首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
转基因植物中标记基因的剔除   总被引:5,自引:0,他引:5  
在目前的植物转化系统中,要求在关注基因或目的基因转入细胞时,同时有标记基因存在.标记基因主要是抗生素或除草剂的抗性基因.借标记基因的表达可以将转化细胞从大量的未转化细胞中筛选出来,但标记基因的继续存在,特别是在转基因食品中,是人们广泛关注的问题.培育无标记基因的转基因植株已成为植物生物工程研究中的新课题.该文介绍了剔除标记基因的两种方法:分离剔除和重组剔除,并对近年来这两种方法在培育无标记基因的转基因植物中的应用和进展作了介绍.  相似文献   

2.
The Cre–loxP site-specific recombination system was deployed for removal of marker genes from Brassica juncea (Indian mustard). Excision frequencies, monitored by removal of nptII or gfp genes in F1 plants of crosses between LOX and CRE lines, were high in quiescent, differentiated somatic tissues but extremely poor in the meristematic regions (and consequently the germinal cells) thus preventing identification and selection of marker-free transgenic events which are devoid of both the marker gene as well as the cre gene, in F2 progeny. We show that a passage through in vitro culture of F1 leaf explants allows efficient development of marker-free transgenics in the F2 generation addressing current limitations associated with efficient use of the Cre/loxP technology for marker gene removal. N. Arumugam and Vibha Gupta have contributed equally to this work.  相似文献   

3.
The development of a method to create defined mutants of Leishmania parasites lacking foreign genes conferring resistance to antibiotics has both experimental and practical applications. Mutants deficient in specific virulence genes have potential as attenuated live vaccines, but these can only be of clinical relevance if the antibiotic resistance genes used for selection of the mutants are subsequently removed. In addition, the limited number of antibiotic resistance genes that can be used for genetic manipulation of Leishmania means that a system for recycling them for subsequent use would be highly beneficial when multiple genetic modifications are wanted. In the method we report here, a cassette carrying in tandem the hygromycin resistance gene as a positive marker and thymidine kinase gene as a negative marker is first integrated into the locus of interest and then replaced by a null targeting fragment containing no exogenous DNA. The application of this hit-and-run strategy for removal of one allele of the CPB cysteine peptidase gene array of Leishmania infantum is described.  相似文献   

4.
转基因植物中筛选标记基因的利用及消除   总被引:7,自引:0,他引:7  
侯爱菊  朱延明  张晶  李杰  张彬彬 《遗传》2003,25(4):466-470
在基因转移过程中,人们常常使用标记基因来筛选转化细胞或组织。常用的筛选标记基因尤其是抗生素抗性基因的使用往往对环境及植物体的生长发育产生不良影响,且影响基因多重转化。为了消除这些弊端,一种全新的发展策略即获取无选择标记的转基因植物应运而生。本文主要综述转基因植物中有关筛选标记基因及其消除方法。 Abstract:Selective marker gene is usually used to select transformed cells or tissue during gene transfer.However,the use of selective marker gene,especially antibiotic-resistant gene,is harmful to environment,plant development and affects multi-transformation.A new strategy that offers a approach for the elimination of those disadvantages caused by the selectable marker gene is developed.We summarized correlative marker genes used in transgenic plants and some methods of its removal.  相似文献   

5.
Transgene integration mediated by heterologous site-specific recombination (SSR) systems into the dedicated genomic sites has been demonstrated in a few different plant species. This approach of plant transformation generates a precise site-specific integration (SSI) structure consisting of a single copy of the transgene construct. As a result, stable transgene expression correlated with promoter strength and gene copy number is observed among independent transgenic lines and faithfully transmitted through subsequent generations. Site-specific integration approaches use selectable marker genes, removal of which is necessary for the implementation of this approach as a biotechnology application. As SSR systems are also excellent tools for excising marker genes from transgene locus, a molecular strategy involving gene integration followed by marker excision, each mediated by a distinct recombination system, was earlier proposed. Experimental validation of this approach is the focus of this work. Using FLPe-FRT system for site-specific gene integration and heat-inducible Cre-lox for marker gene excision, marker-free SSI lines were developed in the first generation itself. More importantly, progeny derived from these lines inherited the marker-free locus, indicating efficient germinal transmission. Finally, as the transgene expression from SSI locus was not altered upon marker excision, this method is suitable for streamlining the production of marker-free SSI lines.  相似文献   

