首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The free radical theory of aging is currently one of the most popular. In parallel, many studies have demonstrated the association of fibrosis and increased oxidative stress in the pathogenesis of some chronic human diseases, and fibrosis is often characteristic of aging tissues. One of the few interventions that effectively slow aging is calorie restriction and the protection against the age-associated increase of oxidative stress remains one of the foremost hypotheses to explain this action. As an alternative to traditional calorie restriction, another dietary regimen, termed alternate-day fasting, has also been tested, whose antiaging mechanisms have not been explored so much extensively. We thus studied the effects of alternate-day fasting, started at 2 months of age, on oxidative stress and fibrosis in the heart during aging. In the left ventricle of the heart of elderly (aged 24 months) versus young (aged 6 months) male rats we found a significant increase in oxidative stress paralleled by increased fibrosis. In parallel there was a significant increase in inflammatory cytokine levels and in NF-kB DNA binding activity with advancing age. Alternate-day fasting protected against all these age-related phenomena. These data support the hypothesis that this kind of dietary restriction protects against age-related fibrosis, at least in part by reducing inflammation and oxidative damage, and this protection can thus be considered a factor in the prevention of age-related diseases with sclerotic evolution.  相似文献   

2.
The aetiology of most neurodegenerative disorders is multifactorial and consists of an interaction between environmental factors and genetic predisposition. Free radicals derived primarily from molecular oxygen have been implicated and considered as associated risk factors for a variety of human disorders including neurodegenerative diseases and aging. Damage to tissue biomolecules, including lipids, proteins and DNA, by free radicals is postulated to contribute importantly to the pathophysiology of oxidative stress. The potential of environmental exposure to metals, air pollution and pesticides as well as diet as risk factors via the induction of oxidative stress for neurodegenerative diseases and aging is discussed. The role of genetic background is discussed on the light of the oxidative stress implication, focusing on both complex neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis) and monogenic neurological disorders (Huntington's disease, Ataxia telangiectasia, Friedreich Ataxia and others). Emphasis is given to role of the repair mechanisms of oxidative DNA damage in delaying aging and protecting against neurodegeneration. The emerging interplay between environmental-induced oxidative stress and epigenetic modifications of critical genes for neurodegeneration is also discussed.  相似文献   

3.
4.
Aging is a natural, complex, and multifactorial biological process associated with impairment of bioenergetic function, increased oxidative stress, attenuated ability to respond to stresses, and increased risk of contracting age-associated diseases. Oxidative stress is widely thought to underpin many aging processes. The mitochondrion, the powerhouse of the cell, is considered the most important cellular organelle to contribute to the aging process, mainly through respiratory chain dysfunction and formation of reactive oxygen species, leading to damage to mitochondrial proteins, lipids, and mitochondrial DNA. Cardiolipin, a phospholipid located at the level of the inner mitochondrial membrane, is known to be intimately involved in several mitochondrial bioenergetic processes as well as mitochondrial-dependent steps in apoptosis and mitochondrial membrane stability and dynamics. Alterations to cardiolipin structure, content, and acyl chain composition have been associated with mitochondrial dysfunction in multiple tissues in several physiopathological conditions and aging. In this review, we discuss several aspects of mitochondrial bioenergetic alterations in aging and the role played by reactive oxygen species and cardiolipin in these alterations.  相似文献   

5.
Mitochondria do not only produce less ATP, but they also increase the production of reactive oxygen species (ROS) as by-products of aerobic metabolism in the aging tissues of the human and animals. It is now generally accepted that aging-associated respiratory function decline can result in enhanced production of ROS in mitochondria. Moreover, the activities of free radical-scavenging enzymes are altered in the aging process. The concurrent age-related changes of these two systems result in the elevation of oxidative stress in aging tissues. Within a certain concentration range, ROS may induce stress response of the cells by altering expression of respiratory genes to uphold the energy metabolism to rescue the cell. However, beyond the threshold, ROS may cause a wide spectrum of oxidative damage to various cellular components to result in cell death or elicit apoptosis by induction of mitochondrial membrane permeability transition and release of apoptogenic factors such as cytochrome c. Moreover, oxidative damage and large-scale deletion and duplication of mitochondrial DNA (mtDNA) have been found to increase with age in various tissues of the human. Mitochondria act like a biosensor of oxidative stress and they enable cell to undergo changes in aging and age-related diseases. On the other hand, it has recently been demonstrated that impairment in mitochondrial respiration and oxidative phosphorylation elicits an increase in oxidative stress and causes a host of mtDNA rearrangements and deletions. Here, we review work done in the past few years to support our view that oxidative stress and oxidative damage are a result of concurrent accumulation of mtDNA mutations and defective antioxidant enzymes in human aging.  相似文献   

