首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Two free-space marker procedures (Prussian blue and lanthanum nitrate) were employed to determine the pathway(s) followed by water and solutes in the transpiration stream after their introduction into the xylem of small and intermediate bundles, and the effectiveness of the suberin lamellae of the bundle-sheath cells as a barrier to the movement of tracer ions (Fe3+ and La3+). Judged from the distribution of Prussian-blue crystals (insoluble, crystalline deposits resulting from the precipitation of ferric ions by ferrocyanide anions) and lanthanum deposits, water and the tracer ions moved readily from the lumina of the vessels into the apoplast (cell wall continuum) of the phloem and bundle-sheath cells via portions of vessel primary walls not bearing lignified secondary wall thickenings. Prussian blue and lanthanum deposits were abundant on the bundlesheath cell side of the bundle sheath/mesophyll interface but few occurred on that of the mesophyll, indicating that the suberin lamella is an effective barrier to apoplastic movement of both ferric and lanthanum ions. The presence of Prussian-blue crystals and lanthanum deposits in the compound middle lamella of the radial wall of the bundle-sheath cells indicates that the compound middle lamella provides an apoplastic pathway for transpirational water from the xylem to the evaporating surfaces of the mesophyll and epidermal cells.  相似文献   

2.
Precipitation of ferrocyanide by ferric ions in cotton leavesproduced electron-opaque crystals visible with othe electronmicroscope and identifiable as Prussian blue by X-ray and electrondiffraction. These crystals were formed within the lumina andexposed primary walls of the tracheary elements but not withintheir secondary walls. The precipitation pattern indicated thatwater moved from the tracheary elements into the parenchymaof the bundle sheath and bundle sheath extensions. From thesecells water moved into the epidermis or through the mesophyllto the transpirational exits. Prussian blue accumulated in thewalls of cells lining the substomatal cavities and to a lesserextent between adjacent covering hairs. Ferrocyanide anionsdid not follow the water stream through the cuticle. In parenchymaand epidermal cells Prussian blue crystals were found withinthe primary wall, in the region between the plasma-lemma andthe cell wall, and within the protoplast.  相似文献   

3.
In leaf blades of Zea mays L. plasmodesmata between mesophyll cells are aggregated in numerous thickened portions of the walls. The plasmodesmata are unbranched and all are characterized by the presence of electron-dense structures, called sphincters by us, near both ends of the plasmodesmatal canal. The sphincters surround the desmotubule and occlude the cytoplasmic annulus where they occur. Plasmodesmata between mesophyll and bundle-sheath cells are aggregated in primary pit-fields and are constricted by a wide suberin lamella on the sheath-cell side of the wall. Each plasmodesma contains a sphincter on the mesophyll-cell side of the wall. The outer tangential and radial walls of the sheath cells exhibit a continuous suberin lamella. However, on the inner tangential wall only the sites of plasmodesmatal aggregates are consistently suberized. Apparently the movement of photosynthetic intermediates between mesophyll and sheath cells is restricted largely or entirely to the plasmodesmata (symplastic pathway) and transpirational water movement to the cell walls (apoplastic pathway).Abbreviation ER endoplasmic reticulum  相似文献   

4.
Ohdaira Y  Kakegawa K  Amino S  Sugiyama M  Fukuda H 《Planta》2002,215(2):177-184
Cell walls were prepared from cultured mesophyll cells of Zinnia elegans L. that were transdifferentiating into tracheary elements and incubated in a buffer to undergo autolysis. The rate of autolysis of cell walls was determined by measuring the amount of carbohydrate released from the cell walls into the buffer during incubation. During the course of culture of mesophyll cells, the autolysis rate increased markedly at the time when thickenings of secondary cell walls characteristic of tracheary elements became visible (after 48-72 h of culture), and thereafter the rate remained at a high level. Comparative studies on the autolysis rate of cell walls using various control cultures, in which tracheary element differentiation did not take place, revealed a close relationship between the autolysis rate around the 60th hour of culture and differentiation. Sugar analysis by colorimetric assays and gas chromatography of carbohydrates released from the cell walls detected uronic acid, arabinose, galactose, glucose, xylose, rhamnose, fucose, and mannose. Among these sugars, uronic acid was the most abundant, and accounted for approximately half of the total released sugars. The decrease of acidic polysaccharides in the primary cell walls during tracheary element differentiation was visualized by staining cultured cells with alcian blue at pH 2.5. These results suggest that active degradation of components of primary cell walls, including pectin, is integrated into the program of tracheary element differentiation.  相似文献   

