首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a universe that is dominated by increasing entropy, living organisms are a curious anomaly. The organization that distinguishes living organisms from their inanimate surroundings relies upon their ability to execute vectorial processes, such as directed movements and the assembly of macromolecules and organelle systems. Many of these phenomena are executed by molecular motors that harness chemical potential energy to perform mechanical work and unidirectional motion. This article explores how these remarkable protein machines might have evolved and what roles they could play in biological and medical research in the coming decades.  相似文献   

2.
In a universe that is dominated by increasing entropy, living organisms are a curious anomaly. The organization that distinguishes living organisms from their inanimate surroundings relies upon their ability to execute vectorial processes, such as directed movements and the assembly of macromolecules and organelle systems. Many of these phenomena are executed by molecular motors that harness chemical potential energy to perform mechanical work and unidirectional motion. This article explores how these remarkable protein machines might have evolved and what roles they could play in biological and medical research in the coming decades.  相似文献   

3.
In a universe that is dominated by increasing entropy, living organisms are a curious anomaly. The organization that distinguishes living organisms from their inanimate surroundings relies upon their ability to execute vectorial processes, such as directed movements and the assembly of macromolecules and organelle systems. Many of these phenomena are executed by molecular motors that harness chemical potential energy to perform mechanical work and unidirectional motion. This article explores how these remarkable protein machines might have evolved and what roles they could play in biological and medical research in the coming decades.  相似文献   

4.
We present an overview of the research on intracellular transport in pigment cells, with emphasis on the most recent discoveries. Pigment cells of lower vertebrates have been traditionally used as a model for studies of intracellular transport mechanisms, because these cells transport pigment organelles to the center or to the periphery of the cell in a highly co-ordinated fashion. It is now well established that both aggregation and dispersion of pigment in melanophores require two elements of the cytoskeleton: microtubules and actin filaments. Melanosomes are moved along these cytoskeletal tracks by motor proteins. Recent studies have identified the motors responsible for pigment dispersion and aggregation in melanophores. We propose a model for the possible roles of the two cytoskeletal transport systems and how they might interact. We also discuss the putative mechanisms of regulation of pigment transport, especially phosphorylation. Last, we suggest areas of research that will receive attention in the future in order to elucidate the mechanisms of organelle transport.  相似文献   

5.
The sea urchin embryo is a classical model system for studying the role of the cytoskeleton in such events as fertilization, mitosis, cleavage, cell migration and gastrulation. We have conducted an analysis of gene models derived from the Strongylocentrotus purpuratus genome assembly and have gathered strong evidence for the existence of multiple gene families encoding cytoskeletal proteins and their regulators in sea urchin. While many cytoskeletal genes have been cloned from sea urchin with sequences already existing in public databases, genome analysis reveals a significantly higher degree of diversity within certain gene families. Furthermore, genes are described corresponding to homologs of cytoskeletal proteins not previously documented in sea urchins. To illustrate the varying degree of sequence diversity that exists within cytoskeletal gene families, we conducted an analysis of genes encoding actins, specific actin-binding proteins, myosins, tubulins, kinesins, dyneins, specific microtubule-associated proteins, and intermediate filaments. We conducted ontological analysis of select genes to better understand the relatedness of urchin cytoskeletal genes to those of other deuterostomes. We analyzed developmental expression (EST) data to confirm the existence of select gene models and to understand their differential expression during various stages of early development.  相似文献   

6.
Membrane trafficking plays a crucial role in cell polarity by directing lipids and proteins to specific subcellular locations in the cell and sustaining a polarized state. The Golgi apparatus, the master organizer of membrane trafficking, can be subdivided into three layers that play different mechanical roles: a cytoskeletal layer, the so-called Golgi matrix, and the Golgi membranes. First, the outer regions of the Golgi apparatus interact with cytoskeletal elements, mainly actin and microtubules, which shape, position, and orient the organelle. Closer to the Golgi membranes, a matrix of long coiled–coiled proteins not only selectively captures transport intermediates but also participates in signaling events during polarization of membrane trafficking. Finally, the Golgi membranes themselves serve as active signaling platforms during cell polarity events. We review here the recent findings that link the Golgi apparatus to cell polarity, focusing on the roles of the cytoskeleton, the Golgi matrix, and the Golgi membranes.  相似文献   

