首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Superoxide production by mice neutrophils was inhibited by nifedipine exposure in a dose dependent manner. The inhibition of Ca2+ uptake elicited by nifedipine did not appear to account for the observed effect as the extracellular Ca2+ enrichment and depletion did not produce a significant reversal of the inhibition. Cytosolic free Ca2+ as measured by Quin 2AM fluorescence did not show any significant change, indicating that the effect was independent of the inhibition of Ca2+ influx. In addition nifedipine caused a significant inhibition (p < 0.01) in NADPH oxidase activity. Our data indicates that nifedipine inhibits superoxide production independent of inhibiting Ca2+ inflow and supports the hypothesis that Ca2+ antagonists affect cellular functions by non Ca2+ mediated process as well.  相似文献   

2.
NADP-malate dehydrogenase activity, the ratio of NADPH to NADP, and thioredoxin redox state in Zea mays chloroplasts were determined after various treatments. Following transfer from dark to light, NADP-malate dehydrogenase was activated more than 20-fold within 10 min while the proportion of pyridine nucleotide as NADPH increased from about 25 to 90%, and the proportion of thioredoxin in the reduced form increased from 20 to more than 90%, in less than 1 min. After transfer back to the dark, NADPH levels dropped very rapidly to the initial values recorded before illumination, while enzyme activity and reduced thioredoxin levels decreased more slowly. Addition of oxaloacetate or 3-phosphoglycerate to illuminated chloroplasts results in a decrease of about 70% in the activity of NADP-malate dehydrogenase, a 30% decrease in the level of NADPH, and a 25% decrease in the reduced thioredoxin content. Adding dihydroxyacetone phosphate and pyruvate had no effect. These results are considered in relation to the hypothesis that NADP-malate dehydrogenase activity in chloroplasts may be determined by factors regulating the ratio of NADPH to NADP as well as those influencing the redox state of thioredoxin.  相似文献   

3.
Hepatic NADPH cytochrome P450 oxidoreductase capable of supporting polysubstrate monooxygenase (PSMO) reactions was purified from microsomes obtained from phenobarbitone (PB) pretreated rhesus monkey. Two preparations of the enzyme purified by affinity and molecular exclusion chromatographic techniques demonstrated specific content of 19.5 and 37.9 nmol cytochrome c reduced/min/mg protein and subunit molecular weight of 66 and 80 kDa, respectively. Both forms supported oxidation of NADPH and reduction of cytochrome c and DCIP but only 80 kDa preparation supported PSMO reactions. The reconstituted system consisted of hepatic P450, NADPH cytochrome P450 oxidoreductase, cytochrome b5 all purified from PB pretreated rhesus monkey and dilauroyl phosphatidylcholine or microsomal lipid. Eighty kDa preparation supported the metabolism of aminopyrine and tolbutamide by hepatic P4502C and erythromycin, ethylmorphine and nifedipine by hepatic P450 3A, respectively. The turnover of these substrates increased in the presence of partially purified cytochrome b5 from the rhesus monkey. To best of our knowledge this is the first report on the purification of monkey hepatic NADPH cytochrome P450 oxidoreductase capable of supporting in vitro PSMO by different isozymes of P450.  相似文献   

4.
Aluminium (Al; 50 mg AlCl3/kg body wt/day) treatment caused a marked change in histological picture of normal brain as indicated by an increased number of vacuolated spaces. These changes returned to normal partially by simultaneous treatment with nifedipine (0.7 mg/kg body wt/day) and completely by similar treatment with 50 ppm calcium (CaCl2; 12.5 mg/kg body wt./day). Neither nifedipine nor calcium treatment alone altered the normal histological condition. The histological changes could not be correlated with the decrease in calcineurin activities in brain as nifedipine decreases calcineurin activity without any histological changes. Hence the histological changes may be considered as specific for Al and not due to a general decrease in calcineurin activity.  相似文献   

