首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The long arm of the human Y chromosome is flecked with various fractions of repetitive DNA. DYZ1 is one such fraction, which is organized tandemly as an array of a 3.4-kb repeat ranging from 2000-4000 copies in normal males. We have studied the organizational variation of the DYZ1 fraction on the human Y chromosome using DNA samples from CEPH family members and the random population employing the RFLP approach, fluorescence in situ hybridization (FISH), and conducted a similarity search with GenBank sequences. Typing of genomic DNA using DYZ1 as a probe showed an allele length and copy number variations even between two male siblings. Hybridization of DNA from monochromosome hybrids with this probe showed its presence on chromosome 15 in addition to the Y chromosome. Fluorescence in situ hybridization of metaphase chromosomes from an apparently normal male showed DYZ1 sequences in the proximal region of chromosome 11 in addition to the long arm of the Y chromosome. Typing of sets of semen and blood DNA samples from the same human individuals showed discernible allelic variation between the two samples, indicating tissue-specific programmed sequence modulation. DYZ1 seems to be the first probe having the unique potential to discriminate unequivocally the difference between the DNA originating from semen and blood samples, and may be exploited in forensic cases. This probe may also be used as a diagnostic tool to ascertain Y chromosome mosaicism in patients (e.g., Turner), its aberrant status in somatic cells, and possible sequence modulation/rearrangement in the germline samples. Additionally, this can be used to uncover sequence polymorphism in the human population.  相似文献   

2.
An unusually long repeated DNA sequence was identified in cloned DNA, three kb 3' to the human beta-globin gene. Other members of this repeated sequence family were isolated from a human genomic DNA library and characterized by Southern blotting techniques, electron microscopy, and solution hybridization. The copy located next to the beta-globin gene was found to be 6.4 +/- 0.2 kb long and continuous over that length. This repeated sequence family comprises about 1% of the human genome and contains 3000-4800 copies of moderate sequence divergence which are interspersed with other less-highly repeated DNA. The 6.4 kb repeated unit does not appear to be composed of any smaller tandemly repeated subunits, nor is it expressed at a high level in bone marrow cell RNA.  相似文献   

3.
We assessed genomic instability of 3.4 kb DYZ1 repeat arrays in patients encompassing prostate cancer (PC), cases of repeated abortion (RA) and males exposed to natural background radiation (NBR) using real-time PCR and fluorescence in situ hybridization (FISH). Normal males showed DYZ1 copies ranging from 3000 to 4300, RA, 0-2237; PC, 550; and males exposed to NBR, 1577-5700. FISH showed organizational variation of DYZ1 in these samples substantiating the data obtained from real-time PCR. Of the 10 RA samples, 7 were found to be affected of which, 5 showed deletion of 265 bp from nt 25 to 290 and 773 bp from 1347 to 2119 and 2 showed deletion of 275 bp from nt 3128 to 3402. Copy number variation of DYZ1 in these males correlated with genetic constrains/anomalies. Although precise mechanisms of genomic instability of DYZ1 remains unclear, we construe that this repeat plays a critical role in maintaining the structural integrity of the Y chromosome, possibly by absorbing the load of mutations. This may be used as a marker system to analyze genetic integrity of the DYZ1 repeat array(s) across the spectrum of patients.  相似文献   

4.
Tandemly repeated DNA can comprise several percent of total genomic DNA in complex organisms and, in some instances, may play a role in chromosome structure or function. Alpha satellite DNA is the major family of tandemly repeated DNA found at the centromeres of all human and primate chromosomes. Each centromere is characterized by a large contiguous array of up to several thousand kb which can contain several thousand highly homogeneous repeat units. By using a novel application of the polymerase chain reaction (repPCR), we are able to amplify a representative sampling of multiple repetitive units simultaneously, allowing rapid analysis of chromosomal subsets. Direct sequence analysis of repPCR amplified alpha satellite from chromosomes 17 and X reveals positions of sequence heterogeneity as two bands at a single nucleotide position on a sequencing ladder. The use of TdT in the sequencing reactions greatly reduces the background associated with polymerase pauses and stops, allowing visualization of heterogeneous bases found in as little as 10% of the repeat units. Confirmation of these heterogeneous positions was obtained by comparison to the sequence of multiple individual cloned copies obtained both by PCR and non-PCR based methods. PCR amplification of alpha satellite can also reveal multiple repeat units which differ in size. Analysis of repPCR products from chromosome 17 and X allows rapid determination of the molecular basis of these repeat unit length variants, which appear to be a result of unequal crossing-over. The application of repPCR to the study of tandemly repeated DNA should allow in-depth analysis of intra- and interchromosomal variation and unequal crossing-over, thus providing insight into the biology and genetics of these large families of DNA.  相似文献   