5.
The pathway of water movement in hydroids of Polytrichum was determined by the precipitation of an electron-dense crystal (Prussian blue) in the transpirational stream. Hydrolysed end walls appear highly water permeable since Prussian blue granules were localized within the loose fibrillar network. Electron-dense granules were found free in the lumen but not in the lateral wall or in the middle lamella. These results are compared with data from vascular plant tracheary elements.  相似文献   

6.
David G. Fisher  Ray F. Evert 《Planta》1982,155(5):377-387
Both the mesophyll and bundle-sheath cells associated with the minor veins in the leaf of Amaranthus retroflexus L. contain abundant tubular endoplasmic reticulum, which is continuous between the two cell types via numerous plasmodesmata in their common walls. In bundle-sheath cells, the tubular endoplasmic reticulum forms an extensive network that permeates the cytoplasm, and is closely associated, if not continuous, with the delimiting membranes of the chloroplasts, mitochondria, and microbodies. Both the number and frequency of plasmodesmata between various cell types decrease markedly from the bundle-sheath — vascular-parenchyma cell interface to the sicve-tube member — companion-cell interface. For plants taken directly from lighted growth chambers, a stronger mannitol solution (1.4 M) was required to plasmolyze the companion cells and sieve-tube members than that (0.6 M) necessary to plasmolyze the mesophyll, bundle-sheath, and vascular-parenchyma cells. Placing plants in the dark for 48 h reduced the solute concentration in all cell types. Judging from the frequency of plasmodesmata between the various cell types of the vascular bundles, and from the solute concentrations of the various cell types, it appears that assimilates are actively accumulated by the sieve-tube — companion-cell complex from the apoplast.  相似文献   

7.
Summary To determine the orientation of cortical microtubule arrays in mesophyll cells ofZinnia, a new technique designed to increase the rate of fixation of excised leaf tissue and subsequent permeabilization of mesophyll cell walls was developed. This procedure resulted in immunolabeling of high percentages of mesophyll cells, making it possible to quantify cells with different types of cortical microtubule arrays. When developing palisade mesophyll cells were fixed in situ, most of the cells had cortical microtubules organized in parallel arrays oriented transverse to the long axis. Delay in the transfer of leaf tissue to fixative resulted in increased numbers of cells with random cortical microtubule orientations, indicating that arrays may become reoriented rapidly during leaf excision and cell isolation procedures. The role of wound-induced microtubule reorientation in mesophyll dedifferentiation and tracheary element development is discussed.Abbreviations BSA bovine serum albumin - CMT cortical microtubule - TE tracheary element - TBS tris-buffered saline  相似文献   

8.
In cultures of isolated mesophyll cells ofZinnia elegans, transdifferentiation into tracheary elements is induced by a combination of auxin and cytokinin and is blocked by inhibitors of DNA synthesis and poly (ADP-ribose) synthesis. During transdifferentiation, a very low level of synthesis of nuclear DNA was found in some cultured cells by microautoradiography after pulse-labeling with [3H]thymidine. Density profiles of nuclear DNA that had been double-labeledin vivo with bromodeoxyuridine (BrdU) and [3H]thymidine indicated that this DNA synthesis was repair-type synthesis. The sedimentation velocity of nucleoids increased during the culture of isolated mesophyll cells and the increase was dependent on phytohormones. This phenomenon may reflect the rejoining of DNA strand breaks after repair-type DNA synthesis during transdifferentiation. Treatment of cells with inhibitors of DNA synthesis or of poly(ADP-ribose) synthesis prevented the increase in the sedimentation velocity of nucleoids. The data suggest the involvement of DNA-repair events in the transdifferentiation of mesophyll cells into tracheary elements.  相似文献   

