首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isolation of mitotic chromosomes using flow cytometry is an attractive way to dissect nuclear genomes into their individual chromosomal components or portions of them. This approach is especially useful in plants with complex genomes, where it offers a targeted and hence economical approach to genome analysis and gene cloning. In several plant species, DNA of flow-sorted chromosomes has been used for isolation of molecular markers from specific genome regions, for physical mapping using polymerase chain reaction (PCR) and fluorescence in situ hybridization (FISH), for integration of genetic and physical maps and for construction of chromosome-specific DNA libraries, including those cloned in bacterial artificial chromosome vectors. Until now, chromosome analysis and sorting using flow cytometry (flow cytogenetics) has found little application in barley (2n = 14, 1C ∼ 5,100 Mbp) because of the impossibility of discriminating and sorting individual chromosomes, except for the smallest chromosome 1H and some translocation chromosomes with DNA content significantly different from the remaining chromosomes. In this work, we demonstrate that wheat–barley ditelosomic addition lines can be used to sort any arm of barley chromosomes 2H–7H. Thus, the barley genome can be dissected into fractions representing only about 6–12% of the total genome. This advance makes the flow cytogenetics an attractive tool, which may greatly facilitate genome analysis and gene cloning in barley.  相似文献   

2.
Genome analysis in many plant species is hampered by large genome size and by sequence redundancy due to the presence of repetitive DNA and polyploidy. One solution is to reduce the sample complexity by dissecting the genomes to single chromosomes. This can be realized by flow cytometric sorting, which enables purification of chromosomes in large numbers. Coupling the chromosome sorting technology with next generation sequencing provides a targeted and cost effective way to tackle complex genomes. The methods outlined in this article describe a procedure for preparation of chromosomal DNA suitable for next-generation sequencing.  相似文献   

3.
This study evaluates the potential of flow cytometry for chromosome sorting in durum wheat (Triticum turgidum Desf. var. durum, 2n = 4x = 28). Histograms of fluorescence intensity (flow karyotypes) obtained after the analysis of DAPI-stained chromosomes consisted of three peaks. Of these, one represented chromosome 3B, a small peak corresponded to chromosomes 1A and 6A, and a large peak represented the remaining 11 chromosomes. Chromosomes sorted onto microscope slides were identified after fluorescence in situ hybridization (FISH) with probes for GAA microsatellite, pSc119.2, and Afa repeats. Genomic distribution of these sequences was determined for the first time in durum wheat and a molecular karyotype has been developed for this crop. Flow karyotyping in double-ditelosomic lines of durum wheat revealed that the lines facilitated sorting of any arm of the wheat A- and B-genome chromosomes. Compared to hexaploid wheat, flow karyotype of durum wheat is less complex. This property results in better discrimination of telosomes and high purities in sorted fractions, ranging from 90 to 98%. We have demonstrated that large insert libraries can be created from DNA purified using flow cytometry. This study considerably expands the potential of flow cytogenetics for use in wheat genomics and opens the possibility of sequencing the genome of this important crop one chromosome arm at a time.  相似文献   

4.
Previously, we reported on the development of procedures for chromosome analysis and sorting using flow cytometry (flow cytogenetics) in bread wheat. That study indicated the possibility of sorting large quantities of intact chromosomes, and their suitability for analysis at the molecular level. However, due to the lack of sufficient differences in size between individual chromosomes, only chromosome 3B could be sorted into a high-purity fraction. The present study aimed to identify wheat stocks that could be used to sort other chromosomes. An analysis of 58 varieties and landraces demonstrated a remarkable reproducibility and sensitivity of flow cytometry for the detection of numerical and structural chromosome changes. Changes in flow karyotype, diagnostic for the presence of the 1BL·1RS translocation, have been found and lines from which translocation chromosomes 5BL·7BL and 4AL·4AS-5BL could be sorted have been identified. Furthermore, wheat lines have been identified which can be used for sorting chromosomes 4B, 4D, 5D and 6D. The ability to sort any single arm of the hexaploid wheat karyotype, either in the form of a ditelosome or a isochromosome, has also been demonstrated. Thus, although originally considered recalcitrant, wheat seems to be suitable for the development of flow cytogenetics and the technology can be applied to the physical mapping of DNA sequences, the targeted isolation of molecular makers and the construction of chromosome- and arm-specific DNA libraries. These approaches should facilitate the analysis of the complex genome of hexaploid bread wheat.  相似文献   