5.
Cloning of a yolk protein gene family from Caenorhabditis elegans   总被引:12,自引:0,他引:12  
A novel family of large, imperfectly repeated DNA sequences has been found in Escherichia coli. Two members of this family, rhsA and rhsB, occur as direct repeats, flanking the pit glyS xyl segment of the chromosome. Unequal sister-chromatid crossing over between rhsA and rhsB accounts for the frequent tandem duplication of the glyS locus that has been observed by various workers. This unequal recombination is recA-dependent. The rhsA locus is operationally defined as the segment between xyl and mtl that is repeated at other chromosomal locations. Using this definition, rhsA extends minimally 5500 base-pairs; 3800 base-pairs of rhsA are sufficiently homologous to rhsB to form an S1 nuclease-resistant heteroduplex with it. The rhsA sequence also exhibits internal repetition. At least one additional rhs sequence occurs in the E. coli chromosome unlinked to either rhsA or rhsB. Southern analysis of restriction digests of genomic DNA from E. coli strains C and B/5 showed that both of these strains have rhs hybridizable patterns similar to strain K-12, but the rhs sequence is absent in Salmonella typhimurium. The function of the rhs sequences has not been discovered. In the course of this work we developed a technique, termed "transductional walking", by which chromosomal DNA adjacent to a previously cloned DNA segment can be cloned through genetic procedures.  相似文献   

6.
7.
Organization of DYZ2 repetitive DNA on the human Y chromosome   总被引:4,自引:0,他引:4  
The location of the human Y-specific repetitive DNA sequence DYZ2 with HaeIII cleavage sites spaced at 2.1 kb was reexamined. Previous reports had mapped the 2000 DYZ2 copies to the very distal end of the heterochromatic Yq12 band. In the present study, a cloned DYZ2 fragment (pHY2.1) was used for Southern and slot blot analyses of male DNA as well as for nonradioactive in situ hybridization to chromosomes. DNA and metaphase preparations from 79 individuals with polymorphic or aberrant Y chromosomes were examined. DYZ2 repeats are not confined to the distal tip of Yq12, but extend through the entire heterochromatin of Yq12. In the naturally occurring length polymorphisms of Yq, the amount of DYZ2 sequence varies in proportion to the measured sizes of band Yq12. Explanations are presented for the fact that previous studies restricted the location of DYZ2 to the telomeric end of Yq12.  相似文献   

8.
9.
Recently linkage has been described between the Duchenne muscular dystrophy (DMD) gene and a cloned DNA sequence, RC8, that detects restriction fragment length polymorphism and is derived from the distal short arm of the X chromosome. Positive lod scores between RC8 and Xg prompted us to examine the linkage relationship of RC8 to the steroid sulfatase-X-linked recessive ichthyosis (XRI) locus which is situated 15 cM proximal from Xg in the subtelomeric region of Xp. Unexpectedly, at least two crossovers were found among nine informative meioses of an informative family, suggesting that RC8 and XRI may be about 25 cM apart. This implies that the genetic distance between the Xg locus and the DMD locus may exceed 50 cM.  相似文献   