5.
NADPH-adrenodoxin oxidoreductase was titrated with NADPH under anaerobic conditions. As the amount of added NADPH was increased to a ratio to the reductase of 1 : 1, a broad absorbance band from approximately 500 to 900 nm, which is attributed to a charge transfer complex, increased and then sharply decreased after the 1 : 1 ratio was attained. Concomitant with the decrease in the charge transfer band, a peak at 575 nm with a shoulder at 635 nm increased, indicating the formation of a semiquinone. This showed clearly that a semiquinone was formed only when more than the stoichiometric amount of NADPH (It is meant by "the stoichiometric amount of NADPH" that the molar ratio of NADPH to adrenodoxin reductase is equal to one, that is, NADPH/FAD bound to the reductase = 1.) was added. The semiquinone band reached its maximum with an approximately 3-fold excess of NADPH over the reductase, and then gradually decreased. Concurrent with the decrease in absorbance of both the charge transfer complex and the semiquinone, the reaction mixture was bleached, indicating that a pale colored species was produced. 1H NMR studies suggested that the pale colored species was a complex of fully reduced adrenodoxin reductase and NADPH, and that the semiquinone also bound 1 mol of the pyridine nucleotide per mol of the reductase. These data suggest that the semiquinone state of the reductase is observable only when a complex between NADPH and the enzyme in the flavin semiquinone is formed.  相似文献   

6.
The reduced nicotinamide adenine dinucleotide phosphate (NADPH) is pivotal to the cellular anti-oxidative defence strategies in most organisms. Although its production mediated by different enzyme systems has been relatively well-studied, metabolic networks dedicated to the biogenesis of NADPH have not been fully characterized. In this report, a metabolic pathway that promotes the conversion of reduced nicotinamide adenine dinucleotide (NADH), a pro-oxidant into NADPH has been uncovered in Pseudomonas fluorescens exposed to oxidative stress. Enzymes such as pyruvate carboxylase (PC), malic enzyme (ME), malate dehydrogenase (MDH), malate synthase (MS), and isocitrate lyase (ICL) that are involved in disparate metabolic modules, converged to create a metabolic network aimed at the transformation of NADH into NADPH. The downregulation of phosphoenol carboxykinase (PEPCK) and the upregulation of pyruvate kinase (PK) ensured that this metabolic cycle fixed NADH into NADPH to combat the oxidative stress triggered by the menadione insult. This is the first demonstration of a metabolic network invoked to generate NADPH from NADH, a process that may be very effective in combating oxidative stress as the increase of an anti-oxidant is coupled to the decrease of a pro-oxidant.  相似文献   

7.
Neuronal nitric oxide synthase (NOS), an enzyme capable of synthesizing nitric oxide, appears to be identical to neuronal NADPH diaphorase. The correlation was examined between NOS immunoreactivity and NADPH diaphorase staining in neurons of the ileum and colon of the guinea-pig. There was a one-to-one correlation between NOS immunoreactivity and NADPH diaphorase staining in all neurons examined; even the relative staining intensities obtained were similar with each technique. To determine whether pharmacological methods could be employed to demonstrate that NADPH diaphorase staining was due to the presence of NOS, tissue was pre-treated with NG-nitro-L-arginine, a NOS inhibitor, or L-arginine, a natural substrate of NOS. In these experiments on unfixed tissue, it was necessary to use dimethyl thiazolyl tetrazolium instead of nitroblue tetrazolium as the substrate for the NADPH diaphorase histochemical reaction. Neither treatment caused a significant decrease in the level of NADPH diaphorase staining, implying that arginine and NADPH interact at different sites on the enzyme.  相似文献   

8.
Adrenodoxin stimulated the oxidation of NADPH by 1,4-benzoquinone, catalyzed by NADPH:adrenodoxin reductase. It prevented the enzyme inhibition by NADPH and formed an additional pathway of benzoquinone reduction presumably via reduced adrenodoxin. In the presence of 100-400 microM NADP+, which increased the Km of NADPH, adrenodoxin acted as a partial competitive inhibitor for NADPH decreasing its TN/Km by a limiting factor of 3. Ki of adrenodoxin decreased on the NADP+ concentration decrease and was estimated to be about 10(-8) M in the absence of NADP+.  相似文献   

