首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The atmospheric deposition of phosphorus in Lake Victoria (East Africa)   总被引:2,自引:0,他引:2  
Wet and dry atmospheric fluxes of total phosphorus (TP) and soluble reactive phosphorus (SRP) measured at four sites over a 12-month period were used to estimate lake-wide atmospheric phosphorus (P) deposition to Lake Victoria, East Africa. Atmospheric samples were collected in plastic buckets with top diameter of 25.5 cm by 30 cm deep. The highest P loading rates of 2.7 (TP) and 0.8 (SRP) kg ha–2 year–1 were measured at Mwanza compared to less than 1.9 (TP) and 0.65 (SRP) kg ha–2 year–1 measured in other three sites. By applying these loading rates to the lake surface, it was estimated that 13.5 ktons (13.5 × 103 kg) of TP were deposited annually into the lake from the atmosphere. Thirty-two percent of the total was found to be in the SRP form. Dryfall, a component ignored in previous studies exceeded wet deposition by contributing 75% of the total P input. However, materials deposited by dryfall made a lesser contribution to soluble form of phosphorus, as SRP concentrations in the wet samples were 2–3 times higher than SRP concentrations in dry samples. The annual fluxes of phosphorus measured on the south and western shores of Lake Victoria (1.8–2.7 kg ha–2 year–1) are near the upper range of similar fluxes measured in the tropics. In comparison with the existing estimates of municipal and runoff P inputs from other studies, it is estimated that atmospheric deposition represent 55% of the total phosphorus input to the Lake Victoria. The four sampling sites were fairly clustered and wet and dry P deposition data were collected from shore/land stations and applied to open lake areas to estimate lake-wide P deposition. In this regard, the estimates determined here should be viewed as a first order approximation of actual P load deposited into the lake.  相似文献   

2.
E. Chauvet  A. Fabre 《Hydrobiologia》1990,192(2-3):183-190
Water contents of suspended matter, algal pigments, particulate organic carbon and particulate phosphorus were measured in the rivers Garonne (2 sites) and Ariège (1 site) throughout an annual cycle. The general trend of the parameters was similar at the three sites. Depending on the sites, the period of algal growth (chlorophyll a + phaeopigments > 25 µg l–1), lasted from two to six weeks in August–September. The algal peaks reached 50 to 90 µg 1–1 of total pigments. High contents of particulate organic carbon (> 2 mg 1–1) occurred at the end of summer (coinciding with algal growth), and during the November and May floods. In summer 50–75 % of the suspended matter was organic, in spring this was 10 times less. The high linear correlation between particulate organic carbon and pigment contents (r = 0.87; P = 0.0001) suggested an algal origin of at least part of the particulate carbon. Algal carbon was minor in the annual fluxes of particulate carbon (25 to 39% depending on the sites), but relatively high in comparison with other rivers. The mean particulate phosphorus content calculated over the year was 24 µg l–1 ; it varied from 15 µg l–1 during the high water period to 28 µg 1–1 during the low water period. Likewise the percentage of particulate phosphorus in the suspended matter varied from 0.17 to 0.40. A negative linear correlation existed between particulate phosphorus content and specific discharge (r = – 0.46; P = 0.0001).The very marked seasonal trend of the parameters and the interactions led us to differentiate two modes of the rivers' functioning: a hydrologic phase and a biological phase. The hydrologic phase (high water) was dominated by the processes of erosion and transfer over the whole catchment area and the flood plain, while the biological phase was characterized by a high primary production in the river bed.  相似文献   

