首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MAP kinase cascades in elicitor signal transduction   总被引:3,自引:0,他引:3  
 Protein kinases play important roles in elicitor signal transduction. In this article, I describe the current view of the role of mitogen-activated protein kinase (MAPK) cascades in elicitor signal transduction of plant cells based on our own research and recent developments in this field. In the past several years, it has become apparent that MAPK cascades play important roles in elicitor signal transduction in plants. Our early studies demonstrated the identification of p47 MAPK in tobacco as an elicitor-responsive protein kinase and possible involvement of p47 MAPK in elicitor signal transduction to induce defense responses, including defense gene expression and hypersensitive cell death. However, the molecular identity of p47 MAPK is still unclear. Recent important studies suggest that tobacco MAPK cascades that include SIPK, and/or WIPK, and NtMEK2, an upstream kinase for both SIPK and WIPK, have a crucial function in induction of defense responses and hypersensitive cell death. The orthologs of these protein kinases in Arabidopsis and alfalfa are also suggested to have similar functions. Furthermore, the identification of loss-of-function mutation in Arabidopsis reveals a negative regulatory role for putative MAPK cascades in plant defense mechanisms. Received: February 7, 2002 / Accepted: February 25, 2002  相似文献   

2.
To examine the role of reactive oxygen species (ROS) in the signal transduction that leads to hypersensitive cell death, we used a previously established system in which a xylanase from Trichoderma viride (TvX) induces an oxidative burst and cell death in a culture of tobacco cells. Diphenylene iodonium and N-Acetyl-L-cysteine known as an inhibitor of NADPH oxidase and a scavenger of superoxides, respectively, and catalase inhibited the oxidative burst but did not inhibit the induction of cell death. We also found that inhibitors of serine proteases inhibited TvX-induced cell death. These results suggest that there is a signaling pathway in which a serine protease might be responsible for the signal transduction, which is independent of the oxidative burst, that leads to the hypersensitive cell death of tobacco cells.  相似文献   

3.
4.
The activation of mitogen-activated protein kinases (MAPKs) is one of the earliest responses in plants challenged by avirulent pathogens or cells treated with pathogen-derived elicitors. Expression of a constitutively active MAPK kinase, NtMEK2DD, in tobacco induces the expression of defense genes and hypersensitive response–like cell death, which are preceded by the activation of two endogenous MAPKs, salicylic acid–induced protein kinase (SIPK) and wounding-induced protein kinase (WIPK). However, the roles that SIPK and WIPK each play in the process are unknown. Here we report that SIPK alone is sufficient to activate these defense responses. In tobacco leaves transiently transformed with SIPK under the control of a steroid-inducible promoter, the induction of SIPK expression after the application of dexamethasone, a steroid, leads to an increase of SIPK activity. The increase of SIPK activity is dependent on the phosphorylation of newly synthesized SIPK by its endogenous upstream kinase. In contrast, the expression of WIPK under the same conditions fails to increase its activity, even though the protein accumulates to a similar level. Studies using chimeras of SIPK and WIPK demonstrated that the C terminus of SIPK contains the molecular determinant for its activation, which is rather surprising because the N termini of SIPK and WIPK are more divergent. SIPK has been implicated previously in the regulation of both plant defense gene activation and hypersensitive response–like cell death based on evidence from pharmacological studies using kinase inhibitors. This gain-of-function study provided more direct evidence for its role in the signaling of multiple defense responses in tobacco.  相似文献   

5.
6.
为探讨植物对病原微生物的防御机制和激发子启动植物体内的信号转导应答过程,本文研究了Phytophthora palmi激发子palmin诱导其非寄主亲和性烟草的叶片和悬浮细胞系产生氧化猝发的分子机理.利用生化分析和激光共聚焦显微扫描技术动态观察palmin诱导烟草过敏反应中O*-2和H2O2的形成、胞间转移及引起细胞死亡的特性.结果表明:palmin诱导激活了烟草细胞内NADPH氧化酶,产生大量的O*-2;O*-2在SOD催化下迅速转变成H2O2,并且H2O2在一定范围的细胞间转移和积累,最后诱发烟草细胞的过敏性坏死反应.palmin诱导氧化猝发过程还有Ca2+和蛋白激酶的参与.  相似文献   

