首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adaptation of diverse organic reactions to solid supports requires significant reaction optimization efforts. A convenient on-support analytical method functionally similar to TLC in solution chemistry is very advantageous. As a TLC-equivalent method, the single bead FTIR is a simple, sensitive, fast, and convenient analytical method to monitor SPOS without stopping the reaction or cleaving the product. As with TLC, single bead FTIR provides a wide range of information such as qualitative assessment, quantitative determination, and reaction kinetics. Studies with the single bead FTIR have not only provided a tool for daily monitoring of the solid-phase reactions, but a way to understand the properties of polymer-bound substrate and the nature of polymer-supported organic reactions. It has assisted in the selection of a wide range of reaction conditions rapidly for SPOS in the rehearsal phase of combinatorial chemistry. Due to its convenience and efficiency, FTIR internal reflection spectroscopy has evolved as a useful analytical methodology for monitoring of combinatorial chemistry reactions directly on polymer surface.  相似文献   

2.
Amphiphilic bilayer membrane structures (vesicles) have been postulated to have been abiotically formed and spontaneously assemble on the prebiotic Earth, providing compartmentalization for the origin of life. These vesicles are similar to modern cellular membranes and can serve to contain water-soluble species, concentrate species, and have the potential to catalyze reactions. The origin of the use of photochemical energy in metabolism (i.e. energy transduction) is one of the central issues in the origin of life. This includes such questions as how energy transduction may have occurred before complex enzymatic systems, such as required by contemporary photosynthesis, had developed and how simple a photochemical system is possible. It has been postulated that vesicle structures developed the ability to capture and transduce light, providing energy for reactions. It has also been shown that pH gradients across the membrane surface can be photochemically created, but coupling these to drive chemical reactions has been difficult. Colloidal semiconducting mineral particles are known to photochemically drive redox chemistry. We propose that encapsulation of these particles has the potential to provide a source of energy transduction inside vesicles, and thereby drive protocellular chemistry, and represents a model system for early photosynthesis. In our experiments we show that TiO2 particles, in the ~20 nm size range, can be incorporated into vesicles and retain their photoactivity through the dehydration/rehydration cycles that have been shown to concentrate species inside a vesicle.  相似文献   

3.
We demonstrate the applicability of sequential Diels-Alder and azide-alkyne [3 + 2] cycloaddition reactions (click chemistry) for the immobilization of carbohydrates and proteins onto a solid surface. An alpha,omega-poly(ethylene glycol) (PEG) linker carrying alkyne and cyclodiene terminal groups was synthesized and immobilized onto an N-(epsilon-maleimidocaproyl) (EMC)-functionalized glass slide via an aqueous Diels-Alder reaction. In the process, an alkyne-terminated PEGylated surface was provided for the conjugation of azide-containing biomolecules via click chemistry, which proceeded to completion at low temperature and in aqueous solvent. As anticipated, alkyne, azide, cyclodiene, and EMC are independently stable and do not react with common organic reagents nor functional groups in biomolecules. Given an appropriate PEG linker, sequential Diels-Alder and azide-alkyne [3 + 2] cycloaddition reactions provide an effective strategy for the immobilization of a wide range of functionally complex substances onto solid surfaces.  相似文献   

4.
Recently developed DNA-modified diamond surfaces exhibit excellent chemical stability to high-temperature incubations in biological buffers. The stability of these surfaces is substantially greater than that of gold or silicon surfaces, using similar surface attachment chemistry. The DNA molecules attached to the diamond surfaces are accessible to enzymes and can be modified in surface enzymatic reactions. An important application of these surfaces is for surface invasive cleavage reactions, in which target DNA strands added to the solution may result in specific cleavage of surface-bound probe oligonucleotides, permitting analysis of single nucleotide polymorphisms (SNPs). Our previous work demonstrated the feasibility of performing such cleavage reactions on planar gold surfaces using PCR-amplified human genomic DNA as target. The sensitivity of detection in this earlier work was substantially limited by a lack of stability of the gold surface employed. In the present work, detection sensitivity is improved by a factor of approximately 100 (100 amole of DNA target compared with 10 fmole in the earlier work) by replacing the DNA-modified gold surface with a more stable DNA-modified diamond surface.  相似文献   