3.
This study examines the effectiveness of a 1.2-ha created/restored emergent marsh at reducing nutrients from a 17.0 ha agricultural and forested watershed in the Ohio River Basin in west central Ohio, USA, during base flow and storm flow conditions. The primary source of water to the wetland was surface inflow, estimated in water year 2000 (October 1999–September 2000) to be 646 cm/year. The wetland also received a significant amount of groundwater discharge at multiple locations within the site that was almost the same in quantity as the surface flow. The surface inflow had 2-year averages concentrations of 0.79, 0.033, and 0.16 mg L−1 for nitrate + nitrite (as N), soluble reactive phosphorus (SRP), and total phosphorus (TP), respectively. Concentrations of nitrate–nitrite, SRP, and TP were 40, 56, and 59% lower, respectively, at the outflow than at the inflow to the wetland over the 2 years of the study. Concentrations of SRP and TP exported from the wetland increased significantly (α = 0.05) during precipitation events in 2000 compared to dry weather flows, but concentrations of nitrate–nitrite did not increase significantly. During these precipitation events the wetland retained 41% of the nitrate–nitrite, 74% of the SRP, and 28% of the TP (by mass). The wetland received an average of 50 g N m−2 per year of nitrate–nitrite and 7.1 g m−2 per year of TP in 2000. Retention rates for the wetland were 39 g N m−2 per year of nitrates and 6.2 g P m−2 per year. These are close to rates suggested in the literature for sustainable non-point source retention by wetlands. The design of this wetland appears to be suitable as it retained a significant portion of the influent nutrient load and did not lose much of its retention capacity during heavy precipitation events. Some suggestions are given for further design improvements.  相似文献   

4.
The study provides a 2.5 year record of Rhenosterkop Dam (KwaNdebele, South Africa) plankton population dynamics and production in relation to physical and chemical changes which occurred during the trophic depression and stabilization phases of the reservoir. The mean volume of the reservoir was 4% of full storage capacity. Water temperatures ranged from 14 °C to 27 °C. Due to inorganic suspensoids, the euphotic zone averaged 2.6 m. An anaerobic zone developed each summer. The nitrogen, soluble reactive phosphorus (SRP) and silica concentrations did not displaya seasonal pattern, but the latter two nutrients declined over the study. The dominant phytoplankton group was the cryptophytes while the zooplankton population was dominated by crustaceans. Chlorophyll a concentrations ranged from 1.1 to 27 mg m–3 and were positively correlated to silica and SRP concentrations and inversely with NH4-N concentrations. Primary production ranged from 22.6 to 375 mgC m–2 h–1; changes in Amax were positively correlated to silica and SRP concentrations. Total zooplankton dry weight biomass varied from <0.5 to >4 mg l–1. Annual zooplankton (secondary) production was 8 to 15 gC m–3 a–1; both primary and secondary production were greatest in the first 12 months of study and remained at low levels for the remainder, similar to the trends for silica and SRP. The data indicate that the reservoir shifted from eutrophic to mesotrophic during the study, typical of events in new reservoirs, and that changes in the plankton populations were largely the result of changing nutrient concentrations.  相似文献   

5.
Organic material transport in the New River, Virginia, was investigated over a 12 month period. Collections were made using drift nets and grab water samples from bridges at two sites about 210 km apart. About midway between the two sampling sites is a 1920 ha impoundment used for flood control and power generation. Dissolved organic matter (DOM) ranged 1–50 mg l–1 at Site 1, upstream from the impoundment, and 11–19 mg l–1 at Site 2 and was the most abundant form of organic matter at both sites during most periods of the year. Fine particulate organic matter (FPOM) ranged 1–45 mg l–1 at Site 1 and 1–9 mg l–1 at Site 2. Concentration of coarse particulate organic matter (CPOM) ranged 0.1–0.7 mg l–1 at Site 1 and 0.1–0.2 mg l–1 at Site 2. On an annual basis, the organic matter loads at Site 1 and Site 2 were computed to be 67 000 and 76 800 T y–1, respectively, suggesting that the impoundment trapped and processed POM, and that municipal and industrial treatment facilities between the study sites supplemented DOM in the river.  相似文献   

6.
In 1984 a frequent monitoring programme was started in the hypertrophic S.W. Frisian lake district, with emphasis on total phosphorus (TP) and chloride (Cl). The main objectives of the project were: to quantify the phosphorus flows, to gain insight in the process of eutrophication, and to simulate management scenarios. The seasonal variability in the lakes is due mainly to the man-made hydrology: reception of humic-rich polder water in wet periods (winter) and inlet of chloride-rich Usselmeer water in dry periods (summer). The yearly means of TP concentrations in the lakes (Tjeukemeer, Groote Brekken and Slotermeer) ranged from 0.23 to 0.29 mg l–1. However, much higher concentrations (0.9 mg l–1) were found in periods with high inflow of polder water.The simulations with a mass balance showed an acceptable similarity between measured and simulated concentrations of TP as well as of Cl. Chloride was modelled to verify the accuracy of a hydrodynamic model. A sensitivity analysis of the apparent settling rate in the P model showed that sensitivity was lowest in simulations of Groote Brekken and highest in simulations of Slotermeer, the difference being attributable to the influence of the water residence time. The model was found to be appropriate for simulating management scenarios.  相似文献   