7.
Antibodies were produced against fragments of the microtubule-binding domain and the motor domain of the dynein heavy chain from Dictyostelium discoideum to probe whole cell extracts of root meristem cells of wheat Triticum aestivum. In plant extracts, these antibodies cross-reacted with a polypeptide of high molecular weight (>500 kDa). The antibodies bound to protein A-Sepharose precipitated high molecular weight polypeptide from cell extracts. Immunofluorescence showed that the antibodies identified various aggregates inside cells, localized at the perinuclear area during interphase to early prophase, at the spindle periphery and polar area during mitosis, and in the interzonal region during phragmoplast development. Some aggregates were also co-labeled by markers for the Golgi apparatus. Thus, we found in higher plant cells a high molecular weight antigen cross-reacting with the antibodies to motor and microtubule-binding domains of dynein heavy chains. This antigen is associated with aggregates distributed in the cytoplasm in cell cycle-dependent manner. A subset of these aggregates belongs to the Golgi complex.  相似文献   

8.
Mon1a was originally identified as a modifier gene of vesicular traffic, as a mutant Mon1a allele resulted in increased localization of cell surface proteins, whereas reduced levels of Mon1a showed decreased secretory activity. Here we show that Mon1a affects different steps in the secretory pathway including endoplasmic reticulum-to-Golgi traffic. siRNA-dependent reduction of Mon1a levels resulted in a delay in the reformation of the Golgi apparatus after Brefeldin A treatment. Endoglycosidase H treatment of ts045VSVG-GFP confirmed that knockdown of Mon1a delayed endoplasmic reticulum-to-Golgi trafficking. Reductions in Mon1a also resulted in delayed trafficking from Golgi to the plasma membrane. Immunoprecipitation and mass spectrometry analysis showed that Mon1a associates with dynein intermediate chain. Reductions in Mon1a or dynein altered steady state Golgi morphology. Reductions in Mon1a delayed formation of ERGIC-53-positive vesicles, whereas reductions in dynein did not affect vesicle formation. These data provide strong evidence for a role for Mon1a in anterograde trafficking through the secretory apparatus.  相似文献   

9.
Macrophages play crucial role in tissue homeostasis and the innate and adaptive immune response. Depending on the state of activation macrophages acquire distinct phenotypes that depend on actin, which is regulated by small GTPase RhoA. The naive M0 macrophages are slightly elongated, pro-inflammatory M1 are round and M2 anti-inflammatory macrophages are elongated. We showed previously that interference with RhoA pathway (RhoA deletion or RhoA/ROCK kinase inhibition) disrupted actin, produced extremely elongated (hummingbird) macrophage phenotype and inhibited macrophage movement toward transplanted hearts. The RhoA function depends on the family of guanine-nucleotide exchange factors (GEFs), which catalyze the exchange of GDP for GTP and activate RhoA that reorganizes actin cytoskeleton. Using actin staining, immunostaining, Western blotting, flow cytometry and transmission electron microscopy we studied how a direct inhibition of Rho-GEFs with Rhosin (Rho GEF-binding domain blocker) and Y16 (Rho GEF DH-PH domain blocker) affects M0, M1 and M2 macrophage phenotypes. We also studied how Rho-GEFs inhibition and RhoA deletion affects organization of Golgi complex that is crucial for normal macrophage functions such as phagocytosis, antigen presentation and receptor recycling. We found that GEFs inhibition differently affected M0, M1 and M2 macrophages phenotype and that GEFs inhibition and RhoA deletion both caused changes in the ultrastructure of the Golgi complex. These results suggest that actin/RhoA- dependent shaping of macrophage phenotype has different requirements for activity of RhoA/GEFs pathway in M0, M1 and M2 macrophages, and that RhoA and Rho-GEFs functions are necessary for the maintenance of actin-dependent organization of Golgi complex.  相似文献   

10.
The Golgi apparatus plays essential roles in the processing and sorting of proteins and lipids, but it can also act as a signalling hub and a microtubule‐nucleation centre. The Golgi complex (GC) of mammalian cells is composed of stacks connected by tubular bridges to form a continuous membranous system. In spite of this structural complexity, the GC is highly dynamic, and this feature becomes particularly evident during mitosis, when the GC undergoes a multi‐step disassembly process that allows its correct partitioning and inheritance by daughter cells. Strikingly, different steps of Golgi disassembly control mitotic entry and progression, indicating that cells actively monitor Golgi integrity during cell division. Here, we summarise the basic mechanisms and the molecular players that are involved in Golgi disassembly, focussing in particular on recent studies that have revealed the fundamental signalling pathways that connect Golgi inheritance to mitotic entry and progression.  相似文献   

