首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Abstract

We have previously synthesized a 2,5-diphenylfuranamidine dication (4) and presented evidence that this compound binds to AT sequences in DNA by a minor-groove interaction mode but binds to GC sequences by intercalation (1,2). To probe these sequence-dependent binding modes in more detail, and particularly to obtain additional evidence for the binding mode in GC rich sequences, we have synthesized and studied the DNA complexes of 1–3 which have the furan ring of 4 replaced by 2,6-substituted pyridine (1), pyrimidine (2), or triazine (3) ring systems. The three compounds with a six-membered central ring system bind to AT DNA sequences more weakly than the furan compound, but retain the minor-groove binding mode. The pyridine and pyrimidine derivatives bind to GC sequences of DNA more strongly than the furan, but the triazine derivative binds more weakly. The aromatic proton signals of 1–3, as previously observed with 4 shift upfield by approximately 0.5 ppm or greater on complex formation with polyd(G-C)2. This and other spectroscopic as well as viscosity and kinetics results indicate that 1–4 bind to GC sites in DNA by intercalation. A nonclassical intercalation model, with the twisted-unfused, aromatic ring system intercalated into an intercalation site of matching structure can explain all of our and the literature results for the GC binding mode of these unfused, aromatic compounds.  相似文献   

2.
Abstract

The drugs Hoechst 33258, berenil and DAPI bind preferentially to the minor groove of AT sequences in DNA Despite a strong selectivity for AT sites, they can interact with GC sequences by a mechanism which remains so far controversial. The 2-amino group of guanosine represents a steric hindrance to the entry of the drugs in the minor groove of GC sequences. Intercalation and major groove binding to GC sites of GC-rich DNA and polynucleotides have been proposed for these drugs. To investigate further the mode of binding of Hoechst 33258, berenil and DAPI to GC sequences, we studied by electric linear dichroism the mutual interference in the DNA binding reaction between these compounds and a classical intercalator, proflavine, or a DNA-threading intercalating drug, the amsacrine-4-carboxamide derivative SN16713. The results of the competition experiments show that the two acridine intercalators markedly affect the binding of Hoechst 33258, berenil and DAPI to GC polynucleotides but not to DNA containing AT/GC mixed sequences such as calf thymus DNA Proflavine and SN16713 exert dissimilar effects on the binding of Hoechst 33258, berenil and DAPI to GC sites. The structural changes in DNA induced upon intercalation of the acridine drugs into GC sites are not identically perceived by the test compounds. The electric linear dichroism data support the hypothesis that Hoechst 33258, berenil and DAPI interact with GC sites via a non-classical intercalation process.  相似文献   

3.
We have designed and synthesized acridine-netropsin hybrid molecules. Spectroscopic (absorption, CD, flow dichroism and fluorescence) measurements reveal that hybrid molecules interact with DNA by both intercalation and minor-groove binding and shows enhanced preference for AT-rich sites.  相似文献   

4.
Insights into binding efficacy and thermodynamic aspects of small molecules are important for rational drug designing and development. Here, the interaction of Harmane (Har), a very important bioactive indole alkaloid, with AT and GC hairpin duplex−DNAs has been reported using various biophysical tools. Detailed molecular mechanism with special emphasis on binding nature, base specificity, and thermodynamics have been elucidated via probing nucleic acids with varying base compositions. Har bound to both the DNA strands exhibited hypochromic effect in absorbance whereas bathochromic and hypochromic effects in fluorescence spectra. The binding constants estimated were in the order of 105 M−1 (higher for GC sequence compared with AT) with 1:1 stoichiometry. Noncooperative binding mode has been observed via intercalation in both the cases. The thermodynamic profile was obtained from temperature-dependent fluorescence experiments. Both Har–AT and Har–GC complexations were exothermic in nature associated with positive entropy and negative enthalpy changes. Salt-dependent studies revealed that the binding interaction was governed by nonpolyelectrolytic and hydrophobic interaction forces. The ligand-induced structural perturbation of the DNA structures was evident from the circular dichroism data. Molecular modelling data indicated towards the involvement of hydrophobic forces and hydrogen bonding.  相似文献   