5.
Next‐generation sequencing (NGS) provides a powerful tool for the discovery of important genes and alleles in crop plants and their wild relatives. Despite great advances in NGS technologies, whole‐genome shotgun sequencing is cost‐prohibitive for species with complex genomes. An attractive option is to reduce genome complexity to a single chromosome prior to sequencing. This work describes a strategy for studying the genomes of distant wild relatives of wheat by isolating single chromosomes from addition or substitution lines, followed by chromosome sorting using flow cytometry and sequencing of chromosomal DNA by NGS technology. We flow‐sorted chromosome 5Mg from a wheat/Aegilops geniculata disomic substitution line [DS5Mg (5D)] and sequenced it using an Illumina HiSeq 2000 system at approximately 50 × coverage. Paired‐end sequences were assembled and used for structural and functional annotation. A total of 4236 genes were annotated on 5Mg, in close agreement with the predicted number of genes on wheat chromosome 5D (4286). Single‐gene FISH indicated no major chromosomal rearrangements between chromosomes 5Mg and 5D. Comparing chromosome 5Mg with model grass genomes identified synteny blocks in Brachypodium distachyon, rice (Oryza sativa), sorghum (Sorghum bicolor) and barley (Hordeum vulgare). Chromosome 5Mg‐specific SNPs and cytogenetic probe‐based resources were developed and validated. Deletion bin‐mapped and ordered 5Mg SNP markers will be useful to track 5M‐specific introgressions and translocations. This study provides a detailed sequence‐based analysis of the composition of a chromosome from a distant wild relative of bread wheat, and opens up opportunities to develop genomic resources for wild germplasm to facilitate crop improvement.  相似文献   

6.
Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L.)   总被引:7,自引:0,他引:7  
The aim of this study was to develop an improved procedure for preparation of chromosome suspensions, and to evaluate the potential of flow cytometry for chromosome sorting in wheat. Suspensions of intact chromosomes were prepared by mechanical homogenization of synchronized root tips after mild fixation with formaldehyde. Histograms of relative fluorescence intensity (flow karyotypes) obtained after the analysis of DAPI-stained chromosomes were characterized and the chromosome content of all peaks on wheat flow karyotype was determined for the first time. Only chromosome 3B could be discriminated on flow karyotypes of wheat lines with standard karyotype. Remaining chromosomes formed three composite peaks and could be sorted only as groups. Chromosome 3B could be sorted at purity >95% as determined by microscopic evaluation of sorted fractions that were labeled using C-PRINS with primers for GAA microsatellites and for Afa repeats, respectively. Chromosome 5BL/7BL could be sorted in two wheat cultivars at similar purity, indicating a potential of various wheat stocks for sorting of other chromosome types. PCR with chromosome-specific primers confirmed the identity of sorted fractions and suitability of flow-sorted chromosomes for physical mapping and for construction of small-insert DNA libraries. Sorted chromosomes were also found suitable for the preparation of high-molecular-weight DNA. On the basis of these results, it seems realistic to propose construction of large-insert chromosome-specific DNA libraries in wheat. The availability of such libraries would greatly simplify the analysis of the complex wheat genome.  相似文献   

7.
The large size and complex polyploid nature of many genomes has often hampered genomics development, as is the case for several plants of high agronomic value. Isolating single chromosomes or chromosome arms via flow sorting offers a clue to resolve such complexity by focusing sequencing to a discrete and self-consistent part of the whole genome. The occurrence of sufficient differences in the size and or base-pair composition of the individual chromosomes, which is uncommon in plants, is critical for the success of flow sorting. We overcome this limitation by developing a robust method for labeling isolated chromosomes, named Fluorescent In situ Hybridization In suspension (FISHIS). FISHIS employs fluorescently labeled synthetic repetitive DNA probes, which are hybridized, in a wash-less procedure, to chromosomes in suspension following DNA alkaline denaturation. All typical A, B and D genomes of wheat, as well as individual chromosomes from pasta (T. durum L.) and bread (T. aestivum L.) wheat, were flow-sorted, after FISHIS, at high purity. For the first time in eukaryotes, each individual chromosome of a diploid organism, Dasypyrum villosum (L.) Candargy, was flow-sorted regardless of its size or base-pair related content. FISHIS-based chromosome sorting is a powerful and innovative flow cytogenetic tool which can develop new genomic resources from each plant species, where microsatellite DNA probes are available and high quality chromosome suspensions could be produced. The joining of FISHIS labeling and flow sorting with the Next Generation Sequencing methodology will enforce genomics for more species, and by this mightier chromosome approach it will be possible to increase our knowledge about structure, evolution and function of plant genome to be used for crop improvement. It is also anticipated that this technique could contribute to analyze and sort animal chromosomes with peculiar cytogenetic abnormalities, such as copy number variations or cytogenetic aberrations.  相似文献   