9.
We characterized dopamine toxicity in human neuroblastoma SH-SY5Y cells as a direct effect of dopamine on cell reductive power, measured as NADH and NADPH cell content. In cell incubations with 100 or 500 microM dopamine, the accumulation of dopamine inside the cell reached a maximum after 6 h. The decrease in cell viability was 40% and 75%, respectively, after 24 h, and was not altered by MAO inhibition with tranylcypromine. Dopamine was metabolized to DOPAC by mitochondrial MAO and, at 500 microM concentration, significantly reduced mitochondrial potential and oxygen consumption. This DA concentration caused only a slight increase in cell peroxidation in the absence of Fe(III), but a dramatic decrease in NADH and NADPH cell content and a concomitant decrease in total cell NAD(P)H/NAD(P)+ and GSH/GSSG and in mitochondrial NADH/NAD+ ratios. Dopaminechrome, a product of dopamine oxidation, was found to be a MAO-A inhibitor and a strong oxidizer of NADH and NADPH in a cell-free system. We conclude that dopamine may affect NADH and NADPH oxidation directly. When the intracellular concentrations of NAD(P)H and oxidized dopamine are similar, NAD(P)H triggers a redox cycle with dopamine that leads to its own consumption. The time-course of NADH and NADPH oxidation by dopamine was assessed in cell-free assays: NAD(P)H concentration decreased at the same time as dopamine oxidation advanced. The break in cell redox equilibrium, not excluding the involvement of free oxygen radicals, could be sufficient to explain the toxicity of dopamine in dopaminergic neurons.  相似文献   

10.
The reduced nicotinamide adenine dinucleotide phosphate (NADPH) is pivotal to the cellular anti-oxidative defence strategies in most organisms. Although its production mediated by different enzyme systems has been relatively well-studied, metabolic networks dedicated to the biogenesis of NADPH have not been fully characterized. In this report, a metabolic pathway that promotes the conversion of reduced nicotinamide adenine dinucleotide (NADH), a pro-oxidant into NADPH has been uncovered in Pseudomonas fluorescens exposed to oxidative stress. Enzymes such as pyruvate carboxylase (PC), malic enzyme (ME), malate dehydrogenase (MDH), malate synthase (MS), and isocitrate lyase (ICL) that are involved in disparate metabolic modules, converged to create a metabolic network aimed at the transformation of NADH into NADPH. The downregulation of phosphoenol carboxykinase (PEPCK) and the upregulation of pyruvate kinase (PK) ensured that this metabolic cycle fixed NADH into NADPH to combat the oxidative stress triggered by the menadione insult. This is the first demonstration of a metabolic network invoked to generate NADPH from NADH, a process that may be very effective in combating oxidative stress as the increase of an anti-oxidant is coupled to the decrease of a pro-oxidant.  相似文献   

11.
Summary Neuronal nitric oxide synthase (NOS), an enzyme capable of synthesizing nitric oxide, appears to be identical to neuronal NADPH diaphorase. The correlation was examined between NOS immunoreactivity and NADPH diaphorase staining in neurons of the ileum and colon of the guinea-pig. There was a one-to-one correlation between NOS immunoreactivity and NADPH diaphorase staining in all neurons examined; even the relative staining intensities obtained were similar with each technique. To determine whether pharmacological methods could be employed to demonstrate that NADPH diaphorase staining was due to the presence of NOS, tissue was pre-treated with NG-nitro-l-arginine, a NOS inhibitor, or l-arginine, a natural substrate of NOS. In these experiments on unfixed tissue, it was necessary to use dimethyl thiazolyl tetrazolium instead of nitroblue tetrazolium as the substrate for the NADPH diaphorase histochemical reaction. Neither treatment caused a significant decrease in the level of NADPH diaphorase staining, implying that arginine and NADPH interact at different sites on the enzyme.  相似文献   