11.
The mechanochemical forces that move and position intracellular organelles and their intermediates in eukaryotic cells are provided by molecular motor proteins which include the cytoplasmic dynein-1 motor complex. Recently, we identified the Rab11 GTPase effector protein Rab11-FIP3 (henceforth, FIP3) as a novel binding-partner for dynein light intermediate chain 1 (DLIC-1, gene symbol DYNC1LI1), a subunit of cytoplasmic dynein-1. Here, we show that FIP3 also binds the dynein light intermediate chain 2 subunit (DLIC-2, gene symbol DYNC1LI2). We show that like DLIC-1, DLIC-2 binds the amino-terminal 435 amino acids of FIP3 and that FIP3 links Rab11a to DLIC-2. We also show that FIP3 recruits DLIC-2 onto membranes and that DLIC-2 is necessary for the accumulation of endocytosed-transferrin (Tfn) at the pericentrosomal endosomal-recycling compartment (ERC). Finally, we demonstrate that overexpression of FIP3 fragments the Golgi complex by sequestering cytoplasmic dynein-1. In conclusion, we have identified FIP3 as the first membrane-associated interacting-partner for DLIC-2 and propose that this interaction serves to control endosomal trafficking from sorting endosomes to the ERC.  相似文献   

12.
The Golgi complex plays a central role in protein secretion by regulating cargo sorting and trafficking. As these processes are of functional importance to cell polarity, motility, growth, and division, there is considerable interest in achieving a comprehensive understanding of Golgi complex biology. However, the unique stack structure of this organelle has been a major hurdle to our understanding of how proteins are secreted through the Golgi apparatus. Herein, we summarize available relevant research to gain an understanding of protein secretion via the Golgi complex. This includes the molecular mechanisms of intra-Golgi trafficking and cargo export in the trans-Golgi network. Moreover, we review recent insights on signaling pathways regulated by the Golgi complex and their physiological significance.  相似文献   

13.
N-WASP and Arp2/3, the components of the actin nucleation/polymerization signaling pathway governed by Cdc42, are located in Golgi membranes and regulate ER/Golgi interface protein transport. In the present study, we examined whether RhoA and Rac1, like Cdc42, are also involved in this early secretory pathway. Unlike Cdc42, RhoA and Rac1 were not observed in the Golgi complex of different clonal cell lines nor were they present in isolated Golgi membranes. Expression of constitutively active or inactive mutants of RhoA or Rac1 proteins in HeLa cells did not alter either the disassembly or the assembly of the Golgi complex following the addition or withdrawal of BFA, respectively, the ER-to-Golgi VSV-G transport or the Sar1(dn)-induced ER accumulation of Golgi proteins. Moreover, unlike Cdc42-expressing cells, the 15 degrees C-induced subcellular redistribution of the KDEL receptor remained unaltered. Only cells that constitutively express the activated Cdc42 mutant (Cdc42Q61L), or that were microinjected with activated Cdc42Q61L protein, exhibited a significant change in Golgi complex morphology. Collectively, our results demonstrate that RhoA and Rac1 are not located in the Golgi complex, nor do they directly or indirectly regulate membrane trafficking at the ER/Golgi interface. This finding, in turn, confirms that Cdc42 is the only Rho GTPase to have a specific function on the Golgi complex.  相似文献   

14.
The function of the Golgi apparatus is to modify proteins and lipids synthesized in the ER and sort them to their final destination. The steady-state size and function of the Golgi apparatus is maintained through the recycling of some components back to the ER. Several lines of evidence indicate that the spatial segregation between the ER and the Golgi apparatus as well as trafficking between these two compartments require both microtubules and motors. We have cloned and characterized a new Xenopus kinesin like protein, Xklp3, a subunit of the heterotrimeric Kinesin II. By immunofluorescence it is found in the Golgi region. A more detailed analysis by EM shows that it is associated with a subset of membranes that contain the KDEL receptor and are localized between the ER and Golgi apparatus. An association of Xklp3 with the recycling compartment is further supported by a biochemical analysis and the behavior of Xklp3 in BFA-treated cells. The function of Xklp3 was analyzed by transfecting cells with a dominant-negative form lacking the motor domain. In these cells, the normal delivery of newly synthesized proteins to the Golgi apparatus is blocked. Taken together, these results indicate that Xklp3 is involved in the transport of tubular-vesicular elements between the ER and the Golgi apparatus.  相似文献   