5.
The interaction of DAPI and propidium with RNA (polyA.polyU) and corresponding DNA (polydA.polydT) sequences has been compared by spectroscopic, kinetic, viscometric, Tm, and molecular modeling methods. Spectral changes of propidium are similar on binding to the AT and AU sequences but are significantly different for binding of DAPI. Spectral changes for DAPI with the DNA sequence are consistent with the expected groove-binding mode. All spectral changes for complexes of propidium with RNA and DNA and for DAPI with RNA, however, are consistent with an intercalation binding mode. When complexed with RNA, for example, DAPI aromatic protons signals shift significantly upfield, and the DAPI UV-visible spectrum shows significantly larger changes than when complexed with DNA. Slopes of log kd (dissociation rate constants) versus-log [Na+] plots are similar for complexes of propidium with RNA and DNA and for the DAPI-RNA complex and are in the range expected for an intercalation complex. The slope for the DAPI-DNA complex, however, is much larger and is in the range expected for a groove-binding complex. Association kinetics results also support an intercalation binding mode for the DAPI-RNA complex. The viscosity of polyA.polyU solutions increases significantly on addition of both propidium and DAPI, again in agreement with an intercalation binding mode for both molecules with RNA. Molecular modeling studies completely support the experimental findings and indicate that DAPI forms a very favorable intercalation complex with RNA. DAPI also forms a very stable complex in the minor groove of AT sequences of DNA, but the stabilizing interactions are considerably reduced in the wide, shallow minor groove of RNA. Modeling studies,thus,indicate that DAPI interaction energetics are more favorable for minor-groove binding in AT sequences but are more favorable for interaction in RNA.  相似文献   

6.
The interactions between 20 drugs and a variety of synthetic DNA polymers and natural DNAs were studied by electric linear dichroism (ELD). All compounds tested, including several clinically used antitumour agents, are thought to exert their biological activities mainly by virtue of their abilities to bind to DNA. The selected drugs include intercalating agents with fused and unfused aromatic structures and several groove binders. To examine the role of base composition and base sequence in the binding of these drugs to DNA, ELD experiments were carried out with natural DNAs of widely differing base composition as well as with polynucleotides containing defined alternating and non-alternating repeating sequences, poly(dA).poly(dT), poly(dA-dT).poly(dA-dT),poly(dG).poly(dC) and poly(dG-dC).poly(dG-dC). Among intercalating agents, actinomycin D was found to be by far the most GC-selective. GC selectivity was also observed with an amsacrine-4-carboxamide derivative and to a lesser extent with methylene blue. In contrast, the binding of amsacrine and 9-aminoacridine was practically unaffected by varying the GC content of the DNAs. Ethidium bromide, proflavine, mitoxantrone, daunomycin and an ellipticine derivative were found to bind best to alternating purine-pyrimidine sequences regardless of their nature. ELD measurements provided evidence for non-specific intercalation of amiloride. A significant AT selectivity was observed with hycanthone and lucanthone. The triphenyl methane dye methyl green was found to exhibit positive and negative dichroism signals at AT and GC sites, respectively, showing that the mode of binding of a drug can change markedly with the DNA base composition. Among minor groove binders, the N-methylpyrrole carboxamide-containing antibiotics netropsin and distamycin bound to DNA with very pronounced AT specificity, as expected. More interestingly the dye Hoechst 33258, berenil and a thiazole-containing lexitropsin elicited negative reduced dichroism in the presence of GC-rich DNA which is totally inconsistent with a groove binding process. We postulate that these three drugs share with the trypanocide 4',6-diamidino-2-phenylindole (DAPI) the property of intercalating at GC-rich sites and binding to the minor groove of DNA at other sites. Replacement of guanines by inosines (i.e., removal of the protruding exocyclic C-2 amino group of guanine) restored minor groove binding of DAPI, Hoechst 33258 and berenil. Thus there are several cases where the mode of binding to DNA is directly dependent on the base composition of the polymer. Consequently the ELD technique appears uniquely valuable as a means of investigating the possibility of sequence-dependent recognition of DNA by drugs.  相似文献   