6.
Genetic engineering of higher plant plastids typically involves stable introduction of antibiotic resistance genes as selection markers. Even though chloroplast genes are maternally inherited in most crops, the possibility of marker transfer to wild relatives or microorganisms cannot be completely excluded. Furthermore, marker expression can be a substantial metabolic drain. Therefore, efficient methods for complete marker removal from plastid transformants are necessary. One method to remove the selection gene from higher plant plastids is based on loop-out recombination, a process difficult to control because selection of homoplastomic transformants is unpredictable. Another method uses the CRE/lox system, but requires additional retransformation and sexual crossing for introduction and subsequent removal of the CRE recombinase. Here we describe the generation of marker-free chloroplast transformants in tobacco using the reconstitution of wild-type pigmentation in combination with plastid transformation vectors, which prevent stable integration of the kanamycin selection marker. One benefit of a procedure using mutants is that marker-free plastid transformants can be produced directly in the first generation (T0) without retransformation or crossing.  相似文献   

7.

Background

Genetic manipulation of poxvirus genomes through attenuation, or insertion of therapeutic genes has led to a number of vector candidates for the treatment of a variety of human diseases. The development of recombinant poxviruses often involves the genomic insertion of a selectable marker for purification and selection purposes. The use of marker genes however inevitably results in a vector that contains unwanted genetic information of no therapeutic value.

Methodology/Principal Findings

Here we describe an improved strategy that allows for the creation of marker-free recombinant poxviruses of any species. The Selectable and Excisable Marker (SEM) system incorporates a unique fusion marker gene for the efficient selection of poxvirus recombinants and the Cre/loxP system to facilitate the subsequent removal of the marker. We have defined and characterized this new methodological tool by insertion of a foreign gene into vaccinia virus, with the subsequent removal of the selectable marker. We then analyzed the importance of loxP orientation during Cre recombination, and show that the SEM system can be used to introduce site-specific deletions or inversions into the viral genome. Finally, we demonstrate that the SEM strategy is amenable to other poxviruses, as demonstrated here with the creation of an ectromelia virus recombinant lacking the EVM002 gene.

Conclusion/Significance

The system described here thus provides a faster, simpler and more efficient means to create clinic-ready recombinant poxviruses for therapeutic gene therapy applications.  相似文献   

8.
Towards the ideal GMP: homologous recombination and marker gene excision   总被引:9,自引:0,他引:9  
A mayor aim of biotechnology is the establishment of techniques for the precise manipulation of plant genomes. Two major efforts have been undertaken over the last dozen years, one to set up techniques for site-specific alteration of the plant genome via homologous recombination ("gene targeting") and the other for the removal of selectable marker genes from transgenic plants. Unfortunately, despite multiple promising approaches that will be shortly described in this review no feasible gene targeting technique has been developed till now for crop plants. In contrast, several alternative procedures have been established successfully to remove selectable markers from plant genomes. Intriguingly besides techniques relying on transposons and site-specific recombinases, recent results indicate that homologous recombination might be a valuable alternative for the excision of marker genes.  相似文献   

9.
一种马铃薯高效无标记转基因技术的建立   总被引:2,自引:0,他引:2  
用农杆菌介导法转化马铃薯栽培品种紫花白的叶盘,通过1/4 MS培养基预培养、热激处理、低pH、高糖培养基共培养,之后利用PCR直接检测转化体,结果表明遗传转化效率可达5.1%,建立了马铃薯无标记转基因技术.该技术受基因型的限制小,用于其它3个不同的栽培品种东北白、晋薯7号和早大白,遗传转化效率亦达到了4.1%~8.3%.利用这项无标记转基因技术,在载体构建时就剔除了标记基因,遗传转化后直接分化培养,不必对转化细胞进行抗性筛选,缩短了遗传转化周期,省去了费时费力的标记基因剔除步骤,亦为重复转化聚合多个优良基因提供了便利.  相似文献   

