首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A developmentally regulated cysteine proteinase gene of Leishmania mexicana   总被引:1,自引:0,他引:1  
We have isolated a gene encoding a previously unreported class of trypanosomatid cysteine proteinase (CP) from the protozoan parasite Leishmania mexicana. The single-copy gene (lmcpa) [corrected]. has several unusual features that distinguish it from CP genes cloned from the related species Trypanosoma brucei and Trypanosoma cruzi. These include a shorter C-terminal extension of only 10 amino acids and a three-amino-acid insertion, GlyValMet, close to the predicted N-terminus of the mature protein. Northern blot analysis showed that the gene is expressed in all life-cycle stages but at higher levels in the amastigote stage in the mammal and in stationary phase promastigote cultures which contain the infective metacyclic form of the parasite. A precursor protein of 38 kDa was detected in amastigotes and stationary phase promastigotes with antisera specific to the LmCPa pro-region, but was barely detectable in early log-phase promastigotes. Anti-central domain antisera recognized the 38 kDa precursor and 24 and 27 kDa proteins. The major CPs of L. mexicana amastigotes, previously designated types A, B and C, were not detected with the antisera, suggesting that the gene codes for a previously uncharacterized CP in L. mexicana. The 24 kDa protein detected by the antiserum has no activity towards gelatin but apparently hydrolyses the peptide substrate BzPheValArgAMC. The relative levels of the 24 and 27 kDa proteins vary between the different life-cycle stages. The results indicate that expression of this CP is regulated at both the RNA and protein level.  相似文献   

2.
Trypanosomes are the etiological agents of human sleeping sickness and livestock trypanosomosis (nagana), which are major diseases in Africa. Their cysteine proteases (CPs), which are members of the papain family, are expressed during the infective stages of the parasites' life cycle. They are suspected to act as pathogenic factors in the mammalian host, where they also trigger prominent immune responses. Trypanosoma congolense, a major pathogenic species in livestock, possesses at least two families of closely related CPs, named CP1 and CP2. Congopain, a CP2-type of enzyme, shares structural and functional resemblances with cruzipain from T. cruzi and with mammalian cathepsin L. Like CPs from other Trypanosomatids, congopain might be an attractive target for trypanocidal drugs. Here we summarise the current knowledge in the two main areas of research on congopain: first, the biochemical properties of congopain were characterised and its substrate specificity was determined, as a first step towards drug design; second, the possibility was being explored that inhibition of congopain by host-specific antibodies may mitigate the pathology associated with trypanosome infection.  相似文献   

3.
Trypanosoma cruzi, the causative agent of Chagas' disease, is an important cause of heart disease in Latin America. The parasite is transmitted mucosally, with both intra- and extracellular life stages in the human host. Cruzipain, the major cysteinyl proteinase of T. cruzi, has been shown to be antigenic in both humans and mice during infection with the parasite. We extend these observations, showing here that multiple murine immune subsets of potential importance for vaccine-induced protection can be induced by cruzipain. Cruzipain-specific serum IgG responses were induced during chronic infection with T. cruzi. In addition, T. cruzi mucosal infection stimulated the development of cruzipain-specific secretory IgA detectable in fecal extracts from infected mice. Cruzipain-specific type 1 cytokine responses characterized by the production of IFN-gamma but not IL-4 were also detectable during murine infection. Furthermore, immunization of mice with a DNA vaccine encoding cruzipain was shown to stimulate cytotoxic T lymphocyte (CTL) responses capable of recognizing and lysing T. cruzi-infected cells. The induction of serum antibody, mucosal IgA, Th1 cytokine and CTL responses by cruzipain in mice supports the use of this parasite protein for further efforts in T. cruzi vaccine development.  相似文献   