9.
The fluorochrome sulphorhodamine G, when present in the transpiration stream in wheat leaves, passes rapidly out of the veins and produces fluorescence in the mesophyll and epidermal cell walls. The path of movement of the dye out of the tracherary elements and across the mestome sheath to the parenchyma sheath cells was followed by rapid freezing, freeze-subsitution, dry embedding in resin, sectioning and epifluorescence microscopy. The sulphorhodamine solution was visible in tracheary elements, and, where it had passed out of the tracheary elements, strongly fluorescent in some of the cell walls. The patterns of wall fluorescence are used to chart the movements of water from the xylem through some of the radial walls of mestome sheath cells near the xylem to the free space of the mesophyll. The suberised lamellae of the mestome sheath cells must form an incomplete barrier near the xylem to permit passage of the dye. A hypothesis is formulated that the function of the suberised lamellae is to keep separate the oppositely directed fluxes of water and assimilates through the sheath. It is further proposed that the function of pits in living cells is a similar insulation of the symplastic traffic from the wayward waters of the apoplast.  相似文献   

10.
Tracheary elements differentiated from isolated Zinnia: mesophyll cells were observed at various times of culture under a scanning electron microscope. Perforation occurred on the primary wall at one of the longitudinal ends in single tracheary elements. In double tracheary elements, which both of two cells derived from a single cell differentiated into, the pore opened on the primary walls both at the junction of the two tracheary elements and at a longitudinal end of one of the two tracheary elements. These results suggest not only that a single tracheary element has its own program to form a perforation at one end without being affected by neighboring cells, but also that isolated cells indeed hold some traces of polarity and cell-cell communication.  相似文献   

11.
12.
The xylem in the body of the haustorium of E. bidwillii has the shape of an inverted conical flask with the expanded portion being known as the vascular core. The tracheary elements of the vascular core are notable for the occurrence of numerous granules within their lumina and the presence of mostly imperforate walls. Elsewhere in the haustorium graniferous tracheary elements are absent and the cells are usually ordinary vessel elements. Thin sections for transmission electron microscopy, post-stained in potassium permanganate, show that the secondary wall thickenings of the graniferous tracheary elements consist of eccentric layers in which the microfibrils of each successive layer run alternately longitudinally and transversely. The granules of the tracheary elements average 2 micrometer in diameter and consist of a homogeneous matrix which shows a fine fibrillar structure on high resolution. The granules are naked and mostly remain as separate structures within the lumen of the cell, but occasionally they fuse into small groups or irregular masses. In some cells the granules become transformed into fibrillar material that disperses throughout the lumen. This dispersed material may accumulate in vessels of the interrupted zone proximal to the vascular core. Occasionally, the granules also change into compacted amorphous masses that adhere to the walls of the cell. Ultrastructural cytochemistry confirms that the granules are protein and not starch as was originally believed for the Santalaceae. The function of the vascular core and its graniferous tracheary elements is discussed and we suggest that it might help regulate the pressure and flow of xylem sap entering the parasite from the host. Graniferous tracheary elements in the Santalaceae and in root parasites of the Serophulariaceae are compared and it is concluded that they represent examples of convergent evolution.  相似文献   

13.
Lignin is synthesized not only during morphogenesis of vascular plants but also in response to various stresses. Isolated Zinnia elegans mesophyll cells can differentiate into tracheary elements (TEs), and deposit lignin into cell walls in TE-inductive medium (D medium). Meanwhile isolated mesophyll cells cultured in hormone-free medium (Co medium) accumulate stress lignin-like substance during culture. Therefore this culture system is suitable for study of lignin and lignin-like substance formation.  相似文献   