10.
Genetically-modified mutants are now indispensable Plasmodium gene-function reagents, which are also being pursued as genetically attenuated parasite vaccines. Currently, the generation of transgenic malaria-parasites requires the use of drug-resistance markers. Here we present the development of an FRT/FLP-recombinase system that enables the generation of transgenic parasites free of resistance genes. We demonstrate in the human malaria parasite, P. falciparum, the complete and efficient removal of the introduced resistance gene. We targeted two neighbouring genes, p52 and p36, using a construct that has a selectable marker cassette flanked by FRT-sequences. This permitted the subsequent removal of the selectable marker cassette by transient transfection of a plasmid that expressed a 37°C thermostable and enhanced FLP-recombinase. This method of removing heterologous DNA sequences from the genome opens up new possibilities in Plasmodium research to sequentially target multiple genes and for using genetically-modified parasites as live, attenuated malaria vaccines.  相似文献   

11.
Selectable marker genes are indispensable for efficient production of transgenic events, but are no longer needed after the selection process and may cause public concern and technological problems. Although several gene excision systems exist, few have been optimized for vegetatively propagated crops. Using a Cre-loxP auto-excision strategy, we obtained transgenic banana plants cv. Grande Naine (Musa AAA) devoid of the marker gene used for selection. We used T-DNA vectors with the cre recombinase gene under control of a heat shock promoter and selectable marker gene cassettes placed between two loxP sites in direct orientation, and a gene of interest inserted outside of the loxP sites. Heat shock promoters pGmHSP17.6-L and pHSP18.2, from soybean and Arabidopsis respectively, were tested. A transient heat shock treatment of primary transgenic embryos was sufficient for inducing cre and excising cre and the marker genes. Excision efficiency, as determined by PCR and Southern hybridization was 59.7 and 40.0% for the GmHSP17.6-L and HSP18.2 promoters, respectively. Spontaneous excision was not observed in 50 plants derived from untreated transgenic embryos. To our knowledge this is the first report describing an efficient marker gene removal system for banana. The method described is simple and might be generally applicable for the production of marker-free transgenic plants of many crop species.  相似文献   

12.
Plastid transformation is widely used in basic research and for biotechnological applications. Initially developed in Chlamydomonas and tobacco, it is now feasible in a broad range of species. Selection of transgenic lines where all copies of the polyploid plastid genome are transformed requires efficient markers. A number of traits have been used for selection such as photoautotrophy, resistance to antibiotics and tolerance to herbicides or to other metabolic inhibitors. Restoration of photosynthesis is an effective primary selection method in Chlamydomonas but can only serve as a screening tool in flowering plants. The most successful and widely used markers are derived from bacterial genes that inactivate antibiotics, such as aadA that confers resistance to spectinomycin and streptomycin. For many applications, the presence of a selectable marker that confers antibiotic resistance is not desirable. Efficient marker removal methods are a major attraction of the plastid engineering tool kit. They exploit the homologous recombination and segregation pathways acting on chloroplast genomes and are based on direct repeats, transient co-integration or co-transformation and segregation of trait and marker genes. Foreign site-specific recombinases and their target sites provide an alternative and effective method for removing marker genes from plastids.  相似文献   

13.
A new plasmid series has been created for Agrobacterium-mediated plant transformation. The pBECKS2000 series of binary vectors exploits the Cre/loxP site-specific recombinase system to facilitate the construction of complex T-DNA vectors. The new plasmids enable the rapid generation of T-DNA vectors in which multiple genes are linked, without relying on the availability of purpose-built cassette systems or demanding complex, and therefore inefficient, ligation reactions. The vectors incorporate facilities for the removal of transformation markers from transgenic plants, while still permitting simple in vitro manipulations of the T-DNA vectors. A `shuttle' or intermediate plasmid approach has been employed. This permits independent ligation strategies to be used for two gene sets. The intermediate plasmid sequence is incorporated into the binary vector through a plasmid co-integration reaction which is mediated by the Cre/loxP site-specific recombinase system. This reaction is carried out within Agrobacterium cells. Recombinant clones, carrying the co-integrative binary plasmid form, are selected directly using the antibiotic resistance marker carried on the intermediate plasmid. This strategy facilitates production of co-integrative T-DNA binary vector forms which are appropriate for either (1) transfer to and integration within the plant genome of target and marker genes as a single T-DNA unit; (2) transfer and integration of target and marker genes as a single T-DNA unit but with a Cre/loxP facility for site-specific excision of marker genes from the plant genome; or (3) co-transfer of target and marker genes as two independent T-DNAs within a single-strain Agrobacterium system, providing the potential for segregational loss of marker genes.  相似文献   