10.
In maize, the Rp3 gene confers resistance to common rust caused by Puccinia sorghi. Flanking marker analysis of rust-susceptible rp3 variants suggested that most of them arose via unequal crossing over, indicating that rp3 is a complex locus like rp1. The PIC13 probe identifies a nucleotide binding site-leucine-rich repeat (NBS-LRR) gene family that maps to the complex. Rp3 variants show losses of PIC13 family members relative to the resistant parents when probed with PIC13, indicating that the Rp3 gene is a member of this family. Gel blots and sequence analysis suggest that at least 9 family members are at the locus in most Rp3-carrying lines and that at least 5 of these are transcribed in the Rp3-A haplotype. The coding regions of 14 family members, isolated from three different Rp3-carrying haplotypes, had DNA sequence identities from 93 to 99%. Partial sequencing of clones of a BAC contig spanning the rp3 locus in the maize inbred line B73 identified five different PIC13 paralogues in a region of approximately 140 kb.  相似文献   

11.
The suitability of yeast artificial chromosome vectors (YACs) for cloning human Y chromosome tandemly repeated DNA sequences has been investigated. Clones containing DYZ3 or DYZ5 sequences were found in libraries at about the frequency anticipated on the basis of their abundance in the genome, but clones containing DYZ1 sequences were under-represented and the three clones examined contained junctions between DYZ1 and DYZ2. One DYZ3 clone was quite stable and had a long-range structure corresponding to genomic DNA. All other clones had long-range structures which either did not correspond to genomic DNA, or were too unstable to allow a simple comparison. The effects of the transformation process and host genotype on YAC structural stability were investigated. Gross structural rearrangements were often associated with re-transformation of yeast by a YAC. rad1-deficient yeast strains showed levels of instability similar to wild-type for all YAC clones tested. In rad52-deficient strains, DYZ5 containing YACs were as unstable as in the wild-type host, but DYZ1/DYZ2 or DYZ3 containing YACs were more stable. Thus the use of rad52 hosts for future library construction is recommended, but some sequences will still be unstable.  相似文献   

12.
Lee C  Critcher R  Zhang JG  Mills W  Farr CJ 《Chromosoma》2000,109(6):381-389
The bulk of the DNA found at human centromeres is composed of tandemly arranged repeats, the most abundant of which is alpha satellite. Other human centromeric repetitive families have been identified, one of the more recent being gamma satellite. To date, gamma satellite DNAs have been reported at the centromeres of human chromosomes 8 and X. Here, we show that gamma-X satellite DNA is not interspersed with the major DZX1 alpha-X block, but rather is organised as a single array of approximately 40-50 kb on the short-arm side of the alpha satellite domain. This repeat array is absent on two mitotically stable Xq isochromosomes. Furthermore, a related repeat DNA has been identified on the human Y chromosome. Fluorescence in situ hybridisation has localised this satellite DNA to the long arm side of the major DYZ3 alpha-Y domain, outside the region previously defined as that required for mitotic centromere function. Together, these data suggest that while blocks of highly related gamma satellite DNAs are present in the pericentromeric regions of both human sex chromosomes, this repeated DNA is not required for mitotic centromere function.  相似文献   

13.
The mating type locus of the oomycete,Phytophthora infestans, is embedded in a region of DNA that displays distorted and non-Mendelian segregation. By using DNA probes linked to the mating type locus to genetically and physically characterize that region, a large zone of chromosomal heteromorphism was detected. LocusS1 was shown to represent a tandemly repeated array of DNA that was typically present in a hemizygous state in A1 isolates while being absent from A2 isolates. The analysis of the parents and progeny of seven crosses indicated that the tandem array was linked in cis to the A1-determining allele of the mating type locus. A worldwide survey of genotypically diverse field isolates ofP. infestans indicated thatS1 was present in each of 48 isolates of the A1 mating type that were tested, but was absent in 46 of 47 A2 strains. Physical analysis ofS1 indicated that the tandemly repeated DNA sequence spanned about 300 kb and had evolved from a 1.35-kb monomer. Internal deletions occurred withinS1 during sexual propagation. This and other mutations apparently contributed to a high degree of polymorphism within theS1 array.  相似文献   