7.
Wind-induced sediment resuspension occurs frequently in the shallow and eutrophic Lake Arresø, Denmark. The impact of resuspension on internal phosphorus loading was investigated by laboratory experiments studying P-release from the undisturbed sediment surface and by experiments simulating resuspension events.Phosphorus release from undisturbed sediment sampled in May and August was 12 mg and 4 mg m–2 d–1, respectively. During experimental simulation of resuspension, soluble reactive phosphate (SRP) increased by 20–80 µg l–1, which indicates that a typical resuspension event in the lake would be accompanied by the release of 150 mg SRP m–2. The internal P loading induced by resuspension is estimated to be 60–70 mg m–2 d–1, or 20–30 times greater than the release from undisturbed sediment.SRP release during simulation of resuspension was mainly dependent on the equilibrium conditions in the water column and was basically independent of the increase in suspended solids and the duration of resuspension. A second simulation of resuspension conducted 26 hours later, did not result in any further release of SRP from sediment sampled in May. In contrast, there was an additional SRP release from sediment sampled in August, indicating that an exchangable P pool, capable of altering equilibrium conditions, is built up between resuspension events.It is concluded that resuspension, by increasing the P flux between sediment and water, plays a major role in the maintenance of the high nutrient level in Lake Arresø. A relatively high release rate is maintained during resuspension because of the low Fe:P ratio and the high concentration of NH4Cl-extractable P in the sediment.  相似文献   

8.
Nutrient-phytoplankton relationships in a tropical meromictic soda lake   总被引:1,自引:1,他引:0  
Seasonal variation through one year in total nitrogen (TN), total phosphorus (TP), phytoplankton biomass, phytoplankton species composition and other environmental factors were examined in Lake Sonachi, a tropical meromictic soda lake. Mean concentrations of TN and TP were 11 000 µg N l-1 and 100 µg P l-1, respectively. Maximum concentrations of TN and TP occurred in the monimolimnion. Phytoplankton biomass ranged from 350 to 1260 mg m-3. Synechococcus bacillaris, a small coccoid cyanophyte, dominated the phytoplankton. The mean chlorophyll a concentration of 37 mg · m-3 was a modest value when compared with those of other tropical soda lakes. High TN:TP ratios indicated phosphorus limitation in the lake.  相似文献   

9.
Fortnightly measurements of physical and chemical variables were made at two locations on the Blue and White Niles near Khartoum from August 1968 to December 1970. Variables analysed from each river were: temperature, pH, total residue, current velocity, oxygen, alkalinity, phosphate, nitrate, ammonia, silica, sulphate, iron, calcium, magnesium, sodium, potassium and oxidizable organic matter. The seasonal variations of these factors in the two Niles are compared and the interrelationships existing between some of them are discussed. Comparisons with earlier studies on the Nile and with some tropical rivers are made.In the Blue Nile, the amounts of suspended matter and nutrients are largely dependent upon the flood regime. Nitrate, phosphate, iron, oxidizable organic matter and total residue increase considerably in the Blue Nile when the river is in flood (peaks: 1 880 µg NO3-N l–1; 0.31 mg Fe l–1; 3 842 mg total residue · l–1).In the White Nile, concentrations of nitrate, phosphate, iron, oxidizable organic matter and total residue attain their peaks during the rainy season (270 µg NO3-N l–1; 163 tag PO4-P l–1; 0.46 mg Fe · l–1; 502 mg total residue · l–1).In both rivers, alkalinity, calcium, sodium and potassium tend to increase during the dry season while declining in the rainy season. Silica is depleted at certain times of the year, yet relatively high concentrations are maintained throughout the year and were not expected to limit growth of diatoms. Fall in silica concentrations, unlike nitrate, phosphate and iron, was always followed by a rapid restoration of a high level. Silica and magnesium showed no response to changes in discharge rates.  相似文献   