14.
The dominant selectable Kanr marker, which confers geneticin resistance in yeast, is extensively used for PCR based disruption of genes in functional analysis studies in laboratory strains of Saccharomyces cerevisiae. We have developed a gene disruption cassette, which incorporates the Kanr marker, and direct repeat sequences designed from the target gene to enable the deletion of the gene without the introduction of added DNA sequences. We report on the disruption of the HO gene as a test case, using the hodr-Kanr-hodr cassette. The cassette was shown to integrate at the HO locus and the Kanr marker excised by recombination between the two direct repeat sequences. The disruption/excision event resulted in the removal of one direct repeat and the coding sequence of the gene, and hence in this case loss of HO function, with the introduction of no foreign or additional sequences, including the Kanr marker. Having been derived from the target site, the remaining direct repeat sequence is native sequence in its native location. This design template has the potential to be adapted to other genes, and as such will be of advantage in instances such as the optimization of strains by recombinant DNA technology where the retention of minimal or no foreign sequences is desired.  相似文献   

15.
血清饥饿可诱导人血管平滑肌细胞再分化   总被引:25,自引:0,他引:25  
体外培养的分化型血管平滑肌细胞 (vascularsmoothmusclecells ,VSMC)以特异性标志基因表达、长梭形外观及对兴奋剂刺激产生收缩反应为其表型特征 .以血清饥饿法培养处于超汇合 (overconfluence)状态的人VSMC ,观察其分化型标志基因表达活性及其与细胞形态特征和收缩反应性之间的关系 ,探讨细胞生存环境对VSMC基因表达及表型的影响 .研究显示 ,生长至超汇合的VSMC由含血清培养转为血清饥饿后 ,收缩蛋白如SMα肌动蛋白 (SMα actin)、SM2 2α、h1 calponin、肌球蛋白重链 (MHC)SM1和SM2亚型的表达活性明显上调 ,证实血清饥饿诱导的收缩蛋白基因表达和血清应答因子 (serumresponsefactor ,SRF)与CArG顺式元件结合活性的增强有关 .同时 ,血清饥饿还可激活参与VSMC分化调节的转录调控因子SmLIM、Gax和分化相关蛋白HRG 1基因的转录 .随着血清饥饿培养时间的延长 ,VSMC逐渐形成多层、束状、成极性排列的形式 ,对兴奋剂刺激产生的收缩反应明显增强 .结果表明 ,超汇合状态的去分化型VSMC脱离血清刺激后 ,可以再分化成熟并重新获得收缩能力  相似文献   

16.
杨爱馥  苏乔  安利佳 《遗传》2009,31(1):95-100
转基因植物中的载体骨架序列和选择标记基因是引起生物安全性争论的根本原因, 最直接、最有效的解决方法是在转化过程中不使用载体骨架序列和选择标记基因。本研究建立并优化了玉米子房滴注转化法, 其操作要点是将DNA转化溶液直接滴加在完全去除花柱的子房上。利用子房滴注法将无载体骨架序列和选择标记的线性GFP基因表达框转化玉米。PCR结果表明: 适合子房滴注法转化的玉米品种为9818, 最佳转化时间为授粉后18~20 h, 在此条件下得到最高的PCR阳性率, 为3.01%; Southern blotting结果表明外源基因的整合方式简单(1~2条杂交带); RT-PCR结果表明转基因植株中GFP基因能够在RNA水平上正常表达; 在转基因植株的根和幼胚中观察到GFP表达。  相似文献   