12.
7-Hydroxyphenoxazin-3-one, commonly known as resorufin, strongly inhibits benzo(a)pyrene-induced mutation in the Ames bacterial reversion assay. The antimutagenic mechanism is due in part to redox cycling of resorufin with the concommitant transfer of reducing equivalents from NADPH to molecular oxygen. The diversion of electrons from cytochrome P-450 enzymes results in a large decrease in the percent of benzo(a)pyrene metabolized by rat liver microsomes as measured by HPLC. Resorufin stimulated a non-stoichiometric consumption of NADPH and was reduced in S-9 or microsomal solutions. These processes were sensitive to dicumarol and NADP inhibition to different degrees in each liver fraction. This suggests two pathways are involved in resorufin redox cycling, one involving DT-diaphorase and the other with NADPH cytochrome P-450 reductase. Oxygen was shown to be an electron acceptor for S-9 mediated resorufin redox cycling, but was not consumed by a microsomal solution in the presence of resorufin and NADPH.  相似文献   

13.
We have previously shown that aspirin induces apoptosis in manganese superoxide dismutase (MnSOD)-deficient Saccharomyces cerevisiae cells cultivated in ethanol medium, and that it exhibits a significant antioxidant effect until the onset of overt apoptosis. We here report that glucose-6-phosphate dehydrogenase activity in these cells is not inhibited by aspirin. However, the reducing power, as measured by the NADPH/NADP(+) concentration ratio, is significantly lower than in wild-type cells. With aspirin, the levels of NADPH, NADP(+) and catalase in MnSOD-deficient cells decrease significantly after 72 h of cultivation, without significant decrease of the NADPH/NADP(+) ratio. This ratio is higher when the cells are grown in glycerol or acetate medium. This seems to prevent loss in viability and induction of apoptosis on treatment with aspirin. Additionally, the glutathione (GSH) level is maintained, but the level of oxidized glutathione (GSSG) increases, leading to a significant decrease in the GSH/GSSG ratio in aspirin-treated cells. This decrease in the GSH/GSSG ratio is much less in cells grown in glycerol medium, while there is an increase in the GSH/GSSG ratio of cells grown in acetate medium. Consequently, the decreased reducing power may be linked to apoptotic induction by aspirin. This occurs independently of the level of reactive oxygen species which, as shown in our previous studies, do not play a primary role in the apoptosis of cells exposed to aspirin. The protective effect of MnSOD appears to be related to the cellular reducing power.  相似文献   

14.
The importance of metal chelation in the mechanism of microsomal lipid peroxidation has been studied using both phosphate- and sulfhydryl-containing compounds. The optimal concentration for maximum stimulation by each of these compounds has been determined, and the decrease in stimulation observe at concentrations above the maxima has been related to the ability of these compounds to form stable chelation complexes with non-heme iron. Of the compounds tested, only ADP and ATP facilitated the cooperative binding of NADPH to the membrane and thus suggested the possibility of three binding sites for NADPH. Neither of the other two phosphate-chelating agents (Pi or PPi) and neither of the two thiols (cysteine or dithiothreitol)facilitated cooperative binding of NADPH. These data suggested that the adenine ring of ADP or ATP is directly involved in the cooperativity of NADPH binding. They also emphasized that the binding of the chelation complex to the protein is an important parameter in the mechanism of the NADPH-catalyzed peroxidation of endogenous microsomal lipids. Furthermore, stimulation of the rat of lipid peroxidation by sulhydryl-containing compounds, by freezing thawing the microsomal protein, and by treatment of the protein with detergent may be due to a decrease in this cooperative binding effect. Since cysteine and deoxycholate as well as freezing and thawing alter membrane structure, the stimulation of lipid peroxidation seems to involve some alteration to the structure of the microsomal membrane prior to the onset of enzymatic lipid peroxidation.  相似文献   