5.
The chemistry common to molybdenum at the active centers of molybdoenzymes and at the surface of heterogeneous catalysts is described. Oxomolybdenum(VI) compounds catalyze selective oxidation of unsaturated hydrocarbons, e.g., propene to acrolein. Similarly, oxomolybdenum species take part in reactions catalyzed by molybdoenzymes, e.g., xanthine oxidase, sulfite oxidase, nitrate reductase. In these reactions H+, O2- or HO-, and electrons transfer between substrate molecules and molybdenum atoms and groups at the active centres. The chemistry involved is the acid-base and redox chemistry of molybdenum. Molybdenum disulfide catalyzes hydrogenation of unsaturated hydrocarbons, e.g., acetylene. The active site is a coordinately unsaturated molybdenum atom in a sulfur-ligand environment. The enzyme nitrogenase, which is a protein-bound iron-molybdenum sulfide, is also an excellent hydrogenation catalyst. Both catalysts exploit the chemistry of lower-valent molybdenum coordinated by sulfur. The extent to which understanding of the catalysis can be transferred between the two types of catalyst is assessed.  相似文献   

6.
7.
The postulated roles of clays and other minerals in chemical evolution and the origin of life are reconsidered in terms of the interaction of these minerals with penetrating sources of energy such as ionizing radiation and mechanical stress. This interaction, including such facets as excitation, degradation, storage, and transfer, is considered here with regard to its profound potential for altering the capabilities of minerals to serve both as substrates for prebiological chemistry and as inorganic prototypic life forms. The interaction of minerals and energy in relationship to surface chemistry is discussed in terms of the spectroscopic properties of minerals, the interaction of energy with condensed phases, some commonly accepted concepts of heterogeneous catalysis in the absence of electronic energy inputs, and some commonly accepted and novel means by which surface activity might be enhanced in the presence of energy inputs.An estimation is made of the potential contribution of two poorly characterized prebiotic energy sources, natural radioactive decay and triboelectric energy. These estimates place a conservative lower limit on their prebiotic abundance. Also some special properties of these energy sources, relative to solar energy, are pointed out which might give them particular suitability for driving reactions occurring under geological conditions.Skeletal support for this broadly defined framework of demonstrated and potential relationships between minerals, electronic excitation, and surface reactivity, as applied to chemical evolution, is provided from the results of our studies on 1/1 clays. We have discovered and partially characterized a number of novel luminescent properties of these clays, that indicate energy storage and transfer processes in clays. These luminescent properties are interpreted in relationship to the electron spin resonance phenomena, to provide a basis for estimating the potential significance of energy storage and transduction in monitoring or driving clay surface chemistry.Consideration of the electronic structure of abundant minerals in terms of band theory and localized defect centers provides a predictive theoretical framework from which to rationalize the capacity of these materials to store and transduce energy. The bulk crystal is seen as a collecting antenna for electronic energy, with the defect centers serving as storage sites.The clay properties produced by isomorphic substitution appear to be intimately associated with all of the life-mimetic chemical processes that have been attributed to clays. It appears sensible to postulate that the energetic properties of these substitutional defect centers may also be influential in these biomimetic processes: the promotion of surface reactions, storage of information, replication with transfer of information, and asymmetric separation of electrical charges, as well as their more recently hypothesized roles in energy storage and transduction. The identity of the sites implicated in all of the biomimetic functions of clays as well as their capacity for energy storage is seen to offer significant potential for coupling these functions to an environmental energy source. A yet more specific and experimentally testable hypothesis is offered for a new biomimetic process performed by clays. This hypothesis is that energy stored near isomorphically substituted sites provides the energetic basis for the coupled transport of electrical charge and/or electronic energy through the clay layer, which operates via environmental activation of electron/hole mobility. This is to say that mobility of charge/electronic excitation between defect centers serves as the basis for a primordial inorganic electron transport chain.  相似文献   

8.
Metal-sulfur ligand redox interplay, induced internal electron transfer reactions, and the generation of dithiolene and organosulfur ligands in the reactions of metal-sulfur compounds with alkynes are important and useful facets of early transition metal-sulfur chemistry. This review focuses on developments in these areas over the past 30 years.  相似文献   

9.
Chemical reactions performed by fungi have been used as a modern tool in chemistry. In this work, we show the tryptophan biotransformation with Psilocybe coprophila on liquid culture medium. The results prove once more the versatility of fungi in performing a wide range of industrially attractive chemical reactions.  相似文献   