7.
Phenylamidine cationic groups linked by a furan ring (furamidine) and related symmetric diamidine compounds bind as monomers in the minor groove of AT sequences of DNA. DB293, an unsymmetric derivative with one of the phenyl rings of furamidine replaced with a benzimidazole, can bind to AT sequences as a monomer but binds more strongly to GC-containing minor-groove DNA sites as a stacked dimer. The dimer-binding mode has high affinity, is highly cooperative and sequence selective. In order to develop a better understanding of the correlation between structural and thermodynamic aspects of DNA molecular recognition, DB293 was used as a model to compare the binding of minor-groove agents with AT and mixed sequence DNA sites. Isothermal titration calorimetry and surface plasmon resonance results clearly show that the binding of DB293 and other related compounds into the minor groove of AT sequences is largely entropy-driven while the binding of DB293 as a dimer into the minor groove of GC-containing sequences is largely enthalpy-driven. At 25 degrees C, for example, the AT binding has DeltaG degrees, DeltaH degrees and TDeltaS degrees values of -9.6, -3.6 and 6.0 kcal/mol while the values for dimer binding to a GC-containing site are -9.0, -10.9 and -1.9 kcal/mol (per mol of bound compound), respectively. These results show that the thermodynamic components for binding of compounds of this type to DNA are very dependent on the structure, solvation and sequence of the DNA binding site.  相似文献   

8.
The phenanthridinium dye ethidium bromide is a prototypical DNA intercalating agent. For decades, this anti-trypanosomal agent has been known to intercalate into nucleic acids, with little preference for particular sequences. Only polydA-polydT tracts are relatively refractory to ethidium intercalation. In an effort to tune the sequence selectivity of known DNA binding agents, we report here the synthesis and detailed characterization of the mode of binding to DNA of a novel ethidium derivative possessing two guanidinium groups at positions 3 and 8. This compound, DB950, binds to DNA much more tightly than ethidium and exhibits distinct DNA-dependent absorption and fluorescence properties. The study of the mode of binding to DNA by means of circular and electric linear dichroism revealed that, unlike ethidium, DB950 forms minor groove complexes with AT sequences. Accurate quantification of binding affinities by surface plasmon resonance using A(n)T(n) hairpin oligomer indicated that the interaction of DB950 is over 10-50 times stronger than that of ethidium and comparable to that of the known minor groove binder furamidine. DB950 interacts weakly with GC sites by intercalation. DNase I footprinting experiments performed with different DNA fragments established that DB950 presents a pronounced selectivity for AT-rich sites, identical with that of furamidine. The replacement of the amino groups of ethidium with guanidinium groups has resulted in a marked gain of both affinity and sequence selectivity. DB950 provides protection against DNase I cleavage at AT-containing sites which frequently correspond to regions of enhanced cleavage in the presence of ethidium. Although DB950 maintains a planar phenanthridinium chromophore, the compound no longer intercalates at AT sites. The guanidinium groups of DB950, just like the amidinium group of furamidine (DB75), are the critical determinants for recognition of AT binding sites in DNA. The chemical modulation of the ethidium exocyclic amines is a profitable option to tune the nucleic acid recognition properties of phenylphenanthridinium dyes.  相似文献   

9.
The antibiotic AT2433-B1 belongs to a therapeutically important class of antitumor agents. This natural product contains an indolocarbazole aglycone connected to a unique disaccharide consisting of a methoxyglucose and an amino sugar subunit, 2,4-dideoxy-4-methylamino-L-xylose. The configuration of the amino sugar distinguishes AT2433-B1 from its diastereoisomer iso-AT2433-B1. Here we have investigated the interaction of these two disaccharide indolocarbazole derivatives with different DNA sequences by means of DNase I footprinting and surface plasmon resonance (SPR). Accurate binding measurements performed at 4 and 25 degrees C using the BIAcore SPR method revealed that AT2433-B1 binds considerably more tightly to a hairpin oligomer containing a [CG](4) block than to an oligomer with a central [AT](4) tract. The kinetic analysis shows that the antibiotic dissociates much more slowly from the GC sequence compared to the AT one. Preferential binding of AT2433-B1 to GC-rich sequences in DNA was independently confirmed by DNase I footprinting experiments performed with a 117 bp DNA restriction fragment. The specific binding sequence 5'-AACGCCAG identified from the footprints was then converted into a biotin-labeled DNA hairpin duplex and compound interactions with this specific sequence were characterized by high resolution BIAcore SPR experiments. Such a combined approach provided a detailed understanding of the molecular basis of DNA recognition. The discovery that the glycosyl antibiotic AT2433-B1 preferentially recognizes defined sequences offers novel opportunities for the future design of sequence-specific DNA-reading small molecules.  相似文献   

