首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Reaction of H(2)O(2) with the recombinant SHa(29-231) prion protein resulted in rapid oxidation of multiple methionine residues. Susceptibility to oxidation of individual residues, assessed by mass spectrometry after digestion with CNBr and lysC, was in general a function of solvent exposure. Met 109 and Met 112, situated in the highly flexible amino terminus, and key residues of the toxic peptide PrP (106-126), showed the greatest susceptibility. Met 129, a residue located in a polymorphic position in human PrP and modulating risk of prion disease, was also easily oxidized, as was Met 134. The structural effect of H(2)O(2)-induced methionine oxidation on PrP was studied by CD spectroscopy. As opposed to copper catalyzed oxidation, which results in extensive aggregation of PrP, this reaction led only to a modest increase in beta-sheet structure. The high number of solvent exposed methionine residues in PrP suggests their possible role as protective endogenous antioxidants.  相似文献   

2.
GroEL undergoes an important functional and structural transition when oxidized with hydrogen peroxide (H2O2) concentrations between 15 and 20mM. When GroEL was incubated for 3h with 15 mM H2O2, it retained its quaternary structure, chaperone and ATPase activities. Under these conditions, GroEL's cysteine and tyrosine residues remained intact. However, all the methionine residues of the molecular chaperone were oxidized to the corresponding methionine-sulfoxides under these conditions. The oxidation of the methionine residues was verified by the inability of cyanogen bromide to cleave at the carboxyl side of the modified methionine residues. The role for the proportionately large number (23) of methionine residues in GroEL has not been identified. Methionine residues have been reported to have an antioxidant activity in proteins against a variety of oxidants produced in biological systems including H2O2. The carboxyl-terminal domain of GroEL is rich in methionine residues and we hypothesized that these residues are involved in the protection of GroEL's functional structure by scavenging H2O2. When GroEL was further incubated for the same time, but with increasing concentrations of H2O2 (>15 mM), the oxidation of GroEL's cysteine residues and a significant decrease of the tyrosine fluorescence due to the formation of dityrosines were observed. Also, at these higher concentrations of H2O2, the inability of GroEL to hydrolyze ATP and to assist the refolding of urea-unfolded rhodanese was observed.  相似文献   

3.
4.
In earlier attempts to shift the substrate specificity of glutamate dehydrogenase (GDH) in favour of monocarboxylic amino-acid substrates, the active-site residues K89 and S380 were replaced by leucine and valine, respectively, which occupy corresponding positions in leucine dehydrogenase. In the GDH framework, however, the mutation S380V caused a steric clash. To avoid this, S380 has been replaced with alanine instead. The single mutant S380A and the combined double mutant K89L/S380A were satisfactorily overexpressed in soluble form and folded correctly as hexameric enzymes. Both were purified successfully by Remazol Red dye chromatography as routinely used for wild-type GDH. The S380A mutant shows much lower activity than wild-type GDH with glutamate. Activities towards monocarboxylic substrates were only marginally altered, and the pH profile of substrate specificity was not markedly altered. In the double mutant K89L/S380A, activity towards glutamate was undetectable. Activity towards L-methionine, L-norleucine and L-norvaline, however, was measurable at pH 7.0, 8.0 and 9.0, as for wild-type GDH. Ala163 is one of the residues that lines the binding pocket for the side chain of the amino-acid substrate. To explore its importance, the three mutants A163G, K89L/A163G and K89L/S380A/A163G were constructed. All three were abundantly overexpressed and showed chromatographic behaviour identical with that of wild-type GDH. With A163G, glutamate activity was lower at pH 7.0 and 8.0, but by contrast higher at pH 9.0 than with wild-type GDH. Activities towards five aliphatic amino acids were remarkably higher than those for the wild-type enzyme at pH 8.0 and 9.0. In addition, the mutant A163G used L-aspartate and L-leucine as substrates, neither of which gave any detectable activity with wild-type GDH. Compared with wild-type GDH, the A163 mutant showed lower catalytic efficiencies and higher K(m ) values for glutamate/2-oxoglutarate at pH 7.0, but a similar k(cat)/K(m) value and lower K(m) at pH 8.0, and a nearly 22-fold lower S(0.5) (substrate concentration giving half-saturation under conditions where Michaelis-Menten kinetics does not apply) at pH 9.0. Coupling the A163G mutation with the K89L mutation markedly enhanced activity (100-1000-fold) over that of the single mutant K89L towards monocarboxylic amino acids, especially L-norleucine and L-methionine. The triple mutant K89L/S380A/A163G retained a level of activity towards monocarboxylic amino acids similar to that of the double mutant K89L/A163G, but could no longer use glutamate as substrate. In terms of natural amino-acid substrates, the triple mutant represents effective conversion of a glutamate dehydrogenase into a methionine dehydrogenase. Kinetic parameters for the reductive amination reaction are also reported. At pH 7 the triple mutant and K89L/A163G show 5 to 10-fold increased catalytic efficiency, compared with K89L, towards the novel substrates. In the oxidative deamination reaction, it is not possible to estimate k(cat) and K(m) separately, but for reductive amination the additional mutations have no significant effect on k(cat) at pH 7, and the increase in catalytic efficiency is entirely attributable to the measured decrease in K(m). At pH 8 the enhancement of catalytic efficiency with the novel substrates was much more striking (e.g. for norleucine approximately 2000-fold compared with wild-type or the K89L mutant), but it was not established whether this is also exclusively due to more favourable Michaelis constants.  相似文献   

