首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eight glycosidic compounds, 1-8, including two new compounds, (4ξ)-α-terpineol 8-O-[α-L-arabinopyranosyl-(1→6)-β-D-glucopyranoside] (5) and myrtenol 10-O-[β-D-apiofuranosyl-(1→6)-β-D-glucopyranoside] (7), were isolated from the BuOH-soluble fraction of a MeOH extract of Momordica charantia leaves. The structures of the new compounds were elucidated on the basis of extensive spectroscopic analyses and comparison with literature. Upon evaluation of compounds 1-8 on the melanogenesis in B16 melanoma cells induced with α-melanocyte-stimulating hormone (α-MSH), these compounds were found to exhibit inhibitory activities with 7.1-27.0% and 23.6-46.4% reduction of melanin content at 30 μM and 100 μM, respectively, with no or almost no toxicity to the cells (80.0-103.5% of cell viability at 100 μM). Western blot analysis showed that compound 7 reduced the protein levels of MITF, tyrosinase, TRP-1, and TRP-2 mostly in a concentration-dependent manner, suggesting that this compound inhibits melanogenesis on the α-MSH-stimulated B16 melanoma cells by, at least in part, inhibiting the expression of MITF, followed by decreasing the expression of tyrosinase, TRP-1, and TRP-2.  相似文献   

2.
3.
4.
5.
In order to better understand the cascade of melanogenic events in melanocytes, this report has introduced our two recent approaches for the expression of melanogenesis/or melanosome-associated genes and encoded proteins in melanocytes (melanoma cells) after repeated exposure to UV -B and after cotransfection of two human genes, i.e., tyrosinase and tyrosinase-related protein-1 (TRP-1). Repeated exposure of UV B (2.5–5.0 mJ/cm2) caused not only upregulation of tyrosinase and TRP-1 genes but also coordinated increase in the gene and protein synthesis expression of Lamp-1 (lysosome-associated membrane protein-1). When COS-7 kidney cells and amelanotic melanoma (C32 and SKMEL-24) and melanotic melanoma (G361 and SK-MEL-23) cells were exposed to cotransfection of human tyrosinase and TRP-1 cDNAs, there was also an increased expression of Lamp-1 mRNA and protein along with tyrosinase activation and new melanin synthesis. Importantly, single transfectants of human tyrosinase cDNA revealed marked cellular degeneration, whereas this degeneration was not seen in single transfectants of TRP-1 cDNA or cotransfectants of human tyrosinase and TRP-1 cDNAs, indicating that TRP-1 prevented, along with Lamp-1, programmed death of melanocytes after transfection of tyrosinase gene. The coordinated expression of TRP-1 and Lamp-1 was further confirmed by antisense oligodeoxynucleotide hybridization experiment against Lamp-1 gene, showing the decreased expression of TRP-1 as identified by three different types of anti-TRP-1 monoclonal antibodies. We propose therefore that human tyrosinase and TRP-l, when activated or expressed together, will coordinate to upregulate the mRNA expression and protein synthesis of Lamp-1. The Lamp-1 molecules will, in turn, cover the inner surface of melanosomal membrane, together with TRP-1 molecules, thus protecting the melanosomal membrane from toxic melanin intermediates generated during melanogenesis in the presence of active tyrosinase. In contrast, the expression of other lysosome-related proteins, e.g., β-galactosidase and CD63 is not stimulated in new melanogenesis.  相似文献   

6.
7.
8.
9.
10.
11.
12.
Melanogenesis in melanoma cells can be enhanced by psoralens in the absence of UV light. Melanin biosynthesis is regulated by a number of melanocyte-specific proteins, including tyrosinase, DOPAchrome tautomerase (DCT), and tyrosinase-related protein-1 (TRP-1, gp75). To get more insight on the molecular mechanisms involved in psoralens-induced melanogenesis, we determined tyrosinase and DCT activities as well as mRNA and protein levels of tyrosinase, DCT, and TRP-1 in S91 mouse melanoma cells treated by 5-MOP. High concentration of 5-MOP (5 × 10-5 M) induced a time-dependent increase of tyrosinase activity and melanin content, which was correlated to an increase of both mRNA and protein levels of tyrosinase. These results demonstrate that the 5-MOP stimulation of melanogenesis is related to increased tyrosinase synthesis. In addition, 5-MOP stimulated TRP-1 synthesis and induced a dose-dependent decrease of DCT activity without any modification in the expression of the protein. We explored then the signalling pathways involved in 5-MOP-induced melanogenesis and, particularly, the role of cyclic AMP and protein kinase C (PKC). A small stimulation of cyclic AMP production was observed in presence of 5-MOP. Furthermore, 1-oleoyl-2-acetylglycerol (OAG), a PKC activator, potentiated the 5-MOP stimulation of tyrosinase activity, while calphostin, a specific PKC inhibitor, inhibited the 5-MOP induction of tyrosinase activity. Phorbol-myristate acetate (PMA), described as a strong activator of PKC, inhibited also the effect of 5-MOP when used at long term. Taken together, these results demonstrate that in murine melanoma cells 5-MOP stimulates melanogenesis by increasing activity and synthesis of tyrosinase. Tyrosinase and TRP-1 expression are coordinately regulated by 5-MOP Furthermore, a negative correlation between melanogenesis and DCT activity was observed under 5-MOP stimulation. At least, PKA and PKC systems appear to play an important role in the melanogenic effect of 5-MOP.  相似文献   

13.
14.
15.
16.
17.
18.
19.
Cultured human melanocytes derived from different skin types responded to frequent treatment with ultraviolet (UV) light with increased melanin synthesis, decreased proliferation, and morphologic signs of aging. These effects were augmented by increased frequency of irradiation with 15.5 mJ/cm2 UV light. Stimulation of melanogenesis by UV light involved an increase in tyrosinase activity, without any change in the amounts of either tyrosinase or tyrosinase-related protein (TRP)-1, and a decrease in the amount of TRP-2, as determined by Western blot analysis. These results are different from the mechanisms by which other melanogenic agents, such as cholera toxin and isobutyl methylxanthine, stimulated melanogenesis, whereby the amounts of tyrosinase, TRP-1 and TRP-2 were increased. The decrease in the amount of TRP-2 might be significant in that it might alter the properties of the newly synthesized melanin. The UV irradiation protocol that was followed blocked melanocytes in G2-M phase of the cell cycle without compromising cellular viability. Following three rounds of UV irradiation, melanocytes could recover from the growth arrest and resume proliferation. Treatment with 0.1 μM α-melanocyte stimulating hormone (α-MSH) postirradiation enhanced the melanogenic effect of UV light and stimulated the melanocytes to proliferate. The effects of α-MSH on the UV induced responses and their implications on photocarcinogenesis are being further investigated. Analyzing the mechanisms by which UV light exposure affects normal melanocytes might lead to a better understanding of how these cells undergo malignant transformation, and why individuals with different skin types differ in their susceptibility to skin cancers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号