10.
The binding heterogeneity, conformational aspects, and energetics of the interaction of the cytotoxic plant alkaloid palmatine have been studied with various natural and synthetic DNAs. The alkaloid binds to calf thymus and Escherichia coli DNA that have mixed AT and GC sequences in almost equal proportions with positive cooperativity, while, with Clostridium perfringens and Micrococcus lysodeikticus DNA with predominantly high AT and GC sequences, respectively, noncooperative binding was observed. On further investigation with synthetic DNAs, the binding was observed to be cooperative with polymers like poly(dA).poly(dT) and poly(dG).poly(dC) having poly(purine)poly(pyrimidine) sequences, while with polymers poly(dA-dT).poly(dA-dT), poly(dA-dC).poly(dG-dT) and poly(dG-dC).poly(dG-dC), which have alternating purine-pyrimidine sequences, a non-cooperative binding phenomenon was observed. This suggests the binding heterogeneity of palmatine to the two types of sequences of base pairs. Circular dichroism (CD) studies revealed that the binding induced conformational changes in all the DNAs, but more importantly, the bound alkaloid molecules acquired induced optical activity, and the extent was dependent on the AT content and showed AT base-pair specificity. Energetics of the interaction of the alkaloid studied by highly sensitive isothermal titration calorimetry revealed that the binding was in most cases exothermic and favored by both enthalpy and entropy changes, while, in the case of the homo and hetero AT polymers, the same was predominantly entropy-driven. This study defines base-pair-dependent heterogeneity, conformational aspects, and energetics of palmatine binding to DNA.  相似文献   

11.
The non-covalent DNA interaction of the anticancer drug ellipticine (Scheme I, 1a) as well as an indolo[2,3-b]-quinoxaline derivative (Scheme I, 3b) with a dimethylaminoethyl side chain has been studied by light absorption, linear dichroism (LD) and fluorescence. Compound 3b (Scheme I) has antitumorigenic as well as antiviral activity. Both compounds bind to DNA or synthetic polynucleotides such as poly(dA-dT).(dA-dT) and poly(dG-dC).(dG-dC) by intercalation. In contrast to ellipticine, compound 3b (Scheme I) exhibits a significant binding specificity for alternating AT sequences. Its fluorescence is strongly enhanced in AT sequences and quenched in GC sequences. Fluorescence titrations evaluated as Scatchard plots show that both ellipticine and compound 3b (Scheme I) bind to the nucleic acids according to a non-cooperative neighbor exclusion model.  相似文献   

12.
K X Chen  N Gresh    B Pullman 《Nucleic acids research》1986,14(22):9103-9115
Theoretical computations are performed on the comparative A-T versus G-C binding selectivities of two DNA intercalating molecules recently synthesized by Wilson et al. These are derivatives of phenanthrene and anthracene with side chains containing an hydroxy group bound to its C alpha carbon and a cationic amino group bound to its C beta carbon. We have optimized the binding energies of these phenanthrene and anthracene derivatives (1 and 2, respectively) to the double-stranded tetramers d(ATAT)2 and d(GCGC)2, the intercalation occurring in the central pyrimidine (3'-5') purine sequence. The sum of the intercalator-oligonucleotide intermolecular interaction energy plus the conformational energy variation of the intercalator upon binding were computed by the SIBFA procedures, which use empirical formulas based on ab initio SCF computations. Both compounds are found to bind more favourably to the AT sequence than to the GC one. Moreover, the affinity of 1 for the AT oligomer is computed to be larger than that of 2, whereas conversely that of 2 is larger than that of 1 for the GC oligomer. The AT versus GC binding selectivity of 1 is significantly larger than that of 2. These results are in excellent agreement with the experimental findings of Wilson et al. However, contrary to the suggestion of these authors the alpha-hydroxy group of the side chain of the intercalators does not seem to play a decisive role in determining the A-T specificity.  相似文献   