15.
The NADPH oxidase is a multicomponent enzyme system that produces the reduced oxygen species essential for bacterial killing by polymorphonuclear leukocytes (PMN). Study of the oxidase has typically been carried out in cell-free systems in which Km values of 20-150 microM NADPH have been reported. However, when compared with affinities reported for other flavoprotein dehydrogenases and when considering the cellular concentration of NADPH/NADP+ of approximately 35 microM, the reported affinity of the oxidase for NADPH appears low. To investigate this apparent discrepancy we have studied the kinetics of NADPH oxidase activation in situ in human PMN permeabilized with Staphylococcus aureus alpha-toxin. alpha-Toxin permeabilization of human PMN did not initiate NADPH oxidase activation at physiologic concentrations of NADPH. If permeabilized cells were stimulated with 1 microM formyl-methionyl-leucyl-phenylalanine, 10 microM guanosine 5'-O-(3-thiotriphosphate), 0.5 mM Ca2+, 5 micrograms/ml cytochalasin B in the presence of varying concentrations of NADPH, we were able to demonstrate activation of the oxidase complex as shown by superoxide dismutase-inhibitable reduction of cytochrome c. In this system we determined that the Km for oxidase activation was 4-7 microM NADPH, a 4-10-fold decrease from reported values. The oxidase was the enzyme being studied as shown by the absence of enzymatic activity in patients with chronic granulomatous disease. In addition, if the enzyme was initially activated in permeabilized cells, the cells homogenized, and the Km for the oxidase determined in a cell-free system, the observed Km reverted to previously reported values (36 microM). These results indicate that NADPH oxidase, studied in situ, has a significantly higher substrate affinity than that observed in isolated membranes and, moreover, indicate that substrate affinity is optimal for catalysis at reported concentrations of cytosolic NADPH.  相似文献   

16.
Our prior studies have shown that pentoxyresorufin-O-dealkylation (PROD) can be measured spectrophotometrically with simultaneous monitoring of stoichiometry of NADPH/substrate and NADP/product as 10:1:10:1 [Rastogi et al. FEBS Letters 512 (2002) 121-124]. In the present investigation, mechanism of action of other enzymes in modulating the stoichiometry of alkoxyphenoxazones metabolism to 1:1 for electron donor/substrate and oxidized electron donor/product in the same incubation mixture was studied. The spectrophotometric analysis reveals 10:1 ratio between NADPH and pentoxyresorufin (PRF)-ethoxyresorufin (ERF) in microsomal system. The high ratio of electron donor to substrate is due to the presence of the other forms of P-450, which may participate in endogenous metabolism of compounds, thereby reducing the ratio to 4:1 and 7:1 for NADPH/PRF-ERF. Incubation of dicumarol in the microsomal PROD or ethoxyresorufin-O-dealkylase (EROD) assay led to significant decrease in the consumption of NADPH with a ratio of 4:1 and 7:1 for NADPH/PRF-ERF which is due to inhibition of NADPH cytochrome c (P-450) reductase. In post mitochondrial fraction (S-9), the ratio of 11:1 and 15:1 is seen for NADPH/PRF-ERF. The addition of dicumarol in S-9 fraction showed enhanced rate of alkoxyphenoxazone utilization, suggesting the possibility of reduced resorufin product as a feedback inhibitor. Equating the ratio of NADPH/substrate(s) derived after endogenous utilization of NADPH with the ratio after accounting for NADPH consumption following dicumarol addition in either S-9 or microsomal fraction, a 1:1 mol of NADPH/substrate(s) and oxidized electron donor/product is obtained. The results further suggest that cytosolic fraction may interfere in monitoring the formation of resorufin during dealkylation of alkoxyphenoxazones making dicumarol a mandatory cofactor.  相似文献   

17.
Preliminary work revealed that nitrate reductase in crude extracts prepared from leaves of certain corn genotypes as well as soybeans could utilize NADPH as well as NADH as the electron donor. Isoelectric focusing and diethylaminoethyl cellulose chromatography confirmed previous findings that NADH and NADPH activities could not be separated, which suggests the involvement of a single enzyme. Nitrate reduction with both cofactors varies with plant species, plant age, and assay conditions. The ability of the nitrate reductase from a given genotype to utilize NADPH was associated with the amount of NADPH-phosphatase in the extract. While diethylaminoethyl cellulose chromatography of plant extracts separated nitrate reductase from the bulk (90%) of the phosphatase and caused a decrease in the NADPH activity, the residual level of phosphatase was sufficient to account for the apparent NADPH nitrate reductase activity. Addition of KH2PO4 and KF, inhibitors of NADPH-phosphatase activity in in vitro assays, caused a drastic reduction or abolishment of NADPH-mediated nitrate reductase activity but were without effect on NADH nitrate reductase activity. It is concluded that NADPH-nitrate reduction, in soybean and certain corn genotypes, is an artifact resulting from the conversion of NADPH to NADH by a phosphatase and that the enzyme in leaf tissue is NADH-dependent (E.C.1.6.6.1).  相似文献   