7.
When a plant cell is challenged by a well-defined stimulus, complex signal transduction pathways are activated to promote the modulation of specific sets of genes and eventually to develop adaptive responses. In this context, protein phosphorylation plays a fundamental role through the activation of multiple protein kinase families. Although the involvement of protein kinases at the plasma membrane and cytosolic levels are now well-documented, their nuclear counterparts are still poorly investigated. In the field of plant defence reactions, no known study has yet reported the activation of a nuclear protein kinase and/or its nuclear activity in plant cells, although some protein kinases, e.g. MAPK (mitogen-activated protein kinase), are known to be translocated into the nucleus. In the present study, we investigated the ability of cryptogein, a proteinaceous elicitor of tobacco defence reactions, to induce different nuclear protein kinase activities. We found that at least four nuclear protein kinases are activated in response to cryptogein treatment in a time-dependent manner, some of them exhibiting Ca(2+)-dependent activity. The present study focused on one 47 kDa protein kinase with a Ca(2+)-independent activity, closely related to the MAPK family. After purification and microsequencing, this protein kinase was formally identified as SIPK (salicyclic acid-induced protein kinase), a biotic and abiotic stress-activated MAPK of tobacco. We also showed that cytosolic activation of SIPK is not sufficient to promote a nuclear SIPK activity, the latter being correlated with cell death. In that way, the present study provides evidence of a functional nuclear MAPK activity involved in response to an elicitor treatment.  相似文献   

8.
Programmed cell death (PCD) is the main defense mechanism in plants to fight various pathogens including viruses. The best-studied example of virus-induced PCD in plants is Tobacco mosaic virus (TMV)-elicited hypersensitive response in tobacco plants containing the N resistance gene. It was previously reported that the animal mitochondrial protein Bcl-xL, which lacks a homolog in plants, effectively suppresses plant PCD induced by TMV p50 — the elicitor of hyper-sensitive response in Nicotiana tabacum carrying the N gene. Our studies show that the mitochondria-targeted antioxidant SkQ1 effectively suppresses p50-induced PCD in tobacco plants. On the other hand, SkQ1 did not affect Poa semilatent virus TGB3-induced endoplasmic reticulum stress, which is followed by PCD, in Nicotiana benthamiana epidermal cells. These data suggest that mitochondria-targeted antioxidant SkQ1 can be used to study molecular mechanisms of PCD suppression in plants.  相似文献   

9.
S Zhang  H Du    D F Klessig 《The Plant cell》1998,10(3):435-450
Two purified proteinaceous fungal elicitors, parasiticein (an alpha elicitin) and cryptogein (a beta elicitin), as well as a fungal cell wall-derived carbohydrate elicitor all rapidly activated a 48-kD kinase in tobacco suspension cells. The maximum activation of this kinase paralleled or preceded medium alkalization and activation of the defense gene phenylalanine ammonia-lyase (PAL). In addition, the two elicitins, which also induced hypersensitive cell death, activated a 44- and a 40-kD kinase with delayed kinetics. By contrast, the cell wall-derived elicitor only weakly activated the 44-kD kinase and failed to activate the 40-kD kinase. The size and substrate preference of the 48-kD kinase are reminiscent of the recently purified and cloned salicylic acid-induced protein (SIP) kinase, which is a member of the mitogen-activated protein kinase family. Antibodies raised against a peptide corresponding to the unique N terminus of SIP kinase immunoreacted with the 48-kD kinase activated by all three elicitors from Phytophthora spp. In addition, the cell wall elicitor and the salicylic acid-activated 48-kD kinase copurified through several chromatography steps and comigrated on two-dimensional gels. Based on these results, all three fungal elicitors appear to activate the SIP kinase. In addition, inhibition of SIP kinase activation by kinase inhibitors correlated with the suppression of cell wall elicitor-induced medium alkalization and PAL gene activation, suggesting a regulatory function for the SIP kinase in these defense responses.  相似文献   