6.
Reactive oxygen and DNA damage in mitochondria.   总被引:8,自引:0,他引:8  
C Richter 《Mutation research》1992,275(3-6):249-255
During the last decade the importance of reactive oxygen species as major contributors to various types of cancer, heart diseases, cataracts, Parkinson's and other degenerative diseases that come with age, and to natural aging has become apparent. Mitochondria are the most important intracellular source of reactive oxygen. Mitochondrial DNA is heavily damaged by reactive oxygen at the bases, as indicated by the high steady-state level of 8-hydroxydeoxyguanosine, the presence of which causes mispairing and point mutations. Mitochondrial DNA is also oxidatively fragmented to a certain extent. Conceivably, such fragmentation relates to deletions found in mitochondrial DNA. Point mutations and deletions have recently been shown to be etiologically linked to several human diseases and natural aging. Future studies should address the causal relationship between mitochondrial dysfunction, production of reactive oxygen species, and aging.  相似文献   

7.
8.
Autophagy plays an essential role in cellular homeostasis through the quality control of proteins and organelles. Although a time-dependent decline in autophagic activity is believed to be involved in the aging process, the issue remains controversial. We previously demonstrated that autophagy maintains proximal tubular cell homeostasis and protects against kidney injury. Here, we extend that study and examine how autophagy is involved in kidney aging. Unexpectedly, the basal autophagic activity was higher in the aged kidney than that in young kidney; short-term cessation of autophagy in tamoxifen-inducible proximal tubule-specific autophagy-deficient mice increased the accumulation of SQSTM1/p62- and ubiquitin-positive aggregates in the aged kidney. By contrast, autophagic flux in response to metabolic stress was blunted with aging, as demonstrated by the observation that transgenic mice expressing a green fluorescent protein (GFP)-microtubule-associated protein 1 light chain 3B fusion construct, showed a drastic increase of GFP-positive puncta in response to starvation in young mice compared to a slight increase observed in aged mice. Finally, proximal tubule-specific autophagy-deficient mice at 24 mo of age exhibited a significant deterioration in kidney function and fibrosis concomitant with mitochondrial dysfunction as well as mitochondrial DNA abnormalities and nuclear DNA damage, all of which are hallmark characteristics of cellular senescence. These results suggest that age-dependent high basal autophagy plays a crucial role in counteracting kidney aging through mitochondrial quality control. Furthermore, a reduced capacity for upregulation of autophagic flux in response to metabolic stress may be associated with age-related kidney diseases.  相似文献   

9.
Oxidative stress has been implicated to play a major role in aging and age-related diseases. In the present study, we investigated the effects of aging on the total antioxidant capacity, uric acid, lipid peroxidation, total sulfhydryl group content and damage to DNA in adult (6 months), old (15 months) and senescent (26 months) male Wistar rats. The antioxidant capacity, determined by phycoerythrin-based TRAP method (total peroxyl radical-trapping potential) was significantly decreased in the plasma and myocardium of old and senescent rats, whereas plasma level of uric acid was elevated in 26-month-old rats. Age-related decline in plasma and heart antioxidant capacity was accompanied by a significant loss in total sulfhydryl group content, increased lipid peroxidation and higher DNA damage in lymphocytes. Correlations between TRAP and oxidative damage to lipids, proteins and DNA suggest that the decline in antioxidant status may play an important role in age-related accumulation of cell damage caused by reactive oxygen species.  相似文献   

10.
Rapid developments in free radical biology and molecular technology have permitted exploration of the free radical theory of aging. Oxidative stress has also been implicated in the pathogenesis of a number of diseases. Studies have found evidence of oxidative damage to macromolecules (DNA, lipids, protein), and data in transgenic Drosophila melanogaster support the hypothesis that oxidative injury might directly cause the aging process. Additional links between oxidative stress and aging focus on mitochondria, leading to development of the mitochondrial theory of aging. However, despite the number of studies describing the association of markers of oxidative damage with advancing age, few, if any definitively link oxidative injury to altered energy production or cellular function. Although a causal role for oxidative stress in the aging process has not been clearly established, this does not preclude attempts to reduce oxidative injury as a means to reduce morbidity and perhaps increase the healthy, useful life span of an individual. This review highlights studies demonstrating enhanced oxidative stress with advancing age and stresses the importance of the balance between oxidants as mediators of disease and important components of signal transduction pathways.  相似文献   