10.
The contribution of potential export of materials from bottom sedimentsand salt marshes into the water column of a shallow estuarine system of Ria deAveiro to the observed high bacterial productivity in the mid section of thisestuary was evaluated. Vertical profiles of physical, chemical and bacterialvariables were studied in the marine and brackish water zones, and oftransversal profiles in the brackish zone only. Although the concentrations ofseston (17–241 mg l–1), particulate organiccarbon (3–15.5 mg l–1) and chlorophyll(1.2–7.0 g l–1) varied widely, thevertical and transversal profiles were without much variation. Total bacterialnumber (0.2–8.5 × 109 cellsl–1) and the number of particle-attached bacteria(0.02–2.50 × 109 cellsl–1)along vertical and transversal profiles did not differ much, but the rate ofbacterial production (0.05–14.2 g C l–1h–1) and dissolved organic carbon concentration(6.0–69.2 mg l–1) were frequently highernear the salt marsh margin at the brackish water transect. The increase inproductivity could not be associated with runoff of particulate matter butcoincided with the inputs of dissolved organic carbon. The results of verticaland transversal profiles point to a minor role of particulate matter additionsfrom the salt marsh area or from bed sediments.  相似文献   

11.
Transport of coarse particulate organic matter in an Idaho river,USA   总被引:1,自引:1,他引:0  
Ted R. Angradi 《Hydrobiologia》1991,211(3):171-183
I investigated organic matter transport in the Henry's Fork of the Snake River, Idaho, USA, from August 1987 to November 1988. Mean discharge during the study was 15 m3 s–1. Screens were used to sample very coarse (> 6 mm) transported aquatic macrophyte material (VCTMM). Drift nets were used to sample coarse (1–6 mm) and fine (0.25–1 mm) transported particulate organic matter (CTOM and FTOM). Mean monthly concentration of VCTMM was 0.064 mg AFDWl–1 and was significantly higher than CTOM (0.024 mg AFDW l–1) and FTOM (0.036 mg AFDW l–1). VCTMM concentration was highest in December (0.163 mg AFDW l–1) and lowest in May (0.018 mg AFDW l–1). The sample position along a transect across the channel had a significant effect on the amount of transported organic matter collected in many months. The concentration of debris from individual species tracked the standing stock of that species during the growing season. In Fall, a dramatic increase in VCTMM corresponded to a decrease in macrophyte standing stock. FTOM and CTOM concentrations were highest in January (CTOM: 0.048; FTOM: 0.111 mg AFDW l–1), lowest in November 1988 (<0.006 mg AFDW l–1), were not correlated with discharge, and were inversely correlated with the standing stocks of macrophytes upstream, probably because macrophyte beds influenced the retentiveness of the channel. Standing stock of aquatic macrophytes was highest in September–October (5.2 kg wet weight m –2) and lowest in February (1.7 kg wet weight m–2). Annual movement of particulate organic matter past the sampling point was about 45 000 kg AFDW, of which 21 000 kg was VCTMM, 8 000 kg was CPOM, and 16 000 kg was FPOM.  相似文献   

12.
Peak pore water SRP and iron(II) concentrations were found during summer in surface sediments in the shallow and eutrophic L. Finjasjön, Sweden, and the concentrations generally increased with water depth. The SRP variation in surface sediments (0–2 cm) was correlated with temperature (R2 = 0.82–0.95) and iron(II) showed a correlation with sedimentary carbon on all sites (R2 = 0.42–0.96). In addition, sedimentary Chla, bacterial abundances and production rates in surface sediments (0–2 cm) varied seasonally, with peaks during spring and fall sedimentation. Bacterial production rates were correlated with phosphorus and carbon in the sediment (R2 = 0.90–0.95 and R2 = 0.31–0.95, respectively), indicating a coupling with algal sedimentation. A general increase in sediment Chla and bacterial abundances towards sediments at greater water depth was found. Further, data from 1988–90 reveal that TP and TFe concentrations in the lake were significantly correlated during summer (R2 = 0.81 and 0.76, in the hypolimnion and epilimnion, respectively). The results indicate that the increase in pore water SRP and Fe(II) in surface sediments during summer is regulated by bacterial activity and the input of organic matter. In addition, spatial and temporal variations in pore water composition are mainly influenced by temperature and water depth and the significant correlation between TP and TFe in the water suggests a coupled release from the sediment. These findings support the theory of anoxic microlayer formation at the sediment-water interface.  相似文献   