17.
A new plasmid series has been created for Agrobacterium-mediated plant transformation. The pBECKS2000 series of binary vectors exploits the Cre/loxP site-specific recombinase system to facilitate the construction of complex T-DNA vectors. The new plasmids enable the rapid generation of T-DNA vectors in which multiple genes are linked, without relying on the availability of purpose-built cassette systems or demanding complex, and therefore inefficient, ligation reactions. The vectors incorporate facilities for the removal of transformation markers from transgenic plants, while still permitting simple in vitro manipulations of the T-DNA vectors. A `shuttle' or intermediate plasmid approach has been employed. This permits independent ligation strategies to be used for two gene sets. The intermediate plasmid sequence is incorporated into the binary vector through a plasmid co-integration reaction which is mediated by the Cre/loxP site-specific recombinase system. This reaction is carried out within Agrobacterium cells. Recombinant clones, carrying the co-integrative binary plasmid form, are selected directly using the antibiotic resistance marker carried on the intermediate plasmid. This strategy facilitates production of co-integrative T-DNA binary vector forms which are appropriate for either (1) transfer to and integration within the plant genome of target and marker genes as a single T-DNA unit; (2) transfer and integration of target and marker genes as a single T-DNA unit but with a Cre/loxP facility for site-specific excision of marker genes from the plant genome; or (3) co-transfer of target and marker genes as two independent T-DNAs within a single-strain Agrobacterium system, providing the potential for segregational loss of marker genes. Received: 30 July 1998 / Accepted: 2 November 1998  相似文献   

18.
The presence of marker genes conferring antibiotic resistance in transgenic plants represents a serious obstacle for their public acceptance and future commercialization. In citrus, selection using the selectable marker gene nptII, that confers resistance to the antibiotic kanamycin, is in general very effective. An attractive alternative is offered by the MAT system (Multi-Auto-Transformation), which combines the ipt gene for positive selection with the recombinase system R/RS for removal of marker genes from transgenic cells after transformation. Transformation with a MAT vector has been attempted in two citrus genotypes, Pineapple sweet orange (Citrus sinensis L. Osb.) and Carrizo citrange (C. sinensis L. Osb. × Poncirus trifoliata L. Raf.). Results indicated that the IPT phenotype was clearly distinguishable in sweet orange but not in citrange, and that excision was not always efficient and precise. Nevertheless, the easy visual detection of the IPT phenotype combined with the higher transformation efficiency achieved in sweet orange using this system open interesting perspectives for the generation of marker-free transgenic citrus plants.  相似文献   

19.
Plastid marker-gene excision by transiently expressed CRE recombinase   总被引:8,自引:0,他引:8  
We report plastid marker-gene excision with a transiently expressed CRE, site-specific recombinase. This is a novel protocol that enables rapid removal of marker genes from the approximately 10,000 plastid genome copies without transformation of the plant nucleus. Plastid marker excision was tested in tobacco plants transformed with a prototype polycistronic plastid vector, pPRV110L, designed to express multiple genes organized in an operon. The pMHB10 and pMHB11 constructs described here are dicistronic and encode genes for herbicide (bar) and spectinomycin (aadA) resistance. In vector pMHB11, expression of herbicide resistance is dependent on conversion of an ACG codon to an AUG translation initiation codon by mRNA editing, a safety feature that prevents translation of the mRNA in prokaryotes and in the plant nucleus. In the vectors, the marker gene (aadA) is flanked by 34-bp loxP sites for excision by CRE. Marker excision by a transiently expressed CRE involves introduction of CRE in transplastomic leaves by agro-infiltration, followed by plant regeneration. In tobacco transformed with vectors pMHB10 and pMHB11, Southern analysis and PCR identified approximately 10% of the regenerated plants as marker-free.  相似文献   

20.
This study aimed to develop a new vector system to remove selection genes and to introduce two or more genes of interest into plants in order to express them in a coordinated manner. A multigene expression vector was established based on pCamBIA2300 using a selectable marker gene (SMG)-free system based on the combination of the isocaudamer technique and double T-DNA. The vector DT7 containing seven target genes was constructed and introduced into tobacco using Agrobacterium-mediated transformation. Twenty-one of 27 positive transgenic plants contained both T-DNA regions. The co-transformation frequency was 77.8 %. The frequency of unlinked integration of two intact T-DNAs was 22.22 % (6/27). The frequency of removal of SMG from transgenic T1 plants was 19.10 %. These results suggest that this vector system was functional and effective for multigene expression and SMG-free transgenic plant cultivation. At least seven target genes can be co-expressed using this system. Overall, these findings provide a new and highly effective platform for multigene and marker-free transgenic plant production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号