14.
Genomic representation of the Hind II 1.9 kb repeated DNA.   总被引:19,自引:10,他引:9       下载免费PDF全文
The genomic representation and organization of sequences homologous to a cloned Hind III 1.9 kb repeated DNA fragment were studied. Approximately 80% of homologous repeated DNA was contained in a genomic Hind III cleavage band of 1.9 kb. Double digestion studies indicated that the genomic family, in the majority, followed the arrangement of the sequenced clone, with minor restriction cleavage variations compatible with a few base changes. Common restriction sites external to the 1.9 kb sequence were mapped, and hybridization of segments of the cloned sequence indicated the 1.9 kb DNA was itself not tandemly repeated. Kpn I bands which were homologous to the sequence contained specific regions of the repeat, and the molecular weight of these larger fragments could be simply explained. Mapping of common external restriction sites indicated that in some but not all cases the repeat could be organized in larger defined blocks of greater than or equal to 5.5 kb. In some instances, flanking regions adjacent to the repeat may contain common DNA elements such as other repeated DNA sequences, or possibly rearranged segments of the 1.9 kb sequence. It is suggested that although the 1.9 kb sequence is not strictly contiguous, at least some of these repeated sequences in the human genome are arranged in clustered or intercalary arrays. A region of the 1.9 kb sequence hybridized to a mouse repeated DNA, indicating homology beyond the primates.  相似文献   

15.
The mating type locus of the oomycete,Phytophthora infestans, is embedded in a region of DNA that displays distorted and non-Mendelian segregation. By using DNA probes linked to the mating type locus to genetically and physically characterize that region, a large zone of chromosomal heteromorphism was detected. LocusS1 was shown to represent a tandemly repeated array of DNA that was typically present in a hemizygous state in A1 isolates while being absent from A2 isolates. The analysis of the parents and progeny of seven crosses indicated that the tandem array was linked in cis to the A1-determining allele of the mating type locus. A worldwide survey of genotypically diverse field isolates ofP. infestans indicated thatS1 was present in each of 48 isolates of the A1 mating type that were tested, but was absent in 46 of 47 A2 strains. Physical analysis ofS1 indicated that the tandemly repeated DNA sequence spanned about 300 kb and had evolved from a 1.35-kb monomer. Internal deletions occurred withinS1 during sexual propagation. This and other mutations apparently contributed to a high degree of polymorphism within theS1 array.  相似文献   

16.
The insulin 1, but not the insulin 2, locus is polymorphic (i.e., exhibits allelic variation) in rats. Restriction enzyme analysis and hybridization studies showed that the polymorphic region is 2.2 kilobases upstream of the insulin 1 coding region and is due to the presence or absence of an approximately 2.7-kilobase repeated DNA element. DNA sequence determination showed that this DNA element is a member of a long interspersed repeated DNA family (LINE) that is highly repeated (greater than 50,000 copies) and highly transcribed in the rat. Although the presence or absence of LINE sequences at the insulin 1 locus occurs in both the homozygous and heterozygous states, LINE-containing insulin 1 alleles are more prevalent in the rat population than are alleles without LINEs. Restriction enzyme analysis of the LINE-containing alleles indicated that at least two versions of the LINE sequence may be present at the insulin 1 locus in different rats. Either repeated transposition of LINE sequences or gene conversion between the resident insulin 1 LINE and other sequences in the genome are possible explanations for this.  相似文献   

17.
A J Jeffreys  D L Neil    R Neumann 《The EMBO journal》1998,17(14):4147-4157
Little is known about the role of meiotic recombination processes such as unequal crossover in driving instability at tandem repeat DNA. Methods have therefore been developed to detect meiotic crossovers within two different GC-rich minisatellite repeat arrays in humans, both in families and in sperm DNA. Both loci normally mutate in the germline by complex conversion-like transfer of repeats between alleles. Analysis shows that inter-allelic unequal crossovers also occur at both loci, although at low frequency, to yield simple recombinant repeat arrays with exchange of flanking markers. Equal crossovers between aligned alleles, resulting in recombinant alleles but without change in repeat copy number, also occur in sperm at a similar frequency to unequal crossovers. Both crossover and conversion show polarity in the repeat array and are co-suppressed in an allele showing unusual germline stability. This provides evidence that minisatellite conversion and crossover arise by a common mechanism, perhaps by alternative processing of a meiotic recombination initiation complex, and implies that minisatellite instability is a by-product of meiotic recombination in repeat DNA. While minisatellite recombination is infrequent, crossover rates indicate that the unstable end of a human minisatellite can act as a recombination warm-spot, even between sequence-heterologous alleles.  相似文献   