13.
Eutrophication has become increasingly serious and noxious algal blooms have been of more frequent occurrence in the Yangtze River Estuary and in the adjacent East China Sea. In 2003 and 2004, four cruises were undertaken in three zones in the estuary and in the adjacent sea to investigate nitrate (NO3–N), ammonium (NH4–N), nitrite (NO2–N), soluble reactive phosphorus (SRP), dissolved reactive silica (DRSi), dissolved oxygen (DO), phytoplankton chlorophyll a (Chl a) and suspended particulate matter (SPM). The highest concentrations of DIN (NO3–N+NH4–N+NO2–N), SRP and DRSi were 131.6, 1.2 and 155.6 μM, respectively. The maximum Chl a concentration was 19.5 mg m−3 in spring. An analysis of historical and recent data revealed that in the last 40 years, nitrate and SRP concentrations increased from 11 to 97 μM and from 0.4 to 0.95 μM, respectively. From 1963 to 2004, N:P ratios also increased from 30–40 up to 150. In parallel with the N and P enrichment, a significant increase of Chl a was detected, Chl a maximum being 20 mg m−3, nearly four times higher than in the 1980s. In 2004, the mean DO concentration in bottom waters was 4.35 mg l−1, much lower than in the 1980s. In comparison with other estuaries, the Yangtze River Estuary was characterized by high DIN and DRSi concentrations, with low SRP concentrations. Despite the higher nutrient concentrations, Chl a concentrations were lower in the inner estuary (Zones 1 and 2) than in the adjacent sea (Zone 3). Based on nutrient availability, SPM and hydrodynamics, we assumed that in Zones 1 and 2 phytoplankton growth was suppressed by high turbidity, large tidal amplitude and short residence time. Furthermore, in Zone 3 water stratification was also an important factor that resulted in a greater phytoplankton biomass and lower DO concentrations. Due to hydrodynamics and turbidity, the open sea was unexpectedly more sensitive to nutrient enrichment and related eutrophication processes.  相似文献   

14.
As a result of high nutrient loading Lake Veluwe suffered from an almost permanent bloom of the blue-green algaOscillatoria agardhii Gomont. In 1979, the phosphorus loading of the lake was reduced from approx. 3 to 1 g P.m–2.a–1. Moreover, since then the lake has been flushed during winter periods with water low in phosphorus. This measure aimed primarily at interrupting the continuous algal bloom. The results of these measures show a sharp decline of total-phosphorus values from 0.40–0.60 mg P.l–1 (before 1980) to 0.10–0.20 mg P.l–1 (after 1980). Summer values for chlorophylla dropped from 200–400 mg.m–3 to 50–150 mg.m–3.The increase in transparency of the lake water was relatively small, from summer values of 15–25 cm before the implementation of the measures to 25–45 cm afterwards. The disappointing transparency values may be explained by the decreasing chlorophylla and phosphorus content of the algae per unit biovolume. Blue-green algae are gradually loosing ground. In the summer of 1985 green algae and diatoms dominated the phytoplankton for the first time since almost 20 years. To achieve the ultimate water quality objectives (transparency values of more than 100 cm in summer), the phosphorus loading has to be reduced further.  相似文献   

15.
Fluxes of dissolved and particulate nitrogen (N) and phosphorus(P) from three adjacent watersheds were quantified with ahigh-resolution sampling program over a five-year period. The watershedsvary by an order of magnitude in area (12,875, 7968 and 1206 ha), and inall three watersheds intensive agriculture comprises > 90% ofland. Annual fluxes of dissolved N and P per unit watershed area (exportcoefficients) varied 2X among watersheds, and patterns were notdirectly related to watershed size. Over the five-year period, meanannual flux of soluble reactive P (SRP) was 0.583 kg P ·ha–1 · yr–1 from the smallestwatershed and 0.295 kg P · ha–1 ·yr–1 from the intermediate-sized watershed, which hadthe lowest SRP flux. Mean annual flux of nitrate was 20.53 kg N ·ha–1 · yr–1 in the smallestwatershed and 44.77 kg N · ha–1 ·yr–1 in the intermediate-sized watershed, which had thehighest nitrate flux. As a consequence, the export ratio of dissolvedinorganic N to SRP varied from 80 (molar) in the smallest watershed to335 in the intermediate-sized watershed. Because most N was exported asnitrate, differences among watersheds in total N flux were similar tothose for nitrate. Hence, the total N:P export ratio was 42(molar) for the smallest watershed and 109 for the intermediate-sizedwatershed. In contrast, there were no clear differences among watershedsin the export coefficients of particulate N, P, or carbon, even though> 50% of total P was exported as particulate P in allwatersheds. All nutrient fractions were exported at higher rates in wetyears than in dry years, but precipitation-driven variability in exportcoefficients was greater for particulate fractions than for dissolvedfractions.Examination of hydrological regimes showed that, for all nutrientfractions, most export occurred during stormflow. However, theproportion of nitrate flux exported as baseflow was much greater thanthe proportion of SRP flux exported as baseflow, for all threewatersheds (25–37% of nitrate exported as baseflow vs.3–13% of SRP exported as baseflow). In addition, baseflowcomprised a greater proportion of total discharge in theintermediate-sized watershed (43.7% of total discharge) than theother two watersheds (29.3 and 30.1%). Thus, higher nitrateexport coefficients in the intermediate-sized watershed may haveresulted from the greater contribution of baseflow in this watershed.Other factors potentially contributing to higher nitrate exportcoefficients in this watershed may be a thicker layer of loess soils anda lower proportion of riparian forest than the other watersheds. Theamong-watershed variability in SRP concentrations and exportcoefficients remains largely unexplained, and might represent theminimum expected variation among similar agriculturalwatersheds.  相似文献   