4.
Parasites belonging to Leishmania braziliensis, Leishmania donovani, Leishmania mexicana complexes and Trypanosoma cruzi (clones 20 and 39) were searched in blood, lesions and strains collected from 28 patients with active cutaneous leishmaniasis and one patient with visceral leishmaniasis. PCR-hybridization with specific probes of Leishmania complexes (L. braziliensis, L. donovani and L. mexicana) and T. cruzi clones was applied to the different DNA samples. Over 29 patients, 8 (27.6%) presented a mixed infection Leishmania complex species, 17 (58.6%) a mixed infection Leishmania-T. cruzi, and 4 (13.8%) a multi Leishmania-T. cruzi infection. Several patients were infected by the two Bolivian major clones 20 and 39 of T. cruzi (44.8%). The L. braziliensis complex was more frequently detected in lesions than in blood and a reverse result was observed for L. mexicana complex. The polymerase chain reaction-hybridization design offers new arguments supporting the idea of an underestimated rate of visceral leishmanisis in Bolivia. Parasites were isolated by culture from the blood of two patients and lesions of 10 patients. The UPGMA (unweighted pair-group method with arithmetic averages) dendrogram computed from Jaccard's distances obtained from 11 isoenzyme loci data confirmed the presence of the three Leishmania complexes and undoubtedly identified human infections by L. (V.) braziliensis, L. (L.) chagasi and L. (L.) mexicana species. Additional evidence of parasite mixtures was visualized through mixed isoenzyme profiles, L. (V.) braziliensis-L. (L.) mexicana and Leishmania spp.-T. cruzi.The epidemiological profile in the studied area appeared more complex than currently known. This is the first report of parasitological evidence of Bolivian patients with trypanosomatidae multi infections and consequences on the diseases' control and patient treatments are discussed.  相似文献   

5.
Abstract Glucose consumption and catabolite production by thick suspensions of Trypanosoma cruzi, Leishmania mexicana and Crithidia fasciculata were similar under aerobic and anaerobic conditions, indicating lack of Pasteur effect. Succinate was the main product for L. mexicana and C. fasciculata ; the latter also produced similar amounts of ethanol. T. cruzi produced succinate and l -alanine to a similar extent. l -Alanine was also a major product of L. mexicana , but was neither produced, nor consumed, by C. fasciculata . Small amounts of glycerol were produced by L. mexicana and C. fasciculata , but not by T. cruzi , which had no detectable NAD-dependent sn -glycerol-3-phosphate dehydrogenase activity.  相似文献   

6.
Trypanosoma cruzi is a protozoan parasite that belongs to an early branch in evolution. Although it lacks several features of the pathway of protein N-glycosylation and oligosaccharide processing present in the endoplasmic reticulum of higher eukaryotes, it displays UDP-Glc:glycoprotein glucosyltransferase and glucosidase II activities. It is herewith reported that this protozoan also expresses a calreticulin-like molecule, the third component of the quality control of glycoprotein folding. No calnexin-encoding gene was detected. Recombinant T. cruzi calreticulin specifically recognized free monoglucosylated high-mannose-type oligosaccharides. Addition of anti-calreticulin serum to extracts obtained from cells pulse-chased with [35S]Met plus [35S]Cys immunoprecipitated two proteins that were identified as calreticulin and the lysosomal proteinase cruzipain (a major soluble glycoprotein). The latter but not the former protein disappeared from immunoprecipitates upon chasing cells. Contrary to what happens in mammalian cells, addition of the glucosidase II inhibitor 1-deoxynojirimycin promoted calreticulin-cruzipain interaction. This result is consistent with the known pathway of protein N-glycosylation and oligosaccharide processing occurring in T. cruzi. A treatment of the calreticulin-cruzipain complexes with endo-beta-N-acetylglucosaminidase H either before or after addition of anti-calreticulin serum completely disrupted calreticulin-cruzipain interaction. In addition, mature monoglucosylated but not unglucosylated cruzipain isolated from lysosomes was found to interact with recombinant calreticulin. It was concluded that the quality control of glycoprotein folding appeared early in evolution, and that T. cruzi calreticulin binds monoglucosylated oligosaccharides but not the protein moiety of cruzipain. Furthermore, evidence is presented indicating that glucosyltransferase glucosylated cruzipain at its last folding stages.  相似文献   