10.
11.
Aurora kinases are mitotic serine/threonine protein kinases and are attractive novel targets for anticancer therapy. Many small-molecule inhibitors of Aurora kinases are currently undergoing clinical trials. Aurora A kinase is essential for successful mitotic transition. MK8745 is a novel and selective small-molecule inhibitor of Aurora A kinase. MK8745 induced apoptotic cell death in a p53-dependent manner when tested in vitro in cell lines of multiple lineages. Cells expressing wild-type p53 showed a short delay in mitosis followed by cytokinesis, resulting in 2N cells along with apoptosis. However, cells lacking or with mutant p53 resulted in a prolonged arrest in mitosis followed by endoreduplication and polyploidy. Cytokinesis was completely inhibited in p53-deficient cells, as observed by the absence of 2N cell population. The induction of apoptosis in p53-proficient cells was associated with activation of caspase 3 and release of cytochrome c but was independent of p21. Exposure of p53 wild-type cells to MK8745 resulted in the induction of p53 phosphorylation (ser15) and an increase in p53 protein expression. p53-dependent apoptosis by MK8745 was further confirmed in HCT 116 p53−/− cells transfected with wild-type p53. Transient knockdown of Aurora A by specific siRNA recapitulated these p53-dependent effects, with greater percent induction of apoptosis in p53 wild-type cells. In conclusion, our studies show p53 as a determining factor for induction of apoptosis vs. polyploidy upon inhibition of Aurora A.Key words: Aurora A kinase, polyploidy, apoptosis, p53, cell cycle  相似文献   

12.
Although the involvement of heat shock protein 90 (HSP90), mitogen-activated protein kinase (MAPK) cascades and organelle dysfunction in plant hypersensitive cell death has been suggested, the mutual relationship among them has not been elucidated. Here, we show the molecular network of HSP90, the wound-induced protein kinase (WIPK)/salicylic acid-induced protein kinase (SIPK)-mediated MAPK cascade and mitochondrial dysfunction in tobacco mosaic virus (TMV) resistance gene N-dependent cell death. p50, the Avr component for N, NtMEK2(DD), a constitutively active form of a MAPK kinase of WIPK/SIPK, and a mammalian pro-apoptotic factor Bax were used for cell death induction. Suppression of HSP90 and treatment with geldanamycin, a specific inhibitor of HSP90, compromised p50- but not NtMEK2(DD)- or Bax-mediated cell death accompanying the reduction of NtMEK2, WIPK and SIPK activation. In WIPK/SIPK-double knockdown plants, p50- and NtMEK2(DD)- but not Bax-mediated cell death was suppressed. All three types of cell death induced mitochondrial dysfunction, but they were similarly suppressed by Bcl-xL, which is a mammalian anti-apoptotic factor, and prevents mitochondrial dysfunction in plants as it does in animals in the cell death signal pathway. Taken together with the expression profile of hypersensitive reaction marker genes, it was indicated that the MAPK cascade functions downstream of HSP90 and transduces the cell death signal to mitochondria for N gene-dependent cell death. Furthermore, we found that WIPK and SIPK are functionally redundant in cell death signaling using WIPK/SIPK single or double knockdown plants.  相似文献   

13.
Zhang S  Liu Y 《The Plant cell》2001,13(8):1877-1889
The activation of mitogen-activated protein kinases (MAPKs) is one of the earliest responses in plants challenged by avirulent pathogens or cells treated with pathogen-derived elicitors. Expression of a constitutively active MAPK kinase, NtMEK2(DD), in tobacco induces the expression of defense genes and hypersensitive response-like cell death, which are preceded by the activation of two endogenous MAPKs, salicylic acid-induced protein kinase (SIPK) and wounding-induced protein kinase (WIPK). However, the roles that SIPK and WIPK each play in the process are unknown. Here we report that SIPK alone is sufficient to activate these defense responses. In tobacco leaves transiently transformed with SIPK under the control of a steroid-inducible promoter, the induction of SIPK expression after the application of dexamethasone, a steroid, leads to an increase of SIPK activity. The increase of SIPK activity is dependent on the phosphorylation of newly synthesized SIPK by its endogenous upstream kinase. In contrast, the expression of WIPK under the same conditions fails to increase its activity, even though the protein accumulates to a similar level. Studies using chimeras of SIPK and WIPK demonstrated that the C terminus of SIPK contains the molecular determinant for its activation, which is rather surprising because the N termini of SIPK and WIPK are more divergent. SIPK has been implicated previously in the regulation of both plant defense gene activation and hypersensitive response-like cell death based on evidence from pharmacological studies using kinase inhibitors. This gain-of-function study provided more direct evidence for its role in the signaling of multiple defense responses in tobacco.  相似文献   