8.
Next generation sequencing (NGS) is revolutionizing genomics and is providing novel insights into genome organization, evolution and function. The number of plant genomes targeted for sequencing is rising. For the moment, however, the acquisition of full genome sequences in large genome species remains difficult, largely because the short reads produced by NGS platforms are inadequate to cope with repeat-rich DNA, which forms a large part of these genomes. The problem of sequence redundancy is compounded in polyploids, which dominate the plant kingdom. An approach to overcoming some of these difficulties is to reduce the full nuclear genome to its individual chromosomes using flow-sorting. The DNA acquired in this way has proven to be suitable for many applications, including PCR-based physical mapping, in situ hybridization, forming DNA arrays, the development of DNA markers, the construction of BAC libraries and positional cloning. Coupling chromosome sorting with NGS offers opportunities for the study of genome organization at the single chromosomal level, for comparative analyses between related species and for the validation of whole genome assemblies. Apart from the primary aim of reducing the complexity of the template, taking a chromosome-based approach enables independent teams to work in parallel, each tasked with the analysis of a different chromosome(s). Given that the number of plant species tractable for chromosome sorting is increasing, the likelihood is that chromosome genomics – the marriage of cytology and genomics – will make a significant contribution to the field of plant genetics.  相似文献   

9.
Wheat is one of the world's most important crops and is characterized by a large polyploid genome. One way to reduce genome complexity is to isolate single chromosomes using flow cytometry. Low coverage DNA sequencing can provide a snapshot of individual chromosomes, allowing a fast characterization of their main features and comparison with other genomes. We used massively parallel 454 pyrosequencing to obtain a 2x coverage of wheat chromosome 5A. The resulting sequence assembly was used to identify TEs, genes and miRNAs, as well as to infer a virtual gene order based on the synteny with other grass genomes. Repetitive elements account for more than 75% of the genome. Gene content was estimated considering non-redundant reads showing at least one match to ESTs or proteins. The results indicate that the coding fraction represents 1.08% and 1.3% of the short and long arm respectively, projecting the number of genes of the whole chromosome to approximately 5,000. 195 candidate miRNA precursors belonging to 16 miRNA families were identified. The 5A genes were used to search for syntenic relationships between grass genomes. The short arm is closely related to Brachypodium chromosome 4, sorghum chromosome 8 and rice chromosome 12; the long arm to regions of Brachypodium chromosomes 4 and 1, sorghum chromosomes 1 and 2 and rice chromosomes 9 and 3. From these similarities it was possible to infer the virtual gene order of 392 (5AS) and 1,480 (5AL) genes of chromosome 5A, which was compared to, and found to be largely congruent with the available physical map of this chromosome.  相似文献   

10.
Procedures for chromosome analysis and sorting using flow cytometry (flow cytogenetics) were developed for rye (Secale cereale L.). Suspensions of intact chromosomes were prepared by mechanical homogenization of synchronized root tips after mild fixation with formaldehyde. Histograms of relative fluorescence intensity obtained after the analysis of DAPI-stained chromosomes (flow karyotypes) were characterized and the chromosome content of the DNA peaks was determined. Chromosome 1R could be discriminated on a flow karyotype of S. cereale 'Imperial'. The remaining rye chromosomes (2R-7R) could be discriminated and sorted from individual wheat-rye addition lines. The analysis of lines with reconstructed karyotypes demonstrated a possibility of sorting translocation chromosomes. Supernumerary B chromosomes could be sorted from an experimental rye population and from S. cereale 'Adams'. Flow-sorted chromosomes were identified by fluorescence in situ hybridization (FISH) with probes for various DNA repeats. Large numbers of chromosomes of a single type sorted onto microscopic slides facilitated detection of rarely occurring chromosome variants by FISH with specific probes. PCR with chromosome-specific primers confirmed the identity of sorted fractions and indicated suitability of sorted chromosomes for physical mapping. The possibility to sort large numbers of chromosomes opens a way for the construction of large-insert chromosome-specific DNA libraries in rye.  相似文献   

11.
A rapidly growing, long-term suspension culture derived from Triticum aestivum L. (wheat) was synchronized using hydroxyurea and colchicine, and a chromosome suspension with chromosomes was made. After staining with the DNA-specific fluorochromes Hoechst 33258 and Chromomycin univariate and bivariate flow-cytometry histograms showed 15 clearly resolved peaks corresponding to individual chromosome types or groups of chromosomes with similar DNA contents. The flow karyotype was closely similar to a histogram of DNA content measurements of Feulgen-stained chromosomes made by microdensitometry. We were able to show the stability of the flow karyotype of the cell line over a year, while a parallel subculture had a slightly different, stable, karyotype following different growth conditions. The data indicate that flow cytometric analysis of plant karyotypes enables accurate, statistically precise chromosome classification and karyotyping of cereals. There was little overlap between individual flow-histogram peaks, so the method is useful for flow sorting and the construction of chromosome specific-recombinant DNA libraries. Using bivariate analysis, the AT:GC ratio of all the chromosomes was remarkably similar, in striking contrast to mammalian flow karyotypes. We speculate about a fundamental difference in organization and homogenization of DNA sequences between chromosomes within mammalian and plant genomes. Received: 24 April 1996 / Accepted: 24 May 1996  相似文献   