7.
Abstract Three proteinase inhibitors, one peptidyl acyloxymethyl ketone (AMK), Z-Phe-Lys-CH2-OCO-(2,4,6-Me3)Ph.HCl, and two diazomethyl ketones (DMKs), Z-Phe-Phe-DMK and Z-Phe-Ala-DMK, have been studied for their effects in vitro on the four developmental stages of Trypanosoma cruzi . The three inhibitors penetrated living parasites and inhibited the major cysteine proteinase, cruzipain. The AMK was the most potent inhibitor of cruzipain itself and at 20 μM caused lysis of epimastigotes and trypomastigotes. When at lower concentrations, however, it had little effect on epimastigote growth but reduced metacyclogenesis. The DMKs had no effect against epimastigotes but inhibited differentiation to metacyclics. All three inhibitors markedly reduced infection of Vero cells by the parasite and the multiplication of the intracellular amastigotes, whereas release of trypomastigotes was almost entirely prevented. The results confirm the importance of cysteine proteinases in the life cycle of T. cruzi , and suggest that the differentiation steps are the most susceptible to cysteine proteinase inhibitors.  相似文献   

8.
Robello C  Gamarro F  Castanys S  Alvarez-Valin F 《Gene》2000,246(1-2):331-338
For the purpose of investigating the evolutionary relationships among strains of the human parasite Trypanosoma cruzi, we have determined the nucleotide sequence, in 16 T. cruzi stocks, of a DNA fragment having approximately 1030 nucleotides in length. Phylogenetic analyses show the presence of at least three major groups of T. cruzi strains, a result that contradicts previous phylogenetic inferences based on polymorphism data. We also performed an analysis of the relative extent of nucleotide divergence among T. cruzi strains compared to the divergence between Leishmania species, using the gene encoding pteridine reductase. The results presented in this work show that the divergence among the most distant T. cruzi strains is at least as high as the divergence between two different species complexes of Leishmania, those containing L. major and L. mexicana.  相似文献   

9.
We have recently reported that Trypanosoma cruzi infection protects cardiomyocytes against apoptosis induced by growth factor deprivation. Cruzipain, a major parasite antigen, reproduced this survival effect by a Bcl-2-dependent mechanism. In this study, we have investigated the molecular mechanisms of cruzipain-induced cardiomyocyte protection. Neonatal BALB/c mouse cardiac myocytes were cultured under minimum serum conditions in the presence of cruzipain or T. cruzi (Tulahuen strain). Some cultures were pretreated with the phosphatidylinositol 3-kinase (PI3K) inhibitor Ly294002 or specific inhibitors of the mitogen-activated protein kinase (MAPK) family members such as the mitogen-activated protein kinase kinase (MEK1) inhibitor PD098059, Jun N-terminal kinase (JNK) inhibitor SP600125, p38 MAPK inhibitor SB203580. Inhibition of PI3K and MEK1 but not JNK or p38 MAPK increased the apoptotic rate of cardiomyocytes treated with cruzipain. Phosphorylation of Akt, a major target of PI3K, and ERK1/2, MEK1-targets, was achieved at 15 min and 5 min, respectively. In parallel, these kinases were strongly phosphorylated by T. cruzi infection. In cultures treated with cruzipain, cleavage of caspase 3 was considerably diminished after serum starvation; Bcl-2 overexpression was inhibited by PD098059 but not by Ly294002, whereas Bad phosphorylation and Bcl-xL expression were increased and differentially modulated by both inhibitors. The results suggest that cruzipain exerts its anti-apoptotic property in cardiac myocytes at least by PI3K/Akt and MEK1/ERK1/2 signaling pathways. We further identified a differential modulation of Bcl-2 family members by these two signaling pathways.  相似文献   