14.
Yoda H  Hiroi Y  Sano H 《Plant physiology》2006,142(1):193-206
Programmed cell death plays a critical role during the hypersensitive response in the plant defense system. One of components that triggers it is hydrogen peroxide, which is generated through multiple pathways. One example is proposed to be polyamine oxidation, but direct evidence for this has been limited. In this article, we investigated relationships among polyamine oxidase, hydrogen peroxide, and programmed cell death using a model system constituted of tobacco (Nicotiana tabacum) cultured cell and its elicitor, cryptogein. When cultured cells were treated with cryptogein, programmed cell death occurred with a distinct pattern of DNA degradation. The level of hydrogen peroxide was simultaneously increased, along with polyamine oxidase activity in apoplast. With the same treatment in the presence of alpha-difluoromethyl-Orn, an inhibitor of polyamine biosynthesis, production of hydrogen peroxide was suppressed and programmed cell death did not occur. A gene encoding a tobacco polyamine oxidase that resides in the apoplast was isolated and used to construct RNAi transgenic cell lines. When these lines were treated with cryptogein, polyamines were not degraded but secreted into culture medium and hydrogen peroxide was scarcely produced, with a concomitant suppression of cell death. Activities of mitogen-activated protein kinases (wound- and salicylic acid-induced protein kinases) were also suppressed, indicating that phosphorylation cascade is involved in polyamine oxidation-derived cell death. These results suggest that polyamine oxidase is a key element for the oxidative burst, which is essential for induction of programmed cell death, and that mitogen-activated protein kinase is one of the factors that mediate this pathway.  相似文献   

15.
Detachment of epithelial cells from the extracellular matrix leads to induction of programmed cell death, a process that has been termed “anoikis.” It has been reported recently that detachment of MDCK cells from matrix results in activation of Jun–NH2-terminal kinases (JNKs) and speculated that these stress activated protein kinases play a causal role in the induction of anoikis (Frisch, S.M., K. Vuori, D. Kelaita, and S. Sicks. 1996. J. Cell Biol. 135:1377–1382). We report here that although JNK is activated by detachment of normal MDCK cells, study of cell lines expressing activated signaling proteins usually controlled by Ras shows that stimulation of JNK fails to correlate with induction of anoikis. Activated phosphoinositide 3-OH kinase and activated PKB/Akt protect MDCK cells from detachment-induced apoptosis without suppressing JNK activation. Conversely, activated Raf and dominant negative SEK1, a JNK kinase, attenuate detachment-induced JNK activation without protecting from apoptosis. zVAD-fmk, a peptide inhibitor of caspases, prevents MDCK cell anoikis without affecting JNK activation. p38, a related stress-activated kinase, is also stimulated by detachment from matrix, but inhibition of this kinase with SB 203580 does not protect from anoikis. It is therefore unlikely that either JNK or p38 play a direct role in detachment-induced programmed cell death in epithelial cells.  相似文献   

16.
Activation of MAPK homologues by elicitors in tobacco cells   总被引:20,自引:3,他引:17  
Elicitors of plant defence reactions (such as cryptogein, an elicitin produced by Phytophthora cryptogea , or oligogalacturonides (OGs)), induced in tobacco cell suspensions ( Nicotiana tabacum var Xanthi) a rapid and transient activation of two protein kinases (PKs) with apparent molecular masses of 50 and 46 kDa, respectively. These PKs activated and phosphorylated at tyrosine residues, phosphorylated myelin basic protein (MBP) at serine/threonine residues. Both are recognized by anti-MAPK antibodies. The two MBP kinases possessed the same kinetics of activation, and their activation depended, to the same extent, on different exogenously applied compounds (staurosporine, lanthanum, EGTA). We demonstrate here that the activation of the MBP kinases is calcium dependent and sensitive to staurosporine, a protein kinase inhibitor which annihilates all known responses of tobacco cells to cryptogein. The activation of MBP kinases appeared to be independent of the production of active oxygen species (AOS) and insensitive to calyculin A, a protein phosphatase type 1 and 2A inhibitor. The activation of MAPKs is discussed in relation to the early responses induced by cryptogein.  相似文献   

17.
There is much interest in the transduction pathways by which avirulent pathogens or derived elicitors activate plant defense responses. However, little is known about anion channel functions in this process. The aim of this study was to reveal the contribution of anion channels in the defense response triggered in tobacco by the elicitor cryptogein. Cryptogein induced a fast nitrate (NO(3)(-)) efflux that was sensitive to anion channel blockers and regulated by phosphorylation events and Ca(2+) influx. Using a pharmacological approach, we provide evidence that NO(3)(-) efflux acts upstream of the cryptogein-induced oxidative burst and a 40-kD protein kinase whose activation seems to be controlled by the duration and intensity of anion efflux. Moreover, NO(3)(-) efflux inhibitors reduced and delayed the hypersensitive cell death triggered by cryptogein in tobacco plants. This was accompanied by a delay or a complete suppression of the induction of several defense-related genes, including hsr203J, a gene whose expression is correlated strongly with programmed cell death in plants. Our results indicate that anion channels are involved intimately in mediating defense responses and hypersensitive cell death.  相似文献   