15.
Robinson RW  Snyder JA 《Protoplasma》2005,225(1-2):113-122
Summary. The enzymes of importance in moving chromosomes are called motor proteins and include dynein, kinesin, and possibly myosin II. These three molecules are all included in the category of ATPases, in that they have the ability to convert chemical energy into mechanical energy. Both dynein and kinesin have been documented as molecules that “walk” along microtubules in the mitotic spindle, carrying cargo such as chromosomes. Myosin II, analogous to the muscle contraction system, transiently interacts along actin filaments and associates with kinetochore microtubules. In this paper we present evidence that a third ATPase, myosin II, may act as a “thruster” to propel chromosomes during the mitotic process. Double-label immunocytochemistry to actin and myosin II shows that myosin II is localized on chromosome arms at the beginning of mitosis and remains localized to the chromosomes throughout mitosis. Specific staining of myosin II is relegated to the outside of chromosomes with the highest density of staining occurring between the spindle poles and the chromosomes. This specific localization could account for the movement of chromosomes during mitosis, since they segregate towards the spindle poles, along kinetochore microtubules containing actin filaments, after aligning at the equatorial region of the cell at metaphase. We conclude from this study that there is an actomyosin system present in the mitotic spindle and that myosin is attached to chromosome arms and may act as a thruster in moving chromosomes during the mitotic process. Correspondence and reprints: Department of Biological Sciences, University of Denver, 2190 E Iliff Avenue, Denver, CO 80208, U.S.A.  相似文献   

16.
CCDC103 is an ∼29-kDa protein consisting of a central RPAP3_C domain flanked by N- and C-terminal coiled coils. Defects in CCDC103 lead to primary ciliary dyskinesia caused by the loss of outer dynein arms. This protein is present along the entire length of the ciliary axoneme and does not require other dynein or docking complex components for its integration. Unlike other known dynein assembly factors within the axoneme, CCDC103 is not solubilized by 0.6 m NaCl and requires more chaotropic conditions, such as 0.5 m KI. Alternatively, it can be extracted using 0.3% sarkosyl. CCDC103 forms stable dimers and other oligomers in solution through interactions involving the central domain. The smallest particle observed by dynamic light scattering has a hydrodynamic diameter of ∼25 nm. Furthermore, CCDC103 binds microtubules directly, forming ∼9-nm diameter particles that exhibit a 12-nm spacing on the microtubule lattice, suggesting that there may be two CCDC103 units per outer arm dynein repeat. Although the outer dynein arm docking complex is necessary to form arrays of dyneins along microtubules, it is not sufficient to set up a single array in a precise location on each axonemal doublet. We propose that CCDC103 helps generate a high-affinity site on the doublets for outer arm assembly, either through direct interactions or indirectly, perhaps by modifying the underlying microtubule lattice.  相似文献   

17.
Coat protein complex I (COPI) vesicles play a central role in the recycling of proteins in the early secretory pathway and transport of proteins within the Golgi stack. Vesicle formation is initiated by the exchange of GDP for GTP on ARF1 (ADP-ribosylation factor 1), which, in turn, recruits the coat protein coatomer to the membrane for selection of cargo and membrane deformation. ARFGAP1 (ARF1 GTPase-activating protein 1) regulates the dynamic cycling of ARF1 on the membrane that results in both cargo concentration and uncoating for the generation of a fusion-competent vesicle. Two human orthologues of the yeast ARFGAP Glo3p, termed ARFGAP2 and ARFGAP3, have been demonstrated to be present on COPI vesicles generated in vitro in the presence of guanosine 5′-3-O-(thio)triphosphate. Here, we investigate the function of these two proteins in living cells and compare it with that of ARFGAP1. We find that ARFGAP2 and ARFGAP3 follow the dynamic behavior of coatomer upon stimulation of vesicle budding in vivo more closely than does ARFGAP1. Electron microscopy of ARFGAP2 and ARFGAP3 knockdowns indicated Golgi unstacking and cisternal shortening similarly to conditions where vesicle uncoating was blocked. Furthermore, the knockdown of both ARFGAP2 and ARFGAP3 prevents proper assembly of the COPI coat lattice for which ARFGAP1 does not seem to play a major role. This suggests that ARFGAP2 and ARFGAP3 are key components of the COPI coat lattice and are necessary for proper vesicle formation.  相似文献   