16.
Hydrological and chemical structures off the Rhône River estuary resulting from the introduction of the river flow into the Mediterranean Sea are described. The effect of the fresh-water/sea-water interface on the distribution of inorganic and organic matter off the Rhône river is investigated. Strong vertical gradients of inorganic and dissolved organic matter such as lipids characterized the first few meters in this area (from 83.7 to 0.6 N-NO3 µgat l–1, from 6.39 to 0.92 N-NH4 µgat l–1 and from 299 to 73 µg l–1 of total dissolved lipids). At the interface, substantial increases of particulate organic (PON: from 45 µg l–1 at surface to 118 µg l–1 at the interface, POC: from 462 to 876 µg l–1, total particulate lipids: from 33 to 648 µg l–1) and suspended matter in general (from 18 to 22.2 mg l–1) were observed. High phytoplanktonic production may account for some of this enrichment, although passive accumulation might also be involved.  相似文献   

17.
Water and suspended sediment (SS) samples were collected from the Changjiang River at the Datong Hydrological Station (DHS), five times from May 1997 through January 1999 in order to evaluate transport, composition and bioavailability of phosphorus (P) during a 1998 flood. Transport of most of the phosphorus compositions was substantially higher during the 1998 flood than at other sampling dates. Phosphorus associated with suspended sediment (TPP) accounted for more than 85% of total phosphorus (TP) transport during periods of preflood and flood. The high transport of TPP during the flood was due to unusually high concentrations of TPP and sediment discharge. The potentially bioavailable phosphorus in SS (PBAP) accounted for about 10% of TPP. PBAP with dissolved inorganic phosphorus (DIP) consisted of 15–89% of TP. For all the sampling dates, the concentrations of potential bioavailable phosphorus (BAP) ranged from 0.035–0.08 mg L–1, significantly higher than the limiting concentration for eutrophication. Therefore, the increasing temporal trends of TP concentration and high bioavailability of TP appear to support more frequent algal blooms in receiving East China Sea coastal waters in recent years. Hence, the underestimate of TPP transport by large rivers may also underestimate the biogeochemical cycling of other associated nutrients, such as nitrogen and carbon.  相似文献   

18.
In this study we manipulated both nitrogen and phosphorus concentrations in stream mesocosms to develop quantitative relationships between periphytic algal growth rates and peak biomass with inorganic N and P concentrations. Stream water from Harts Run, a 2nd order stream in a pristine catchment, was constantly added to 36 stream-side stream mesocosms in low volumes and then recirculated to reduce nutrient concentrations. Clay tiles were colonized with periphyton in the mesocosms. Nutrients were added to create P and N concentrations ranging from less than Harts Run concentrations to 128 μg SRP l−1 and 1024 μg NO3-N l−1. Algae and water were sampled every 3 days during colonization until periphyton communities reached peak biomass and then sloughed. Nutrient depletion was substantial in the mesocosms. Algae accumulated in all streams, even streams in which no nutrients were added. Nutrient limitation of algal growth and peak biomass accrual was observed in both low P and low N conditions. The Monod model best explained relationships between P and N concentrations and algal growth and peak biomass. Algal growth was 90% of maximum rates or higher in nutrient concentrations 16 μg SRP l−1 and 86 μg DIN l−1. These saturating concentrations for growth rates were 3–5 times lower than concentrations needed to produce maximum biomass. Modified Monod models using both DIN and SRP were developed to explain algal growth rates and peak biomass, which respectively explained 44 and 70% of the variance in algal response.  相似文献   