5.
Almost all biotin enzymes contain the conserved tetrapeptide Ala-Met-Bct-Met (Bct, N epsilon-biotinyl-L-lysine). In the 1.3 S biotinyl subunit of transcarboxylase (TC), this sequence is present between positions 87 and 90. The conserved nature of these amino acids implies a critical role in the function of biotin enzymes. In order to examine the role of these conserved amino acids, point mutations in the gene encoding the 1.3 S subunit have been made by site-directed mutagenesis to generate A87G, M88L, M90L, M88T, M88C, M88A, and a double mutant A87M, M88A in the 1.3 S subunit. TC, a multisubunit enzyme containing 12 S, 5 S, and 1.3 S subunits, catalyzes the transfer of a carboxyl group from methylmalonyl-CoA to pyruvate (overall reaction). TC can be dissociated into individual subunits and also reconstituted by assembling isolated subunits to a fully active form. The mutants of the 1.3 S subunit have been reconstituted with native 5 S and 12 S subunits from Propionibacterium shermanii. The effects of mutations on the activity of TC were compared with that of TC-1.3 S wild type (WT) prepared in a similar manner. The results show that any substitution of a residue in the conserved tetrapeptide causes impairment of the rate of TC activity. Comparison of gel filtration profiles, sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electron micrographs of the TC assembled with mutant 1.3 S and with wild type 1.3 S subunits showed that the impairment of the overall activity was not due to a failure of the subunits to assemble into complexes. Steady state kinetic analysis using the mutant 1.3 S subunits indicated that the Km for methylmalonyl-CoA or pyruvate did not change significantly indicating that the binding of substrates is not altered. However, the kcat values were significantly lower for mutants at positions 87 and 88 than for those at position 90. The replacement of methionine at position 88 either by hydrophobic or hydrophilic residues significantly altered the activity in the overall reaction, while similar substitution at position 90 did not dramatically alter the kcat. These results suggest that Ala-87 and Met-88 are catalytically critical in the conserved tetrapeptide.  相似文献   