14.
In order to study the location of enzymes of photorespiration in leaves of the C3–C4 intermediate species Moricandia arvensis (L.). DC, protoplast fractions enriched in mesophyll or bundlesheath cells have been prepared by a combination of mechanical and enzymic techniques. The activities of the mitochondrial enzymes fumarase (EC 4.2.1.2) and glycine decarboxylase (EC 2.1.2.10) were enriched by 3.0- and 7.5-fold, respectively, in the bundle-sheath relative to the mesophyll fraction. Enrichment of fumarase is consistent with the larger number of mitochondria in bundle-sheath cells relative to mesophyll cells. The greater enrichment of glycine decarboxylase indicates that the activity is considerably higher on a mitochondrial basis in bundle-sheath than in mesophyll cells. Serine hydroxymethyltransferase (EC 2.1.2.1) activity was enriched by 5.3-fold and glutamate-dependent glyoxylate-aminotransferase (EC 2.6.1.4) activity by 2.6-fold in the bundle-sheath relative to the mesophyll fraction. Activities of serine- and alanine-dependent glyoxylate aminotransferase (EC 2.6.1.45 and EC 2.6.1.4), glycollate oxidase (EC 1.1.3.1), hydroxypyruvate reductase (EC 1.1.1.81), glutamine synthetase (EC 6.3.1.2) and phosphoribulokinase (EC 2.7.1.19) were not significantly different in the two fractions. These data provide further independent evidence to complement earlier immunocytochemical studies of the distribution of photorespiratory enzymes in the leaves of this species, and indicate that while mesophyll cells of M. arvensis have the capacity to synthesize glycine during photorespiration, they have only a low capacity to metabolize it. We suggest that glycine produced by photorespiratory metabolism in the mesophyll is decarboxylated predominantly by the mitochondria in the bundle sheath.Abbreviation RuBP ribulose 1,5-bisphosphate  相似文献   

15.
Summary The relationship between cell expansion, cortical microtubule orientation, and patterned secondary-cell-wall deposition was investigated in xylogenic cell suspension cultures ofZinnia elegans L. The direction of cell expansion in these cultures is pH dependent; cells elongate at pH 5.5–6.0, but expand isodiametrically at pH 6.5–7.0. Contrary to our expectations, indirect immunofluorescence revealed that cortical microtubules are oriented parallel to the long axis in elongating cells. Pulse labeling of the walls of isolated cells with the fluorochrome Tinopal LPW demonstrated that xylogenic Zinnia mesophyll cells elongate by tip growth in culture. These results confirm that cortical microtubules in developing tracheary elements reorient before bundling to form transverse cortical microtubule bands. This rearrangement may allow the secondary cell wall pattern to conform to cell shape, independent of the direction in which the cell was expanding prior to reorientation.Abbreviations CMT cortical microtubules - Mes 2-[N-morpholino]ethanesulfonic acid - TE tracheary element  相似文献   

16.
Plants, animals and some fungi undergo processes of cell specialization such that specific groups of cells are adapted to carry out particular functions. One of the more remarkable examples of cellular development in higher plants is the formation of water-conducting cells that are capable of supporting a column of water from the roots to tens of metres in the air for some trees. The Zinnia mesophyll cell system is a remarkable tool with which to study this entire developmental pathway in vitro. We have recently applied an RNA fingerprinting technology, to allow the detection of DNA fragments derived from RNA using cDNA synthesis and subsequent PCR-amplified fragment length polymorphisms (cDNA-AFLP), to systematically characterize hundreds of the genes involved in the process of tracheary element formation. Building hoops of secondary wall material is the key structural event in forming functional tracheary elements and we have identified over 50 partial sequences related to cell walls out of 600 differentially expressed cDNA fragments. The Zinnia system is an engine of gene discovery which is allowing us to identify and characterize candidate genes involved in cell wall biosynthesis and assembly.  相似文献   