18.
In primates, the tandemly repeated genes encoding U2 small nuclear RNA evolve concertedly, i.e. the sequence of the U2 repeat unit is essentially homogeneous within each species but differs somewhat between species. Using chromosome painting and the NGFR gene as an outside marker, we show that the U2 tandem array (RNU2) has remained at the same chromosomal locus (equivalent to human 17q21) through multiple speciation events over > 35 million years leading to the Old World monkey and hominoid lineages. The data suggest that the U2 tandem repeat, once established in the primate lineage, contained sequence elements favoring perpetuation and concerted evolution of the array in situ, despite a pericentric inversion in chimpanzee, a reciprocal translocation in gorilla and a paracentric inversion in orang utan. Comparison of the 11 kb U2 repeat unit found in baboon and other Old World monkeys with the 6 kb U2 repeat unit in humans and other hominids revealed that an ancestral U2 repeat unit was expanded by insertion of a 5 kb retrovirus bearing 1 kb long terminal repeats (LTRs). Subsequent excision of the provirus by homologous recombination between the LTRs generated a 6 kb U2 repeat unit containing a solo LTR. Remarkably, both junctions between the human U2 tandem array and flanking chromosomal DNA at 17q21 fall within the solo LTR sequence, suggesting a role for the LTR in the origin or maintenance of the primate U2 array.  相似文献   

19.
We reported that several DNA sequences homologous to mitochondrial DNA (mtDNA) are present in the human nuclear genome (Tsuzuki et al. (1983) Gene 25, 223-229). Detailed Southern blot analyses revealed that one of such sequences is interrupted by a repetitive sequence about 1.8 kb long, and that the insert is one member of the dispersed repeated DNA sequences of the KpnI 1.8 kb family. Nucleotide sequence analysis showed that the KpnI 1.8 kb DNA is flanked with imperfect 15-base pair (bp) direct repeats of mtDNA. This KpnI 1.8 kb DNA has an A-rich sequence at its 3'-end, and has a considerable homology with one of the published cDNA sequences homologous to one of the human KpnI families and also to one of the African green monkey KpnI families, KpnI-LS1. These structural features suggest that the KpnI 1.8 kb DNA is a movable element and is inserted within the mtDNA-like sequence by an RNA-mediated process.  相似文献   

20.
Summary The major families of repeated DNA sequences in the genome of tomato (Lycopersicon esculentum) were isolated from a sheared DNA library. One thousand clones, representing one million base pairs, or 0.15% of the genome, were surveyed for repeated DNA sequences by hybridization to total nuclear DNA. Four major repeat classes were identified and characterized with respect to copy number, chromosomal localization by in situ hybridization, and evolution in the family Solanaceae. The most highly repeated sequence, with approximately 77000 copies, consists of a 162 bp tandemly repeated satellite DNA. This repeat is clustered at or near the telomeres of most chromosomes and also at the centromeres and interstitial sites of a few chromosomes. Another family of tandemly repeated sequences consists of the genes coding for the 45 S ribosomal RNA. The 9.1 kb repeating unit in L. esculentum was estimated to be present in approximately 2300 copies. The single locus, previously mapped using restriction fragment length polymorphisms, was shown by in situ hybridization as a very intense signal at the end of chromosome 2. The third family of repeated sequences was interspersed throughout nearly all chromosomes with an average of 133 kb between elements. The total copy number in the genome is approximately 4200. The fourth class consists of another interspersed repeat showing clustering at or near the centromeres in several chromosomes. This repeat had a copy number of approximately 2100. Sequences homologous to the 45 S ribosomal DNA showed cross-hybridization to DNA from all solanaceous species examined including potato, Datura, Petunia, tobacco and pepper. In contrast, with the exception of one class of interspersed repeats which is present in potato, all other repetitive sequences appear to be limited to the crossing-range of tomato. These results, along with those from a companion paper (Zamir and Tanksley 1988), indicate that tomato possesses few highly repetitive DNA sequences and those that do exist are evolving at a rate higher than most other genomic sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号