6.
In eukaryotes, two isozymes (I and II) of methionine aminopeptidase (MetAP) catalyze the removal of the initiator methionine if the penultimate residue has a small radius of gyration (glycine, alanine, serine, threonine, proline, valine, and cysteine). Using site-directed mutagenesis, recombinant yeast MetAP I derivatives that are able to cleave N-terminal methionine from substrates that have larger penultimate residues have been expressed. A Met to Ala change at 329 (Met206 in Escherichia coli enzyme) produces an average catalytic efficiency 1.5-fold higher than the native enzyme on normal substrates and cleaves substrates containing penultimate asparagine, glutamine, isoleucine, leucine, methionine, and phenylalanine. Interestingly, the native enzyme also has significant activity with the asparagine peptide not previously identified as a substrate. Mutation of Gln356 (Gln233 in E. coli MetAP) to alanine results in a catalytic efficiency about one-third that of native with normal substrates but which can cleave methionine from substrates with penultimate histidine, asparagine, glutamine, leucine, methionine, phenylalanine, and tryptophan. Mutation of Ser195 to alanine had no effect on substrate specificity. None of the altered enzymes produced cleaved substrates with a fully charged residue (lysine, arginine, aspartic acid, or glutamic acid) or tyrosine in the penultimate position.  相似文献   

7.
The recombinant N-acyl-d-amino acid amidohydrolase (N-d-AAase) of Variovorax paradoxus Iso1 was unstable during protein purification and storage at 4 °C. Since the methionine oxidation might be the artificial factor leading to the inactivation of N-d-AAase, eight potential oxidation sensitive methionine residues of the enzyme were individually substituted with leucine utilizing site-directed mutagenesis. Among them, five mutants, M39L, M56L, M221L, M254L, and M352L remained at least 70% of wild-type specific activity. The enzyme kinetic parameters of M221L revealed a 44% decrease in Km, and finally reflected a 2.4-fold increase in kcat/Km. Moreover, its half-life at 4 °C increased up to 6-fold longer than that of the wild-type. Structural analysis of each methionine substitution was carried out based on the crystal structure of N-d-AAase from Alcaligenes faecalis DA1. Met221 spatial closeness to the zinc-assistant catalytic center is highly potential as the primary site for oxidative inactivation. We conclude that the replacement of methionine M221 with leucine in N-d-AAase successfully enhances the oxidative resistance, half-life, and enzyme activity. This finding provides a promising basis for the engineering the stability and activity of N-d-AAase.  相似文献   

8.
Subtilisin-type proteinases (thermitase, subtilisin Carlsberg, alkaline proteinase ZIMET 10911, proteinase K) are partially inactivated by hydrogen peroxide in the alkaline pH range only in the presence of boric acid or phenylboronic acid. A model is presented to describe the inactivation mechanism. Both boric acid and perboric acid existing in equilibrium in the presence of hydrogen peroxide bind competitively at the active site of the enzyme. The inactivation, which is known to be caused by sulfoxide formation from the methionine residue in the active site (Stauffer, C.E. and Etson, D. (1969) J. Biol. Chem. 244, 5333-5338), is due to the enzyme-bound perboric acid species. The dissociation constants for the boric acid-thermitase and perboric acid-thermitase complexes are 36 +/- 7 and 4 +/- 1 mM, respectively. The first-order rate constant of inactivation is k = 0.63 +/- 0.14 min-1. The same mechanism of inactivation holds true for phenylboronic acid in alkaline hydrogen peroxide solutions.  相似文献   

9.
10.
The Calvin Cycle enzyme phosphoribulokinase is activated in higher plants by the reversible reduction of a disulfide bond, which is located at the active site. To determine the possible contribution of the two regulatory residues (Cys16 and Cys55) to catalysis, site-directed mutagenesis has been used to replace each of them in the spinach enzyme with serine or alanine. The only other cysteinyl residues of the kinase, Cys244 and Cys250, were also replaced individually by serine or alanine. A comparison of specific activities of native and mutant enzymes reveals that substitutions at positions 244 or 250 are inconsequential. The position 16 mutants retain 45-90% of the wild-type activity and display normal Km values for both ATP and ribulose 5-phosphate. In contrast, substitution at position 55 results in 85-95% loss of wild-type activity, with less than a 2-fold increase in the Km for ATP and a 4-8-fold increase in the Km for ribulose 5-phosphate. These results are consistent with moderate facilitation of catalysis by Cys55 and demonstrate that the other three cysteinyl residues do not contribute significantly either to structure or catalysis. The enhanced stability, relative to wild-type enzyme, of the Ser16 mutant protein to a sulfhydryl reagent supports earlier suggestions that Cys16 is the initial target of the oxidative deactivation process.  相似文献   