11.
Damage of molecules as a consequence of oxidative stress has been implicated in the pathogenesis of chronic diseases related to aging. Diet is a key environmental factor affecting the incidence of many chronic diseases. Antioxidant substances in diet enhance the DNA, lipid and protein protection by increasing the scavenging of free radicals. Products of oxidative damage of DNA (DNA strand breaks with oxidized purines or oxidized pyrimidines), lipids (conjugated dienes of fatty acids) and proteins (carbonyls) in relation to nutrition (vegetarian diet vs. non-vegetarian, traditional mixed diet) were measured in young women aged 20-30 years (46 vegetarians, 48 non-vegetarians) vs. older women aged 60-70 years (33 vegetarians, 34 non-vegetarians). In young subjects, no differences in values of oxidative damage as well as plasma values of antioxidative vitamins (C,beta-carotene) were observed between vegetarian and non-vegetarian groups. In older vegetarian group significantly reduced values of DNA breaks with oxidized purines, DNA breaks with oxidized pyrimidines and lipid peroxidation and on the other hand, significantly increased plasma values of vitamin C and beta-carotene were found compared to the respective non-vegetarian group. Significant age dependences of measured parameters (increase in all oxidative damage products and decrease in plasma vitamin concentrations in older women) were noted only in non-vegetarians. Vegetarian values of older women vs. young women were similar or non-significantly changed. The results suggest that increase of oxidative damage in aging may be prevented by vegetarian nutrition.  相似文献   

12.
Age to survive: DNA damage and aging   总被引:3,自引:0,他引:3  
Aging represents the progressive functional decline and increased mortality risk common to nearly all metazoans. Recent findings experimentally link DNA damage and organismal aging: longevity-regulating genetic pathways respond to the accumulation of DNA damage and other stress conditions and conversely influence the rate of damage accumulation and its impact for cancer and aging. This novel insight has emerged from studies on human progeroid diseases and mouse models that have deficient DNA repair pathways. Here we discuss a unified concept of an evolutionarily conserved 'survival' response that shifts the organism's resources from growth to maintenance as an adaptation to stresses, such as starvation and DNA damage. This shift protects the organism from cancer and promotes healthy aging.  相似文献   

13.
Oxidative DNA damage is implicated in brain aging, neurodegeneration and neurological diseases. Damage can be created by normal cellular metabolism, which accumulates with age, or by acute cellular stress conditions which create bursts of oxidative damage. Brain cells have a particularly high basal level of metabolic activity and use distinct oxidative damage repair mechanisms to remove oxidative damage from DNA and dNTP pools. Accumulation of this damage in the background of a functional DNA repair response is associated with normal aging, but defective repair in brain cells can contribute to neurological dysfunction. Emerging research strongly associates three common neurodegenerative conditions, Alzheimer's, Parkinson's and stroke, with defects in the ability to repair chronic or acute oxidative damage in neurons. This review explores the current knowledge of the role of oxidative damage repair in preserving brain function and highlights the emerging models and methods being used to advance our knowledge of the pathology of neurodegenerative disease.  相似文献   

14.
神经退化性疾病生物能量代谢和氧化应激研究进展   总被引:7,自引:0,他引:7  
衰老是导致几种常见的神经系统退化性疾病的主要危险因素,包括帕金森氏病(Parkinson’s disease PD),肌萎缩性侧索硬化(Amyotrophic lateral sclerosis,ALS),早老性痴呆(Alzheimer’s disease AD)和亨廷顿氏病(Huntington’s disease HD)。最近研究表明,神经退化性疾病涉及到线粒体缺陷,氧化应激等因素。在脑和其它组织中,老化可导致线粒体功能的损伤和氧化损伤的增强。PD病人中,已发现线粒体复合酶体Ⅰ活性降低,氧化损伤增加和抗氧化系统活性的改变。在几例家族性ALS病人中,也发现Cu、Zn超氧化物歧化酶(Cu,Zn SOD)基因的突变,导致Cu、Zn超氧化物歧化酶活性减低;散发的ALS病人氧化损伤增高。在HD病人中已发现能量代谢异常  相似文献   

15.
The aging stress response   总被引:1,自引:0,他引:1  
Aging is the outcome of a balance between damage and repair. The rate of aging and the appearance of age-related pathology are modulated by stress response and repair pathways that gradually decline, including the proteostasis and DNA damage repair networks and mitochondrial respiratory metabolism. Highly conserved insulin/IGF-1, TOR, and sirtuin signaling pathways in turn control these critical cellular responses. The coordinated action of these signaling pathways maintains cellular and organismal homeostasis in the face of external perturbations, such as changes in nutrient availability, temperature, and oxygen level, as well as internal perturbations, such as protein misfolding and DNA damage. Studies in model organisms suggest that changes in signaling can augment these critical stress response systems, increasing life span and reducing age-related pathology. The systems biology of stress response signaling thus provides a new approach to the understanding and potential treatment of age-related diseases.  相似文献   