10.
Chronic Chagas disease occurs in 16 million individuals chronically infected by the protozoan Trypanosoma cruzi in Latin America, and may lead to a dilated cardiomyopathy in 10-30% of patients. A vigorous cellular immune response holds parasitism in check. However, up to now, few T. cruzi proteins have been shown to be recognized by CD8+ T cells from Chagas disease patients. In this study, we designed 94 peptides derived from T. cruzi proteins cruzipain and FL-160, predicted to bind to HLA-A2 molcules. After in vitro binding assays to HLA-A*0201, 26 peptides were selected, and their recognition by PBMC from Chagas disease patients was tested with the IFN-gamma ELISPOT assay. All 26 peptides were recognized by PBMC from at least one patient. Furthermore, a tetrameric HLA-A*0201 complex built with the cruzipain 60-68 peptide that was frequently recognized in the periphery also bound to CD8+ T cells from a heart-infiltrating T cell line obtained from a single patient with Chagas disease cardiomyopathy. Thus, our results suggest that the recognition of CD8+ T cell epitopes in cruzipain and FL-160 may have a pathogenic or protective role in chronic Chagas disease.  相似文献   

11.
We have evaluated the roles of key amino acids to the action of the natural inhibitor chagasin of papain-family cysteine peptidases. A W93A substitution decreased inhibitor affinity for human cathepsin L 100-fold, while substitutions of T31 resulted in 10-100-fold increases in the K(i) for cruzipain of Trypanosoma cruzi. A T31A/T32A double mutant had increased affinity for cathepsin L but not for cruzipain, while the T31-T32 deletion drastically affected inhibition of both human and parasite peptidases. These differential effects reflect the occurrence of direct interactions between chagasin and helix 8 of cathepsin L, interactions that do not occur with cruzipain.  相似文献   

12.
The present review provides an overview of recent discoveries concerning the immunological similarities between Phytomonas serpens, a tomato parasite, and human trypanosomatid pathogens, with special emphasis on peptidases. Leishmania spp. and Trypanosoma cruzi express peptidases that are well-known virulence factors, named leishmanolysin and cruzipain. P. serpens synthesizes two distinct classes of proteolytic enzymes, metallo- and cysteine-type peptidases, that share common epitopes with leishmanolysin and cruzipain, respectively. The leishmanolysin-like and cruzipain-like molecules from P. serpens participate in several biological processes including cellular growth and adhesion to the salivary glands of Oncopeltus fasciatus, a phytophagous insect experimental model. Since previous reports demonstrated that immunization of mice with P. serpens induced a partial protective immune response against T. cruzi, this plant trypanosomatid may be a suitable candidate for vaccine studies. Moreover, comparative approaches in the Trypanosomatidae family may be useful to understand kinetoplastid biology, biochemistry and evolution.  相似文献   

13.
Plasmatic levels of pregnancy zone protein (PZP) increase in children with acute Chagas disease. PZP, as well as alpha2-macroglobulin (alpha2-M), are able to interact with Trypanosoma cruzi proteinases. The interaction of alpha2-M and PZP with cruzipain, the major cysteine proteinase of T. cruzi, was investigated. Several molecular changes on both alpha-M inhibitors under reaction with cruzipain were found. PAGE analysis showed: (i) formation of complexes of intermediate mobility and tetramerization of native alpha2-M and PZP, respectively; (ii) limited proteolysis of bait region in alpha2-M and PZP, and (iii) covalent binding of cruzipain to PZP and alpha2-M. Conformational and structural changes experimented by alpha-Ms correlate with modifications of the enzyme electrophoretic mobility and activity. Cruzipain-alpha-M complexes were also detected by gelatin SDS-PAGE and immunoblotting using polyclonal anti-cruzipain antibodies. Concomitantly, alpha2-M and PZP impaired the activity of cruzipain towards Bz-Pro-Phe-Arg-pNA substrate. In addition, alpha-Ms were able to form covalent complexes with membrane isoforms of cysteine proteinases cross-reacting with cruzipain. The present study suggests that both human alpha-macroglobulin inhibitors could prevent or minimize harmful action of cruzipain on host's molecules and hypothetically regulate parasite functions controlled by cruzipain.  相似文献   