19.
Spatial variability in selected chemical, physical and biological parameters was examined in waters draining relatively pristine tropical forests spanning elevations from 35 to 2600 meters above sea level in a volcanic landscape on Costa Rica's Caribbean slope. Waters were sampled within three different vegetative life zones and two transition zones. Water temperatures ranged from 24–25 °C in streams draining lower elevations (35–250 m) in tropical wet forest, to 10 °C in a crater lake at 2600 m in montane forest. Ambient phosphorus levels (60–300 µg SRP L–1; 66–405 µg TP L–1) were high at sites within six pristine drainages at elevations between 35–350 m, while other undisturbed streams within and above this range in elevation were low (typically <30.0 µg SRP L–1). High ambient phosphorus levels within a given stream were not diagnostic of riparian swamp forest. Phosphorus levels (but not nitrate) were highly correlated with conductivity, Cl, Na, Ca, Mg and SO4. Results indicate two major stream types: 1) phosphorus-poor streams characterized by low levels of dissolved solids reflecting local weathering processes; and 2) phosphorus-rich streams characterized by relatively high Cl, SO4, Na, Mg, Ca and other dissolved solids, reflecting dissolution of basaltic rock at distant sources and/or input of volcanic brines. Phosphorus-poor streams were located within the entire elevation range, while phosphorus-rich streams were predominately located at the terminus of Pleistocene lava flows at low elevations. Results indicate that deep groundwater inputs, rich in phosphorus and other dissolved solids, surface from basaltic aquifers at breaks in landform along faults and/or where the foothills of the central mountain range merge with the coastal plain.  相似文献   

20.
A field plot experiment was conducted on two types of paddy soils in the Taihu Lake Region of China from June 2000 through 2002 to assess phosphorus (P) losses by runoff and drainage flow and the effectiveness of rice–wheat double cropping on reducing P losses from paddy soils. Commercial NPK compound fertilizer and single superphosphate fertilizer were applied to furnish 0, 30, 150, and 300 kg P ha–1 for rice season trials, and 0, 20, 80, and 160 kg P ha–1 for wheat season trials. The experiments consisted of four replicates (plots of 5 × 6 m in a randomized block design) of each treatment in Argic stagnic anthrosols (Anzhen site) and six replicates in Cumulic stagnic anthrosols (Changshu site). P30 and P20 treatments (30 and 20 kg P ha–1 in rice and wheat seasons, respectively) were considered as conventional P application rates in this area. Higher P treatments, such as P150 and P300 for rice and P80 and P160 for wheat, were intended to simulate the status of soil P in ~10–20 years with an application of P30 or P20 kg P ha–1 each season. Results revealed that the average concentration of total P (TP) in runoff samples was 0.870 mg P l–1 from P30 plots during the rice season, and 0.763 mg P l–1 from P20 plots during the wheat season in both years at the Anzhen site, while it was 0.703 and 1.292 mg P l–1, respectively, at the Changshu site. Average TP load (mass loss) at the Anzhen site with conventional P application rates was 220.9 and 439.5 g P ha–1 during rice season in 2000/2001 and 2001/2002, respectively, but was 382.3 and 709.4g P ha–1 during wheat season, respectively. Mass loss at the Changshu site was 140.4 and 165.7 g P ha–1 during the rice season and 539.1 and 1184.6 g P ha–1 during the wheat season, respectively. P losses from paddy soils were significantly greater during the wheat season, especially at the Changshu site, indicating that planting rice reduced P. Phosphate fertilizer levels significantly affected P concentrations and P loads in runoff both seasons. Both mean concentrations and average seasonal P loads from the P150/P80 plots were lower than that from the P300/P160 plots, but significantly higher than that from the P30/P20 and P0 plots. This implied that runoff P loads would be greatly increased in 10–20 years as a result of the accumulation of soil P if 50 kg P ha–1 (rice season plus wheat season) is applied each year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号