13.
In the course of a program aimed at developing sequence-specific gene-regulatory small organic molecules, we have investigated the DNA interactions of a new series of nine diphenylfuran dications related to the antiparasitic drug furamidine (DB75). Two types of structural modifications were tested: the terminal amidine groups of DB75 were shifted from the para to the meta position, and the amidines were replaced with imidazoline or dimethyl-imidazoline groups, to test the importance of both the position and nature of positively charged groups on DNA interactions. The interactions of these compounds with DNA and oligonucleotides were studied by a combination of biochemical and biophysical techniques. Absorption and CD measurements suggested that the drugs bind differently to AT and GC sequences in DNA. The para-para dications, like DB75, bind into the minor groove of poly(dAT)(2) and intercalate between the base pairs of poly(dGC)(2), as revealed by electric linear dichroism experiments. In contrast, the meta-meta compounds exhibit a high tendency to intercalate into DNA whatever the target sequence. The lack of sequence selectivity of the meta-meta compounds containing amidines or dimethyl-imidazoline groups was also evident from DNase I footprinting and surface plasmon resonance (SPR) experiments. Accurate binding measurements using the BIAcore SPR method revealed that all nine compounds bind with similar affinity to an immobilized GC sequence DNA hairpin but exhibit very distinct affinities for the corresponding AT hairpin oligonucleotide. The minor groove-binding para-para compounds have a high specificity for AT sequences. The biophysical data clearly indicate that shifting the cationic substituents from the para to the meta position results in a loss of specificity and change in binding mode. The strong AT selectivity of the para-para compounds was independently confirmed by DNase I footprinting experiments performed with a range of DNA restrictions fragments. In terms of AT selectivity, the compounds rank in the order para-para > para-meta > meta-meta. The para dications bind preferentially to sequences containing four contiguous AT base pairs. Additional footprinting experiments with substrates containing the 16 possible [A.T](4) blocks indicated that the presence of a TpA step within an [A.T] (4) block generally reduces the extent of binding. The diverse methods, from footprinting to SPR to dichroism, provide a consistent model for the interactions of the diphenylfuran dications with DNA of different sequences. Altogether, the results attest unequivocally that the binding mode for unfused aromatic cations can change completely depending on substituent position and DNA sequence. These data provide a rationale to explain the relationships between sequence selectivity and mode of binding to DNA for unfused aromatic dications related to furamidine.  相似文献   

14.
Polymorphic RNA conformations may serve as potential targets for structure specific antiviral agents. As an initial step in the development of such drugs, the interaction of a wide variety of compounds which are characterized to bind to DNA through classical or partial intercalation or by mechanism of groove binding, with the A-form and the protonated form of poly(rC).poly(rG), been evaluated by multifaceted spectroscopic and viscometric techniques. Results of this study suggest that (i) ethidium intercalates to the A-form of RNA, but does not intercalate to the protonated form, (ii) methylene blue intercalates to the protonated form of the RNA but does not intercalate to the A-form, (iii) actinomycin D does not bind to either conformations of the RNA, and (iv) berberine binds to the protonated form by partial intercalation process, while its binding to the A-form is very weak. The DNA groove binder distamycin A has much higher affinity to the protonated form of the RNA compared to the A-form and binds to both structures by non-intercalative mechanism. We conclude that the binding affinity characteristics of these DNA binding molecules to the RNA conformations are vastly different and may serve as data for the development of RNA based antiviral drugs.  相似文献   

15.
Combining structure-specific recognition of nucleic acids with limited sequence reading is a promising method to reduce the size of the recognition unit required to achieve the necessary selectivity and binding affinity to control function. It has been demonstrated recently that G-quadruplex DNA structures can be targeted by organic cations in a structure-specific manner. Structural targets of quadruplexes include the planar end surfaces of the G-tetrad stacked columns and four grooves. These provide different geometries and functional groups relative to duplex DNA. We have used surface plasmon resonance and isothermal titration calorimetry to show that binding affinity and selectivity of a series of quadruplex end-stacking molecules to human telomeric DNA are sensitive to compound shape as well as substituent type and position. ITC results indicate that binding is largely enthalpy driven. Circular dichroism was also used to identify a group of structurally related compounds that selectively target quadruplex grooves.  相似文献   

16.
17.
The interaction of DAPI with natural and synthetic polydeoxynucleotides of different base content and sequences was studied with circular dichroism, ultracentrifugation, viscosity and calorimetry. All the polymers show two types of binding. The strength of the interaction and its resistance to ionic strength are related to the content of AT clusters in the chain. On the other hand, sedimentation measurements rule out an intercalation mechanism. A model of DAPI interaction with DNA, similar to that displayed by distamycin and netropsin, is proposed.  相似文献   