14.
lmcpb, a gene from Leishmania mexicana that encodes a major cysteine proteinase in the parasite, has been cloned and sequenced. LmCPb is related more to cysteine proteinases from Trypanosoma brucei and Trypanosoma cruzi than to a previously characterized cysteine proteinase, LmCPa, of L. mexicana. It contains a long C-terminal extension characteristic of similar enzymes of T. brucei and T. cruzi. The gene is multi-copy and tandemly arranged. lmcpb RNA levels are developmentally regulated with steady state levels being high in amastigotes, low in metacyclic promastigotes and undetectable in multiplicative promastigotes. This variation correlates with and may account for the stage-specific expression of LmCPb enzyme activity.  相似文献   

15.
Trypanosoma cruzi, the agent of Chagas disease, is a complex of genetically diverse isolates highly phylogenetically related to T. cruzi-like species, Trypanosoma cruzi marinkellei and Trypanosoma dionisii, all sharing morphology of blood and culture forms and development within cells. However, they differ in hosts, vectors and pathogenicity: T. cruzi is a human pathogen infective to virtually all mammals whilst the other two species are non-pathogenic and bat restricted. Previous studies suggest that variations in expression levels and genetic diversity of cruzipain, the major isoform of cathepsin L-like (CATL) enzymes of T. cruzi, correlate with levels of cellular invasion, differentiation, virulence and pathogenicity of distinct strains. In this study, we compared 80 sequences of genes encoding cruzipain from 25 T. cruzi isolates representative of all discrete typing units (DTUs TcI-TcVI) and the new genotype Tcbat and 10 sequences of homologous genes from other species. The catalytic domain repertoires diverged according to DTUs and trypanosome species. Relatively homogeneous sequences are found within and among isolates of the same DTU except TcV and TcVI, which displayed sequences unique or identical to those of TcII and TcIII, supporting their origin from the hybridization between these two DTUs. In network genealogies, sequences from T. cruzi clustered tightly together and closer to T. c. marinkellei than to T. dionisii and largely differed from homologues of T. rangeli and T. b. brucei. Here, analysis of isolates representative of the overall biological and genetic diversity of T. cruzi and closest T. cruzi-like species evidenced DTU- and species-specific polymorphisms corroborating phylogenetic relationships inferred with other genes. Comparison of both phylogenetically close and distant trypanosomes is valuable to understand host-parasite interactions, virulence and pathogenicity. Our findings corroborate cruzipain as valuable target for drugs, vaccine, diagnostic and genotyping approaches.  相似文献   

16.
Hybrid compounds containing hydrazones and benzofuroxan pharmacophores were designed as potential Trypanosoma cruzi-enzyme inhibitors. The majority of the designed compounds was successfully synthesized and biologically evaluated displaying remarkable in vitro activity against different strains of T. cruzi. Unspecific cytotoxicity was evaluated using mouse macrophages, displaying isothiosemicarbazone 10 and thiosemicarbazone 12 selectivity indexes (macrophage/parasite) of 21 and 27, respectively. In addition, the mode of anti-trypanosomal action of the derivatives was investigated. Some of these derivatives were moderate inhibitors of cysteinyl active site enzymes of T. cruzi, cruzipain and trypanothione reductase. ESR experiments using T. cruzi microsomal fraction suggest that the main mechanism of action of the trypanocidal effects is the production of oxidative stress into the parasite.  相似文献   