11.
The metalloprotease clan of the metzincins derive their name from the presence of a conserved methionine residue that is located on the C-terminal side of the zinc-binding consensus sequence HEXXHXXGXXH. This methionine residue is located in a rather divergent part of the primary sequence but is structurally very well conserved. It is located under the pyramidal base of the three histidine residues that coordinate the catalytic zinc ion and is not involved in any direct contact with the metal nor the substrate. In order to clarify its role, this methionine residue (M226) of the protease C from Erwinia chrysanthemi has been mutated to various other amino acids. The mutants M226L, M226A, M226I were sufficiently stable to be isolated, while the mutants M226H, M226S and M226N could not be purified. The kinetic properties of these mutants were analysed. All mutants showed decreased activity, whereby increases in K(M) as well as decreases in k(cat) were observed. The M226L mutant and M226C-E189 K double mutant, which has the catalytic glutamic acid substituted as well, could be crystallised. The structure of the M226L mutant was determined to a resolution of 2.0 A and refined to R(free) of 0.20. The structure is isomorphous to the wild-type and does not show large differences, with the exception of a very small movement of the zinc-liganding histidine residues. The M226C-E189 K double mutant crystal structure has been refined to an R(free) of 0.20 at 2.1 A resolution. A small rearrangement of the zinc-liganding histidine residues can be detected, which leads to a slightly different zinc coordination and could explain the decrease in activity.  相似文献   

12.
A heat-stable raw-starch-digesting amylase (RSDA) was generated through PCR-based site-directed mutagenesis. At 65 degrees C, the half-life of this mutant RSDA, which, compared with the wild-type RSDA, lacks amino acids R178 and G179, was increased 20-fold. While the wild type was inactivated completely at pH 3.0, the mutant RSDA still retained 41% of its enzymatic activity. The enhancement of RSDA thermostability was demonstrated to be via a Ca(2+)-independent mechanism.  相似文献   

13.
The purpose of this study was to determine the effect of heme pocket hydrophobicity on the reactivity of manganese peroxidase. Residues within 5 A of the heme active site were identified. From this group, Leu169 and Ser172 were selected and mutated to Phe and Ala, respectively. The mutant proteins were then characterized by steady-state kinetics. Whereas the Leu169Phe mutation had little, if any, effect on activity, the Ser172Ala mutation decreased kcat and also the specificity constant (kcat/Km) for Mn2+, but not H2O2. Transient-state studies indicated that the mutation affected only the reactions of compound II. These results indicate that compound II is the most sensitive to changes in the heme environment.  相似文献   

14.
N Yokoyama  W T Miller 《FEBS letters》1999,456(3):403-408
To study the role of the catalytic domain in v-Src substrate specificity, we engineered three site-directed mutants (Leu-472 to Tyr or Trp and Thr-429 to Met). The mutant forms of Src were expressed in Sf9 cells and purified. We analyzed the substrate specificities of wild-type v-Src and the mutants using two series of peptides that varied at residues C-terminal to tyrosine. The peptides contained either the YMTM motif found in insulin receptor substrate-1 (IRS-1) or the YGEF motif identified from peptide library experiments to be the optimal sequence for Src. Mutations at positions Leu-472 or Thr-429 caused changes in substrate specificity at positions P+1 and P+3 (i.e. one or three residues C-terminal to tyrosine). This was particularly evident in the case of the L-472W mutant, which had pronounced alterations in its preferences at the P+1 position. The results suggest that residue Leu-472 plays a role in P+1 substrate recognition by Src. We discuss the results in the light of recent work on the roles of the SH2, SH3 and catalytic domains of Src in substrate specificity.  相似文献   