10.
Carbon nanotube and metal particle composites have been exploited to fabricate high performance electrochemical devices. However, the physical and chemical procedures to synthesize the composites are labor intensive and inefficient. Our study reveals an one-step wet chemistry method to accomplish fast and controllable production of gold nanoparticle (AuNP) and carbon naotube (CNT) composites. Such a process is sensitive to the surface charge. Especially, when functionalized with carboxyl groups, the CNTs carried negative charges and showed low level association with negatively charged AuNPs. Thermal treatment was employed to decompose the carboxyl groups and render each CNT a charge-free surface thereby achieving a high level AuNP-CNT association. The fabricated glucose sensors demonstrated dependence of their sensitivities to the amount of AuNPs on the CNTs. The enhancement of sensitivity can be attributed to an accelerated electron transfer rate from glucose oxidase Gox to the electrode. The Michaelis-Menten kinetics also indicated improved performance in the glucose sensor made of AuNP-CNTs. Therefore, our research revealed a novel approach to produce metallic nanoparticle and CNT composite for fabricating high performance electrochemical sensors.  相似文献   

11.
Light-directed synthesis of high-density microarrays is currently performed in the 3'-->5' direction due to constraints in existing synthesis chemistry. This results in the probes being unavailable for many common types of enzymatic modification. Arrays that are synthesized in the 5'-->3' direction could be utilized to perform parallel genotyping and resequencing directly on the array surface, dramatically increasing the throughput and reducing the cost relative to existing techniques. In this report we demonstrate the use of photoprotected phosphoramidite monomers for light-directed array synthesis in the 5'-->3' direction, using maskless array synthesis technology. These arrays have a dynamic range of >2.5 orders of magnitude, sensitivity below 1 pM and a coefficient of variance of <10% across the array surface. Arrays containing >150,000 probe sequences were hybridized to labeled mouse cRNA producing highly concordant data (average R(2) = 0.998). We have also shown that the 3' ends of array probes are available for sequence-specific primer extension and ligation reactions.  相似文献   

12.
Our knowledge of thiamine-catalyzed ligase and lyase reactions has entered a new dimension. Significant achievements have been made in the field of enzymatic catalysis with the detection of hitherto unknown reaction types - extending the synthetic potential of known thiamine diphosphate (ThDP)-dependent enzymes - and the identification and characterization of new enzymes. As we learn more about ThDP-dependent enzymes, we find an ever-expanding range of reactions that they are able to catalyze and see increased amino acid sequence heterogeneity. By contrast, the three-dimensional structures of these enzymes, so far, seem to be highly similar. Non-enzymatic thiazolium and triazolium catalysts have also been developed, enhancing the scope of acyl anion chemistry.  相似文献   

13.
Many cellular signaling events occur in small subcellular volumes and involve low-abundance molecular species. This context introduces two major differences from mass-action analyses of nondiffusive signaling. First, reactions involving small numbers of molecules occur in a probabilistic manner which introduces scatter in chemical activities. Second, the timescale of diffusion of molecules between subcellular compartments and the rest of the cell is comparable to the timescale of many chemical reactions, altering the dynamics and outcomes of signaling reactions. This study examines both these effects on information flow through four protein kinase regulatory pathways. The analysis uses Monte Carlo simulations in a subcellular volume diffusively coupled to a bulk cellular volume. Diffusion constants and the volume of the subcellular compartment are systematically varied to account for a range of cellular conditions. Each pathway is characterized in terms of the probabilistic scatter in active kinase levels as a measure of "noise" on the pathway output. Under the conditions reported here, most signaling outcomes in a volume below one femtoliter are severely degraded. Diffusion and subcellular compartmentalization influence the signaling chemistry to give a diversity of signaling outcomes. These outcomes may include washout of the signal, reinforcement of signals, and conversion of steady responses to transients.  相似文献   

14.
There is a wide range of literature on soft lithography, organic surface science (especially self-assembled monolayers of organic thiols adsorbed on gold) and microfluidics. These areas have developed in the fields of physical and surface chemistry, materials science and condensed matter physics, but they offer broad new capabilities in the development of relevant micro- and nanosystems to users in biology in general, and in cell biology in particular. The ability to integrate these techniques for fabricating materials and for controlling the chemistry of surfaces with electrical and electrochemical measurements should be especially relevant in neurobiology. The major impediment to the development of a field of 'microfabrication and measurement' in neuroscience is the absence of effective collaborative interactions between the communities of fabricators and neurobiologists.  相似文献   