18.
Abstract

The results presented in this paper on methylene blue (MB) binding to DNA with AT alternating base sequence complement the data obtained in two former modeling studies of MB binding to GC alternating DNA. In the light of the large amount of experimental data for both systems, this theoretical study is focused on a detailed energetic analysis and comparison in order to understand their different behavior. Since experimental high-resolution structures of the complexes are not available, the analysis is based on energy minimized structural models of the complexes in different binding modes. For both sequences, four different intercalation structures and two models for MB binding in the minor and major groove have been proposed. Solvent electrostatic effects were included in the energetic analysis by using electrostatic continuum theory, and the dependence of MB binding on salt concentration was investigated by solving the non-linear Poisson-Boltzmann equation. We find that the relative stability of the different complexes is similar for the two sequences, in agreement with the interpretation of spectroscopic data. Subtle differences, however, are seen in energy decompositions and can be attributed to the change from symmetric 5′-YpR-3′ intercalation to minor groove binding with increasing salt concentration, which is experimentally observed for the AT sequence at lower salt concentration than for the GC sequence. According to our results, this difference is due to the significantly lower non-electrostatic energy for the minor groove complex with AT alternating DNA, whereas the slightly lower binding energy to this sequence is caused by a higher deformation energy of DNA. The energetic data are in agreement with the conclusions derived from different spectroscopic studies and can also be structurally interpreted on the basis of the modeled complexes. The simple static modeling technique and the neglect of entropy terms and of non-electrostatic solute-solvent interactions, which are assumed to be nearly constant for the compared complexes of MB with DNA, seem to be justified by the results.  相似文献   

19.
The interaction between small molecules and telomeric quadruplex DNA has received great attention because of its importance in molecular recognition and anticancer drug design. Using UV/vis absorption titration, thermal melting, circular dichroism spectroscopy, and electrospray ionization mass spectrometry, we examined the formation of lead ion induced guanine quadruplexes (Pb-G4) from oligonucleotide AG3(T2AG3)3 and their interaction with a zinc derivative of 5,10,15,20-tetrakis(N-methyl-4-pyridyl)porphyrin (Zn-TMPyP). The binding of lead ion to the oligonucleotide was found to have an unusually high affinity and followed a 1:1 stoichiometry, and the resultant Pb-G4 structure was stabilized by Zn-TMPyP binding. Owing to the steric hindrance of the axial ligand of zinc and also the relatively rigid structure of Pb-G4, intercalation of Zn-TMPyP between adjacent guanine quartets is precluded, thus allowing the end-stacking binding mode to be characterized exclusively. In conjunction with a big redshift (more than 8 nm) in the absorption spectrum, we demonstrate that a conservative induced circular dichroism is an important signature for end-stacking of porphyrins on guanine quadruplexes.  相似文献   

20.
MIG1 is a zinc finger protein that mediates glucose repression in the yeast Saccharomyces cerevisiae. MIG1 is related to the mammalian Krox/Egr, Wilms' tumor, and Sp1 finger proteins. It has two fingers and binds to a GCGGGG motif that resembles the GC boxes recognized by these mammalian proteins. We have performed a complete saturation mutagenesis of a natural MIG1 site in order to elucidate its binding specificity. We found that only three mutations within the GC box retain the ability to bind MIG1: G1 to C, C2 to T, and G5 to A. This result is consistent with current models for zinc finger-DNA binding, which assume that the sequence specificity is determined by base triplet recognition within the GC box. Surprisingly, we found that an AT-rich region 5' to the GC box also is important for MIG1 binding. This AT box is present in all natural MIG1 sites, and it is protected by MIG1 in DNase I footprints. However, the AT box differs from the GC box in that no single base within it is essential for binding. Instead, the AT-rich nature of this sequence seems to be crucial. The fact that AT-rich sequences are known to increase DNA flexibility prompted us to test whether MIG1 bends DNA. We found that binding of MIG1 is associated with bending within the AT box. We conclude that DNA binding by a simple zinc finger protein such as MIG1 can involve both recognition of the GC box and flanking sequence preferences that may reflect local DNA bendability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号