15.
Subtilin and nisin are gene-encoded antibiotic peptides that are ribosomally synthesized by Bacillus subtilis and Lactococcus lactis, respectively. Gene-encoded antibiotics are unique in that their structures can be manipulated by mutagenesis of their structural genes. Although subtilin and nisin share considerable structural homology, subtilin has a greater tendency than nisin to undergo spontaneous inactivation. This inactivation is a accompanied by chemical modification of the dehydroalanine at position 5 (DHA5) with a kinetic first-order t1/2 of 0.8 days. It was hypothesized that the R group carboxyl of Glu4 in subtilin participates in the chemical modification of the adjacent DHA5. Noting that nisin has Ile at position 4, site-directed mutagenesis was used to change Glu4 of subtilin to Ile, in order to eliminate this carboxyl-group participation. The DHA5 of this mutant subtilin (E4I-subtilin) underwent modification with a t1/2 of 48 days, which is 57-fold slower than natural subtilin, and the rate of loss of biological activity dropped by a like amount. These results suggest that an intact DHA5 is critical for subtilin activity against bacterial spore outgrowth. A double mutant of subtilin, in which the DHA5 residue of E4I-subtilin was mutated to Ala was devoid of detectable inhibition against spore outgrowth. The specific activity of E4I-subtilin was 3-4-fold higher than natural subtilin, suggesting that an increase in the hydrophobicity of the N-terminal end of the molecule enhances activity. These are the first mutants of subtilin that have been reported, and E4I-subtilin is the first example of any lantibiotic whose properties have been improved by mutagenesis. In order to carry out the mutagenesis, a host-vector pair was constructed that permits a deletion replacement in which the natural subtilin gene is replaced by the mutant gene at the normal location in the chromosome. This maintains normal gene dosage and regulatory responses, as well as eliminates ambiguities caused by expression of the normal and mutant genes in the same cell.  相似文献   

16.
Escherichia coli esterase (EcE) is a member of the hormone-sensitive lipase family. We have analyzed the roles of the conserved residues in this enzyme (His103, Glu128, Gly163, Asp164, Ser165, Gly167, Asp262, Asp266 and His292) by site-directed mutagenesis. Among them, Gly163, Asp164, Ser165, and Gly167 are the components of a G-D/E-S-A-G motif. We showed that Ser165, Asp262, and His292 are the active-site residues of the enzyme. We also showed that none of the other residues, except for Asp164, is critical for the enzymatic activity. The mutation of Asp164 to Ala dramatically reduced the catalytic efficiency of the enzyme by the factor of 10(4) without seriously affecting the substrate binding. This residue is probably structurally important to make the conformation of the active-site functional.  相似文献   

17.
Walia G  Gajendar K  Surolia A 《PloS one》2011,6(1):e15228
Dephosphocoenzyme A kinase performs the transfer of the γ-phosphate of ATP to dephosphocoenzyme A, catalyzing the last step of coenzyme A biosynthesis. This enzyme belongs to the P-loop-containing NTP hydrolase superfamily, all members of which posses a three domain topology consisting of a CoA domain that binds the acceptor substrate, the nucleotide binding domain and the lid domain. Differences in the enzymatic organization and regulation between the human and mycobacterial counterparts, have pointed out the tubercular CoaE as a high confidence drug target (HAMAP database). Unfortunately the absence of a three-dimensional crystal structure of the enzyme, either alone or complexed with either of its substrates/regulators, leaves both the reaction mechanism unidentified and the chief players involved in substrate binding, stabilization and catalysis unknown. Based on homology modeling and sequence analysis, we chose residues in the three functional domains of the enzyme to assess their contributions to ligand binding and catalysis using site-directed mutagenesis. Systematically mutating the residues from the P-loop and the nucleotide-binding site identified Lys14 and Arg140 in ATP binding and the stabilization of the phosphoryl intermediate during the phosphotransfer reaction. Mutagenesis of Asp32 and Arg140 showed catalytic efficiencies less than 5-10% of the wild type, indicating the pivotal roles played by these residues in catalysis. Non-conservative substitution of the Leu114 residue identifies this leucine as the critical residue from the hydrophobic cleft involved in leading substrate, DCoA binding. We show that the mycobacterial enzyme requires the Mg(2+) for its catalytic activity. The binding energetics of the interactions of the mutant enzymes with the substrates were characterized in terms of their enthalpic and entropic contributions by ITC, providing a complete picture of the effects of the mutations on activity. The properties of mutants defective in substrate recognition were consistent with the ordered sequential mechanism of substrate addition for CoaE.  相似文献   