18.
We examined the participation of MAPK and PKA in the Golgi complex disassembly caused by light-activated Calphostin C in HT-29 cells. When these cells were incubated with Calphostin C, fragmentation and dispersal of the Golgi complex was observed as assessed by immunofluorescence microscopy. Electron microscopy analysis showed that clusters of vesicles and large tubule-vesicular membrane structures, resembling the Golgi remnants present in mitotic cells, substituted the Golgi stacks. In addition, Calphostin C treatment caused inhibition of the endocytic route. We confirmed that the Golgi disassembly was not due to PKC inhibition, and suggested, based on the use of specific inhibitors, that other kinases are involved. It was shown that pretreatment with PD98059 and H-89, both inhibitors of MAPK and PKA, respectively, prior to incubation with Calphostin C, caused blockade of the Golgi disassembly, as well as the inhibition of the endocytic pathway caused by this drug. This finding supports the existence of a novel mechanism by which MAPK and PKA may regulate the Golgi breakdown caused by Calphostin C in HT-29 cells.  相似文献   

19.
Myosin II plays important roles in many contractile-like cell functions, including cell migration, adhesion, and retraction. Myosin II is activated by regulatory light chain (RLC) phosphorylation whereas RLC dephosphorylation by myosin light chain phosphatase containing a myosin phosphatase targeting subunit (MYPT1) leads to myosin inactivation. HeLa cells contain MYPT1 in addition to a newly identified human variant 2 containing an internal deletion. RLC dephosphorylation, cell migration, and adhesion were inhibited when either or both MYPT1 isoforms were knocked down by RNA interference. RLC was highly phosphorylated (60%) when both isoforms were suppressed by siRNA treatment relative to control cells (10%) with serum-starvation and ROCK inhibition. Prominent stress fibers and focal adhesions were associated with the enhanced RLC phosphorylation. The reintroduction of MYPT1 or variant 2 in siRNA-treated cells decreased stress fibers and focal adhesions. MYPT1 knockdown also led to an increase of F-actin relative to G-actin in HeLa cells. The myosin inhibitor blebbistatin did not inhibit this effect, indicating MYPT1 likely affects actin assembly independent of RLC phosphorylation. Proper expression of MYPT1 or variant 2 is critical for RLC phosphorylation and actin assembly, thus maintaining normal cellular functions by simultaneously controlling cytoskeletal architecture and actomyosin activation.  相似文献   

20.
Guanine nucleotide dissociation inhibitors (GDIs) regulate both GDP/GTP and membrane association/dissociation cycles of Rho/Rac and Rab proteins.RhoGDI-3 is distinguishable from other rhoGDI proteins by its partial association with a detergent-resistant subcellular fraction. Here, we investigate the activity of this unusual rhoGDI using confocal laser scanning microscopy, immuno-isolation, and rhoGDI-3 mutants. We establish that the noncytosolic fraction of rhoGDI-3 is associated with the Golgi apparatus. The domain involved in this association is the unique N-terminal segment of rhoGDI-3 predicted to form an amphipathic α helix. This peptide is indispensable for Golgi association of rhoGDI-3 and sufficient to address a green fluorescent protein to the Golgi apparatus. Site-directed mutations, decreasing the hydrophobic surface of the helix, localize rhoGDI-3 into the cytoplasm. We establish that rhoGDI-3 is able to inhibit activation of the RhoG protein and to target this protein to the Golgi apparatus. Furthermore, we demonstrate the importance of the rhoGDI-3 N-terminal segment for both Golgi targeting and stability of the cytoplasmic RhoG/rhoGDI-3 complex. RhoGDI-3 is the first example of a GDI directly involved in the delivery of a Rho protein to a specific subcellular compartment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号