17.
Light-microscopic analysis of leaf clearings of the obligate Crassulacean-acid-metabolism (CAM) species Kalanchoe daigremontiana Hamet et Perr. has shown the existence of unusual and highly irregular venation patterns. Fifth-order veins exhibit a three-dimensional random orientation with respect to the mesophyll. Minor veins were often observed crossing over or under each other and over and under major veins in the mesophyll. Paraffin sections of mature leaves show tannin cells scattered throughout the mesophyll rather evenly spaced, and a distinct layer of tannin cells below the abaxial epidermis. Scanning electron microscopy showed that bundle-sheath cells are distinct from the surrounding mesophyll in veins of all orders. Transmission electron microscopy demonstrated developing sieve-tube elements in expanded leaves. Cytosolic vesicles produced by dictyosomes undergo a diurnal variation in number and were often observed in association with the chloroplasts. These vesicles are an interesting feature of cell ultrastructure of CAM cells and may serve a regulatory role in the diurnal malic-acid fluctuations in this species.Abbreviations CAM Crassulacean acid metabolism - SEM scanning-electron microscopy - TEM transmission-electron microscopy  相似文献   

18.
Programming of cell death during xylogenesis   总被引:2,自引:0,他引:2  
Death of tracheary elements which compose vessels and tracheids is a typical example of programmed cell death in plants. Anin vitro system usingZinnia mesophyll cells which differentiate directly into tracheary elements has provided various types of data on the cell death process. In this paper, we will summarize recent results obtained using theZinnia system and discuss the programming of cell death during tracheary element differentiation. The extended abstract of a paper presented at the 13th International Symposium in Conjugation with Award of the International Prize for Biology “Frontier of Plant Biology”  相似文献   

19.
Minor veins and contiguous tissues of the Spinacia oleracea leaf were analyzed by electron microscopy to determine the characteristics of the component cells and the structure, distribution, and frequency of plasmodesmata between the various cell types of the leaf. Mesophyll and bundle-sheath cells contain components typical of photosynthetic cells although the latter cell type contains smaller chloroplasts and fewer mitochondria and microbodies than the mesophyll cells. In addition, the mesophyll cells contain numerous invaginations of the plasmalemma bordering the chloroplasts and evaginations of the outer membrane of the opposing chloroplast envelope. In places, these membranes appear continuous with each other. The minor veins consist of tracheary elements, xylem parenchyma cells, sieve-tube members, companion and phloem parenchyma cells, and other cells simply designated vascular parenchyma cells. The companion and phloem parenchyma cells are typically larger than the sieve-tube members with the companion cells containing a much denser cytoplasm that the phloem parenchyma. Cytoplasmic connections occur along all possible routes from the mesophyll to the sieve-tube members and consist of either simple or branched plasmodesmata between parenchymatic elements or pore-plasmodesmata between the sieve-tube members and parenchyma cells. The highest frequency of plasmodesmata occurs between the sieve-tube members and companion cells, although the value is essentially the same as between the various parenchymatic elements of the phloem. Compared to several previously studied species, the frequency of plasmodesmata between cell types of the spinach leaf is low. These results are discussed in relation to apoplastic vs. symplastic solute transport and sieve-tube loading in this species.  相似文献   

20.
Cell wall-bound and tracheary element-specific peroxidase isoenzymes, designated P5A and P5B, were shown previously to be associated with lignification during the differentiation into tracheary elements of single cells isolated from the mesophyll ofZinnia elegans (Satoet al. Planta 189: 584–589, 1993; Planta 196: 141–147, 1995). Isoenzymes corresponding to P5 (RP5A and RP5B) were present at a relatively high level in the roots ofZinnia elegans. These isoenzymes were purified from theZinnia roots by several column-chromatographic steps. Both RP5A and RP5B had molecular masses of 35 kDa. Purified RP5A and RP5B were cleaved by CNBr and the partial amino acid sequences of these isoenzymes were determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号