18.
The application of chondroitinase ABC I (cABC I) in damaged nervous tissue is believed to prune glycosaminoglycan chains of proteoglycans, thereby facilitates axon regeneration. However, the utilization of cABC I as therapeutics is notably restricted due to its thermal instability. In the present study, we have explored the possibility of thermostabilization of cABC I through release of its conformational strain using Ramachandran plot information. In this regard, Gln140 with non-optimal φ and ψ values were replaced with Gly, Ala and Asn. The results indicated that Q140G and Q140A mutants were able to improve both activity and thermal stability of the enzyme while Q140N variant reduced the enzyme activity and destabilized it. Moreover, the two former variants displayed a remarkable resistance to trypsin degradation. Structural analysis of all mutants showed an increase in intrinsic fluorescence intensity and secondary structure content of Q140G and Q140A compared to the wild type which indicated more compact structure upon mutation. This investigation demonstrated that relief of conformational tension can be considered as a possible approach to increase the stability of the protein.  相似文献   

19.
Manganese peroxidase and lignin peroxidase are ligninolytic heme-containing enzymes secreted by the white-rot fungus Phanerochaete chrysosporium. Despite structural similarity, these peroxidases oxidize different substrates. Veratryl alcohol is a typical substrate for lignin peroxidase, while manganese peroxidase oxidizes chelated Mn2+. By a single mutation, S168W, we have added veratryl alcohol oxidase activity to recombinant manganese peroxidase expressed in Escherichia coli. The kcat for veratryl alcohol oxidation was 11 s-1, Km for veratryl alcohol approximately 0.49 mM, and Km for hydrogen peroxide approximately 25 microM at pH 2.3. The Km for veratryl alcohol was higher and Km for hydrogen peroxide was lower for this manganese peroxidase mutant compared to two recombinant lignin peroxidase isoenzymes. The mutant retained full manganese peroxidase activity and the kcat was approximately 2.6 x 10(2) s-1 at pH 4.3. Consistent with relative activities with respect to these substrates, Mn2+ strongly inhibited veratryl alcohol oxidation. The single productive mutation in manganese peroxidase suggested that this surface tryptophan residue (W171) in lignin peroxidase is involved in catalysis.  相似文献   

20.
Menaquinol-fumarate oxidoreductase of Escherichia coli is a four-subunit membrane-bound complex that catalyzes the final step in anaerobic respiration when fumarate is the terminal electron acceptor. The enzyme is structurally and catalytically similar to succinate dehydrogenase (succinate-ubiquinone oxidoreductase) from both procaryotes and eucaryotes. Both enzymes have been proposed to contain an essential cysteine residue at the active site based on studies with thiol-specific reagents. Chemical modification studies have also suggested roles for essential histidine and arginine residues in catalysis by succinate dehydrogenase. In the present study, a combination of site-directed mutagenesis and chemical modification techniques have been used to investigate the role(s) of the conserved histidine 232, cysteine 247, and arginine 248 residues of the flavorprotein subunit (FrdA) in active site function. A role for His-232 and Arg-248 of FrdA is shown by loss of both fumarate reductase and succino-oxidase activities following site-directed substitution of these particular amino acids. Evidence is also presented that suggests a second arginine residue may form part of the active site. Potential catalytic and substrate-binding roles for arginine are discussed. The effects of removing histidine-232 of FrdA are consistent with its proposed role as a general acid-base catalyst. The fact that succinate oxidation but not fumarate reduction was completely lost, however, might suggest that alternate proton donors substitute for His-232. The data confirm that cysteine 247 of FrdA is responsible for the N-ethylmaleimide sensitivity shown by fumarate reductase but is not required for catalytic activity or the tight-binding of oxalacetate, as previously thought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号