18.
In potato tuber tissue, treatment of fungal elicitor, hyphalwall components (HWC) induces various plant defense reactions.As treatment of protein kinase inhibitor prior to HWC treatmentblocks some of defense reactions induced by HWC, involvementof protein kinases in plant defense induction is proposed. Here,we demonstrate HWC-induced activation of a 51-kDa protein kinase(abbreviated p51-PK) using myelin basic protein as a substratein potato tuber discs. The activity of p51-PK was not detectedin the absence of phosphatase inhibitor, NaF, and p51-PK wasimmuroprecipitated with antibody against phosphotyrosine. Pretreatmentof phospholipase C inhibitor, neomycin, and GTP-binding proteinactivator, mastoparan, partially inhibited the HWC-induced activationof p51-PK, suggesting possible involvement of phospholipaseC and GTP-binding protein in the activation of p51-PK. Exogenouslysupplied elicitors, salicylic acid and arachidonic acid, whichare known to induce various defense responses in potato plants,also activated the protein kinase showing the same migrationas p51-PK on SDS-PAGE and different activation patterns. Theseresults implied that p51-PK might be involved in several signaltransduction pathways leading to plant defense responses initiatedby different stimuli. (Received January 11, 1999; Accepted May 25, 1999)  相似文献   

19.
Mitogen-activated protein kinases (MAPKs) are a family of Ser/Thr protein kinases that transmit various extracellular signals to the nucleus inducing gene expression, cell proliferation, and apoptosis. Recent studies have revealed that organotin compounds induce apoptosis and MAPK phosphorylation/activation in mammal cells. In this study, we elucidated the cytotoxic mechanism of tributyltin (TBT), a representative organotin compound, in rainbow trout (Oncorhynchus mykiss) RTG-2 cells. TBT treatment resulted in significant caspase activation, characteristic morphological changes, DNA fragmentation, and consequent apoptotic cell death in RTG-2 cells. TBT exposure induced the rapid and sustained accumulation of phosphorylated MAPKs, including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAP kinase (p38 MAPK). Further analysis using pharmacological inhibitors against caspases and MAPKs showed that TBT also induced cell death in a caspase-independent manner and that p38 MAPK is involved in TBT-induced caspase-independent cell death, whereas JNK is involved in the caspase-dependent apoptotic pathway. Thus, TBT employs at least two independent signaling cascades to mediate cell death in RTG-2 cells. To our knowledge, this is the first study revealing the relationship between MAPK activation and TBT cytotoxicity in RTG-2 cells.  相似文献   

20.
In tomato (Solanum lycopersicum), resistance to Pseudomonas syringae pv. tomato is elicited by the interaction of the host Pto kinase with the pathogen effector protein AvrPto, which leads to various immune responses including localized cell death termed the hypersensitive response. The AGC kinase Adi3 functions to suppress host cell death and interacts with Pto only in the presence of AvrPto. The cell death suppression (CDS) activity of Adi3 requires phosphorylation by 3-phosphoinositide-dependent protein kinase 1 (Pdk1) and loss of Adi3 function is associated with the hypersensitive response cell death initiated by the Pto/AvrPto interaction. Here we studied the relationship between Adi3 cellular localization and its CDS activity. Adi3 is a nuclear-localized protein, and this localization is dictated by a nuclear localization signal found in the Adi3 T-loop extension, an ∼80 amino acid insertion into the T-loop, or activation loop, which is phosphorylated for kinase activation. Nuclear localization of Adi3 is required for its CDS activity and loss of nuclear localization causes elimination of Adi3 CDS activity and induction of cell death. This nuclear localization of Adi3 is dependent on Ser-539 phosphorylation by Pdk1 and non-nuclear Adi3 is found in punctate structures throughout the cell. Our data support a model in which Pdk1 phosphorylation of Adi3 directs nuclear localization for CDS and that disruption of Adi3 nuclear localization may be a mechanism for induction of cell death such as that during the Pto/AvrPto interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号