15.
Combining organometallics and biology has generated broad interest from scientists working on applications from in situ drug release to biocatalysis. Engineered enzymes and biohybrid catalysts (also referred to as artificial enzymes) have introduced a wide range of abiotic chemistry into biocatalysis. Predominantly, this work has concentrated on using these catalysts for single step in vitro reactions. However, the promise of using these hybrid catalysts in vivo and combining them with synthetic biology and metabolic engineering is vast. This report will briefly review recent advances in artificial metalloenzyme design, followed by summarising recent studies that have looked at the use of these hybrid catalysts in vivo and in enzymatic cascades, therefore exploring their potential for synthetic biology.  相似文献   

16.
Can we look at contemporary biology and couple this with chemical insight to propose some plausible mechanisms for the origin of life on the planet? In what follows, we examine some promising chemical reactions by which the building blocks for nucleic acids might have been created about a billion years after the Earth formed. This could have led to self-assembling systems that were based on an all-RNA metabolism, where RNA is both catalytic and informational. We consider the breadth of RNA enzymes presently existing in biology, and to what extent these might have covered a wider range of chemistry in the RNA world. Ultimately, the RNA world would probably have given way to protein-based life quite quickly, and the origins of peptidyl transferase activity are discussed below.  相似文献   

17.
Functional and crystallographic analyses of catalytically active RNA molecules ('ribozymes') have revealed a multitude of different routes by which nature accomplishes cleavage reactions of the RNA sugar-phosphate backbone. While there is agreement that these reactions involve general acid-base chemistry, the choice of 'acid' and of 'base' appears to be quite versatile. Among the numerous surprises that have emerged from these studies in recent years is the phenomenon of 'shifted pK(a) values' of nucleobases, hence, the fact that pK(a) values of isolated nucleobases in H(2)O can be shifted in either direction--upward or downward--into the physiological pH range, and that consequently allows these nucleobases to function as 'acids' or 'bases'. Another change in paradigm in recent years relates to the role of divalent metal ions in these catalytic reactions, which points to the possibility of an indirect involvement in the catalytic cycle rather than necessarily to a direct participation, as in the case with the hepatitis delta virus ribozyme. In this review, basic features of nucleobases and/or aqua ligand pK(a) shifts caused by metal coordination and H-bonding are discussed.  相似文献   

18.
Interest in developing diverse nanoparticle (NP)-biological composite materials continues to grow almost unabated. This is motivated primarily by the desire to simultaneously exploit the properties of both NP and biological components in new hybrid devices or materials that can be applied in areas ranging from energy harvesting and nanoscale electronics to biomedical diagnostics. The utility and effectiveness of these composites will be predicated on the ability to assemble these structures with control over NP/biomolecule ratio, biomolecular orientation, biomolecular activity, and the separation distance within the NP-bioconjugate architecture. This degree of control will be especially critical in creating theranostic NP-bioconjugates that, as a single vector, are capable of multiple functions in vivo, including targeting, image contrast, biosensing, and drug delivery. In this review, a perspective is given on current and developing chemistries that can provide improved control in the preparation of NP-bioconjugates. The nanoscale properties intrinsic to several prominent NP materials are briefly described to highlight the motivation behind their use. NP materials of interest include quantum dots, carbon nanotubes, viral capsids, liposomes, and NPs composed of gold, lanthanides, silica, polymers, or magnetic materials. This review includes a critical discussion on the design considerations for NP-bioconjugates and the unique challenges associated with chemistry at the biological-nanoscale interface-the liabilities of traditional bioconjugation chemistries being particularly prominent therein. Select bioorthogonal chemistries that can address these challenges are reviewed in detail, and include chemoselective ligations (e.g., hydrazone and Staudinger ligation), cycloaddition reactions in click chemistry (e.g., azide-alkyne cyclyoaddition, tetrazine ligation), metal-affinity coordination (e.g., polyhistidine), enzyme driven modifications (e.g., HaloTag, biotin ligase), and other site-specific chemistries. The benefits and liabilities of particular chemistries are discussed by highlighting relevant NP-bioconjugation examples from the literature. Potential chemistries that have not yet been applied to NPs are also discussed, and an outlook on future developments in this field is given.  相似文献   

19.
20.
Protein nanopores have emerged as an important class of sensors for the understanding of biophysical processes, such as molecular transport across membranes, and for the detection and characterization of biopolymers. Here, we trace the development of these sensors from the Coulter counter and squid axon studies to the modern applications including exquisite detection of small volume changes and molecular reactions at the single molecule (or reactant) scale. This review focuses on the chemistry of biological pores, and how that influences the physical chemistry of molecular detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号