18.
We have reported previously that dihydropyridine-type calcium-channel antagonists (DTCCA) such as nifedipine decrease plasma markers of oxidative stress damage in systemic sclerosis (SSc). To clarify the cellular basis of these beneficial effects, we investigated the effects in vivo and in vitro of nifedipine on superoxide anion (O2*-) production by peripheral blood monocytes. We compared 10 healthy controls with 12 patients with SSc, first after interruption of treatment with DTCCA and second after 2 weeks of treatment with nifedipine (60 mg/day). O2*- production by monocytes stimulated with phorbol myristate acetate (PMA) was quantified by the cytochrome c reduction method. We also investigated the effects in vitro of DTCCA on O2*- production and protein phosphorylation in healthy monocytes and on protein kinase C (PKC) activity using recombinant PKC. After DTCCA had been washed out, monocytes from patients with SSc produced more O2*- than those from controls. Nifedipine treatment considerably decreased O2*- production by PMA-stimulated monocytes. Treatment of healthy monocytes with nifedipine in vitro inhibited PMA-induced O2*- production and protein phosphorylation in a dose-dependent manner. Finally, nifedipine strongly inhibited the activity of recombinant PKC in vitro. Thus, the oxidative stress damage observed in SSc is consistent with O2*- overproduction by primed monocytes. This was decreased by nifedipine treatment both in vivo and in vitro. This beneficial property of nifedipine seems to be mediated by its cellular action and by the inhibition of PKC activity. This supports the hypothesis that this drug could be useful for the treatment of diseases associated with oxidative stress.  相似文献   

19.
The effect of verapamil, nifedipine and sensit on the whole rat blood deoxygenation was studied by polarographic coulometry with consequent calculation of deoxygenation rate (DR) and blood deoxygenation constant (BDC). These drugs were studied in concentrations 10(-8)-10(-4) M according to their therapeutic range in vivo. Both verapamil and nifedipine significantly decreased DR, and the latter drug decreased BDC as well in concentration 2.9.10(-7) M. In contrast to verapamil and nifedipine, sensit caused mild, but statistically significant dose-related increase in DR with concomitant decrease in BDC. The data presented failed to establish relationships between chemical structure and deoxygenative effect of the drugs. Deoxygenation effect of sensit favours its administration in the treatment of ischemia-related arrhythmias.  相似文献   

20.
Haloperidol is a classical neuroleptic drug that is still in use and can lead to abnormal motor activity such as tardive dyskinesia (TD) following repeated administration. TD has no effective therapy yet. There is involvement of calcium in triggering the oxidative damage and excitotoxicity, both of which play central role in haloperidol-induced orofacial dyskinesia and associated alterations. The present study was carried out to investigate the protective effect of calcium channel blockers [verapamil (10 and 20 mg/kg), diltiazem (10 and 20 mg/kg), nifedipine (10 and 20 mg/kg) and nimodipine (10 and 20 mg/kg)] against haloperidol induced orofacial dyskinesia and associated behavioural, biochemical and neurochemical alterations in rats. Chronic administration of haloperidol (1 mg/kg i.p., 21 days) resulted in a significant increase in orofacial dyskinetic movements and significant decrease in % retention, coupled with the marked increase in lipid peroxidation and superoxide anion generation where as significant decrease in non protein thiols and endogenous antioxidant enzyme (SOD and catalase) levels in rat brain striatum homogenates. All these deleterious effects of haloperidol were significantly attenuated by co-administration of different calcium channel blockers. Neurochemically, chronic administration of haloperidol resulted in significant decrease in levels of catecholamines (dopamine, serotonin) and their metabolites (HVA and HIAA) but increased turnover of dopamine and serotonin. Co-administration of most effective doses of verapamil, diltiazem, nifedipine and nimodipine significantly attenuated these neurochemical changes. Results of the present study indicate that haloperidol-induced calcium ion influx is involved in the pathogenesis of tardive dyskinesia and calcium channel blockers should be tested in clinical trials with nifedipine as the most promising one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号