16.
DNA repair is essential for the maintenance of genomic integrity. Consequently, altered repair capacity may impact individual health in such areas as aging and susceptibility to certain diseases. Defects in some DNA repair genes, for example, have been shown to increase cancer risk, accelerate aging and impair neurological functions. Now that over 115 genes directly involved in human DNA repair have been characterized at the DNA sequence level, the identification of single nucleotide polymorphisms (SNPs) in DNA repair genes is becoming a reality. This information will likely lead to the identification of alleles, or combinations of alleles that affect disease predisposition. This communication summarizes SNPs identified to date in the coding region of 24 human double-strand break repair (DSBR) genes. SNP data for four of these genes were obtained by screening at least 100 individuals in our laboratory. For each SNP, the codon number, amino acid substitution, allele frequency and population information is supplied.  相似文献   

17.
Autophagy and DNA repair are two essential biological mechanisms that maintain cellular homeostasis. Impairment of these mechanisms was associated with several pathologies such as premature aging, neurodegenerative diseases, and cancer. Intrinsic or extrinsic stress stimuli (e.g., reactive oxygen species or ionizing radiation) cause DNA damage. As a biological stress response, autophagy is activated following insults that threaten DNA integrity. Hence, in collaboration with DNA damage repair and response mechanisms, autophagy contributes to the maintenance of genomic stability and integrity. Yet, connections and interactions between these two systems are not fully understood. In this review article, current status of the associations and crosstalk between autophagy and DNA repair systems is documented and discussed.  相似文献   

18.
Cellular responses to reactive oxygen species-induced DNA damage and aging   总被引:2,自引:0,他引:2  
Oxidative stress in cells and tissues can occur during pathophysiological developments, e.g., during inflammatory and allergic diseases or during ischemic or toxic and hyperglycemic conditions via the generation of reactive oxygen species (ROS). Moreover, ROS can be generated by radiation (UV, X-rays) and pharmacologically, e.g., by anthracyclins as chemotherapeutic compounds for treatment of a variety of tumors to induce 'stress or aberrant signaling-inducing senescence' (STASIS). Although STASIS is distinguished from intracellular replicative senescence, a variety of cellular mechanisms appear similar in both aging pathways. It is generally accepted that oxidative stress and ROS eventually cause DNA damage, whereby insufficient cellular repair mechanisms may contribute to premature aging and apoptosis. Conversely, ROS-induced imbalances of the signaling pathways for metabolic protein turnover may also result in opposite effects to recruit malfunctioning aberrant proteins and compounds that trigger tumorigenic processes. Consequently, DNA damage plays a role in the development of carcinogenesis, but is also associated with an aging process in cells and organisms.  相似文献   

19.
Yang JL  Weissman L  Bohr VA  Mattson MP 《DNA Repair》2008,7(7):1110-1120
By producing ATP and regulating intracellular calcium levels, mitochondria are vital for the function and survival of neurons. Oxidative stress and damage to mitochondrial DNA during the aging process can impair mitochondrial energy metabolism and ion homeostasis in neurons, thereby rendering them vulnerable to degeneration. Mitochondrial abnormalities have been documented in all of the major neurodegenerative disorders-Alzheimer's, Parkinson's and Huntington's diseases, and amyotrophic lateral sclerosis. Mitochondrial DNA damage and dysfunction may be downstream of primary disease processes such as accumulation of pathogenic proteins. However, recent experimental evidence demonstrates that mitochondrial DNA damage responses play important roles in aging and in the pathogenesis of neurodegenerative diseases. Therapeutic interventions that target mitochondrial regulatory systems have been shown effective in cell culture and animal models, but their efficacy in humans remains to be established.  相似文献   

20.
Werner and Bloom syndromes are human diseases characterized by premature age-related defects including elevated cancer incidence. Using a novel Saccharomyces cerevisiae model system for aging and cancer, we show that cells lacking the RecQ helicase SGS1 (WRN and BLM homologue) undergo premature age-related changes, including reduced life span under stress and calorie restriction (CR), G1 arrest defects, dedifferentiation, elevated recombination errors, and age-dependent increase in DNA mutations. Lack of SGS1 results in a 110-fold increase in gross chromosomal rearrangement frequency during aging of nondividing cells compared with that generated during the initial population expansion. This underscores the central role of aging in genomic instability. The deletion of SCH9 (homologous to AKT and S6K), but not CR, protects against the age-dependent defects in sgs1Δ by inhibiting error-prone recombination and preventing DNA damage and dedifferentiation. The conserved function of Akt/S6k homologues in lifespan regulation raises the possibility that modulation of the IGF-I–Akt–56K pathway can protect against premature aging syndromes in mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号