17.
Putrescine uptake in Trypanosoma cruzi epimastigotes is 10 to 50-fold higher than in Leishmania mexicana or Crithidia fasciculata. Polyamine transport in all these trypanosomatids is an energy-dependent process strongly inhibited by the presence of 2,4-dinitrophenol or KCN. Putrescine uptake in T. cruzi and L. mexicana was markedly decreased by the proton ionophore carbonylcyanide m-chlorophenylhydrazone but it was not affected by ouabain, a Na(+)-K+ pump inhibitor. The depletion of intracellular polyamines by treatment of parasite cultures with alpha-difluoromethylornithine elicited a marked induction of putrescine uptake in L. mexicana and C. fasciculata by increasing considerably the Vmax of this process. Conversely, the uptake of putrescine in T. cruzi was essentially unchanged by the same treatment. The differential regulation of putrescine transport in T. cruzi might be related to some distinctive features of polyamine metabolism in this parasite.  相似文献   

18.
In this paper we describe the preparation of some biphenylquinuclidine derivatives and their evaluation as inhibitors of squalene synthase in order to explore their potential in the treatment of the parasitic diseases leishmaniasis and Chagas disease. The compounds were screened against recombinant Leishmania major squalene synthase and against Leishmania mexicana promastigotes, Leishmania donovani intracellular amastigotes and Trypanosoma cruzi intracellular amastigotes. Compounds that inhibited the enzyme, also reduced the levels of steroids and caused growth inhibition of L. mexicana promastigotes. However there was a lower correlation between inhibition of the enzyme and growth inhibition of the intracellular parasites, possibly due to delivery problems. Some compounds also showed growth inhibition of T. brucei rhodesiense trypomastigotes, although in this case alternative modes of action other than inhibition of SQS are probably involved.  相似文献   

19.
Trypanosoma cruzi activates the kinin pathway through the activity of its major cysteine proteinase, cruzipain. Because kininogen molecules may be displayed on cell surfaces by binding to glycosaminoglycans, we examined whether the ability of cruzipain to release kinins from high molecular weight kininogen (HK) is modulated by heparan sulfate (HS). Kinetic assays show that HS reduces the cysteine proteinase inhibitory activity (K(i app)) of HK about 10-fold. Conversely, the catalytic efficiency of cruzipain on kinin-related synthetic fluorogenic substrates is enhanced up to 6-fold in the presence of HS. Analysis of the HK breakdown products generated by cruzipain indicated that HS changes the pattern of HK cleavage products. Direct measurements of bradykinin demonstrated an up to 35-fold increase in cruzipain-mediated kinin liberation in the presence of HS. Similarly, kinin release by living trypomastigotes increased up to 10-fold in the presence of HS. These studies suggest that the efficiency of T. cruzi to initiate kinin release is potently enhanced by the mutual interactions between cruzipain, HK, and heparan sulfate proteoglycans.  相似文献   

20.
A comparison of Trypanosoma cruzi water soluble antigens with those of stercorarian and salivarian trypanosomes, and Leishmania using immunoprecipitation in gels and immunoelectrophoresis, with the aid of hyperimmune rabbit serum and heterologous adsorptions showed the following. 1) There is a high complexity of soluble antigens of T. cruzi and T. rangeli. 2) At the intraspecific level our results demonstrated the antigenic stability of T. cruzi when maintained in vitro, and that there was quantitative antigenic consistency of the culture forms of different strains of T. cruzi from diverse geographic and parasite sources. At the interspecific level, the antigenic relationships between T. cruzi and the other Trypanosomatidae were established, as follows: 6/10ths of the antigens are shared by stercorarian species (T. dionisii, T. rangeli); 4/10ths by a salivarian trypanosome (T. brucei); and 3/10ths by Leishmania (L. donovani, L. mexicana). 3) Among the 4/10ths of antigenic components specific to T. cruzi, one component was characterized by its antigenicity and immunogenicity in natural and experimental infections, and in immunization experiments; this component was specific to T. cruzi when compared to the other Trypanosomatidae antigens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号