravity in mice within the International Space Station. Muscle atrophy was present indistinctly in all fiber types of the slow-twitch soleus muscle, but was only slightly greater than that observed after 20 days of spaceflight. Myosin heavy chain analysis indicated a concomitant slow-to-fast transition of soleus. In addition, spaceflight induced translocation of sarcolemmal nitric oxide synthase-1 (NOS1) into the cytosol in soleus but not in the fast-twitch extensor digitorum longus (EDL) muscle. Most of the sarcolemmal ion channel subunits were up-regulated, more in soleus than EDL, whereas Ca(2+)-activated K(+) channels were down-regulated, consistent with the phenotype transition. Gene expression of the atrophy-related ubiquitin-ligases was up-regulated in both spaceflown soleus and EDL muscles, whereas autophagy genes were in the control range. Muscle-specific IGF-1 and interleukin-6 were down-regulated in soleus but up-regulated in EDL. Also, various stress-related genes were up-regulated in spaceflown EDL, not in soleus. Altogether, these results suggest that EDL muscle may resist to microgravity-induced atrophy by activating compensatory and protective pathways. Our study shows the extended sensitivity of antigravity soleus muscle after prolonged exposition to microgravity, suggests possible mechanisms accounting for the resistance of EDL, and individuates some molecular targets for the development of countermeasures.  相似文献   

17.
The purpose of this investigation was to examine the temporal changes in uncoupling protein (UCP)-3 expression, as well as related adaptive changes in mitochondrial density and fast-to-slow fiber type transitions during chronically enhanced contractile activity. We examined the effects of 1-42 days of chronic low-frequency electrical stimulation (CLFS), applied to rat tibialis anterior (TA) for 10 h/day, on the expression of UCP-3 and concomitant changes in myosin heavy chain (MHC) protein expression and increases in oxidative capacity. UCP-3 protein content increased from 1 to 12 days, reaching 1.5-fold over control (P < 0.0005); it remained elevated for up to 42 days. In contrast, UCP-3 mRNA decreased in response to CLFS, reaching a level that was threefold lower than control (P < 0.0007). The activities of the mitochondrial reference enzymes citrate synthase (EC 4.1.3.7) and 3-hydroxyacyl-CoA-dehydrogenase (EC 1.1.1.35), which are known to increase in proportion to mitochondrial density, progressively increased up to an average of 2.3-fold (P < 0.00001). These changes were accompanied by fast-to-slow fiber type transitions, characterized by a shift in the pattern of MHC expression (P <0.0002): MHCI and MHCIIa expression increased by 1.7- and 4-fold, whereas MHCIIb displayed a 2.4-fold reduction. We conclude that absolute increases in UCP-3 protein content in the early adaptive phase were associated with the genesis of mitochondria containing a normal complement of UCP-3. However, during exposure to long-term CLFS, mitochondria were generated with a lower complement of UCP-3 and coincided with the emergence of a growing population of oxidative type IIA fibers.  相似文献   

18.
5'-AMP-activated protein kinase (AMPK) signaling initiates adaptive changes in skeletal muscle fibers that restore homeostatic energy balance. The purpose of this investigation was to examine, in rats, the fiber-type protein expression patterns of the alpha-catalytic subunit isoforms in various skeletal muscles, and changes in their respective contents within the tibialis anterior (TA) after chronic low-frequency electrical stimulation (CLFS; 10 Hz, 10 h daily), applied for 4 +/- 1.2 or 25 +/- 4.8 days. Immunocytochemical staining of soleus (SOL) and medial gastrocnemius (MG) showed that 86 +/- 4.1 to 97 +/- 1.4% of type IIA fibers stained for both the alpha1- and alpha2-isoforms progressively decreased to 63 +/- 12.2% of type IID/X and 9 +/- 2.4% of IIB fibers. 39 +/- 11.4% of IID/X and 83 +/- 7.9% of IIB fibers expressed only the alpha2 isoform in the MG, much of which was localized within nuclei. alpha1 and alpha2 contents, assessed by immunoblot, were lowest in the white gastrocnemius [WG; 80% myosin heavy chain (MHC) IIb; 20% MHCIId/x]. Compared with the WG, alpha1 content was 1.6 +/- 0.08 (P < 0.001) and 1.8 +/- 0.04 (P < 0.0001)-fold greater in the red gastrocnemius (RG: 13%, MHCIIa) and SOL (21%, MHCIIa), respectively, and increased in proportion to MHCIIa content. Similarly, alpha2 content was 1.4 +/- 0.10 (P < 0.02) and 1.5 +/- 0.07 (P < 0.001)-fold greater in RG and SOL compared with WG. CLFS induced 1.43 +/- 0.13 (P < 0.007) and 1.33 +/- 0.08 (P < 0.009)-fold increases in the alpha1 and alpha2 contents of the TA and coincided with the transition of faster type IIB and IID/X fibers toward IIA fibers. These findings indicate that fiber types differ with regard to their capacity for AMPK signaling and that this potential is increased by CLFS.  相似文献   

19.
20.
Muscle LIM protein (MLP) is constitutively expressed in slow, but undetectable in fast, muscles of the rat. Here we show that MLP was upregulated at both the mRNA and protein levels under experimental conditions leading to transitions from fast to slower phenotypes. Chronic low-frequency stimulation and mechanical overloading by synergist removal both induced fast-to-slow shifts in myosin heavy chain (MHC) isoforms and expression of MLP in fast muscles. High amounts of MLP mRNA and protein were also present in fast muscles of the myotonic, hyperactive ADR mouse. Hypothyroidism evoked shifts in myosin composition toward slower isoforms and increased the MLP protein content of soleus (SOL) muscle but failed to induce MLP in fast muscles. Unweighting by hindlimb suspension elicited slow-to-fast transitions in MHC expression without altering MLP levels in SOL muscle. Hyperthyroidism shifted the MHC pattern toward faster isoforms but did not affect MLP content in SOL muscle. We conclude that alterations in MLP expression are associated with transitions from fast to slower phenotypes but not with slow-to-fast muscle fiber transitions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号