12.
Single laser flow cytometry was applied to the karyotype analysis of green monkeys. Clear sex difference in flow karyotype was recognized in this monkey, because Y chromosome could be identified as a single peak in the histogram of male specimens. We could isolate Y chromosome of this species by the use of a cell sorter, and demonstrate by polymerase chain reaction that the sorted-out chromosomes contained the Y chromosome specific nucleotide sequence (SRY). This chromosome sorting technique provides a powerful strategy for constructing the DNA library specific to Y chromosome in this species.  相似文献   

13.
Goat grasses (Aegilops spp.) contributed to the evolution of bread wheat and are important sources of genes and alleles for modern wheat improvement. However, their use in alien introgression breeding is hindered by poor knowledge of their genome structure and a lack of molecular tools. The analysis of large and complex genomes may be simplified by dissecting them into single chromosomes via flow cytometric sorting. In some species this is not possible due to similarities in relative DNA content among chromosomes within a karyotype. This work describes the distribution of GAA and ACG microsatellite repeats on chromosomes of the U, M, S and C genomes of Aegilops, and the use of microsatellite probes to label the chromosomes in suspension by fluorescence in situ hybridization (FISHIS). Bivariate flow cytometric analysis of chromosome DAPI fluorescence and fluorescence of FITC‐labelled microsatellites made it possible to discriminate all chromosomes and sort them with negligible contamination by other chromosomes. DNA of purified chromosomes was used as a template for polymerase chain reation (PCR) using Conserved Orthologous Set (COS) markers with known positions on wheat A, B and D genomes. Wheat–Aegilops macrosyntenic comparisons using COS markers revealed significant rearrangements in the U and C genomes, while the M and S genomes exhibited structure similar to wheat. Purified chromosome fractions provided an attractive resource to investigate the structure and evolution of the Aegilops genomes, and the COS markers assigned to Aegilops chromosomes will facilitate alien gene introgression into wheat.  相似文献   

14.
Classical cytogenetics is often tedious and many efforts have been made to develop other methods of chromosome analysis, among which flow karyotyping has recently emerged. Although less efficient than banding techniques to identify each chromosome, flow cytometry offers the opportunity of analyzing large quantities of chromosomes at a very high rate, resulting in a flow karyotype. Even if the initial aim of this technique, namely clinical diagnosis, has not been reached, another major application has emerged, namely chromosome sorting. This method is unique for isolating a set of purified chromosomes from most cells grown in culture in sufficient amount to perform experiments using molecular biology techniques. Significant results have been already obtained either through the construction of chromosome-specific libraries or in the assignment of DNA probes to particular sorted chromosomes.  相似文献   

15.
Li L  Arumuganathan K  Gill KS  Song Y 《Hereditas》2004,141(1):55-60
Flow sorting maize chromosome 1 and construction of the first chromosome 1 DNA Lambda library are described. Maize metaphase chromosome suspensions were prepared from synchronized seedling root tip cells of the maize hybrid line Seneca 60 and stained with propidium iodide for flow karyotyping and sorting. The observed flow karyotype was very similar to the predicted flow karyotype constructed based on published values for the relative chromosome sizes of Seneca 60. The estimated size of chromosomes from the peak for the chromosome 1 matched the expected size of maize chromosome 1. The peak for the chromosome 1 was well resolved from other peaks on the flow karyotype. An average of 7 x 10(3) chromosomes of chromosome 1 could be produced from 10 root tips. About 0.6 million chromosomes of maize chromosome 1 were sorted and pooled based on the cytogram of fluorescent pulse area Vs fluorescent pulse width and stored at -20 degrees C in the freezer. DNA isolated from sorted chromosomes was good quality of more than 100 kb in size. Chromosome 1 DNA was partially digested with BamHI, dephosphorylated and ligated with arms of BamHI digested Lambda Dash vector. A total of 1.2 x 10(5) independent recombinants with the average insert size 12.6 kb was obtained. This library covered approximately 90% of maize chromosome 1. Hybridization of cloned fragments with labeled maize genomic DNA showed that the high, middle, or low copy number DNA sequences presented in the different phage clones. PCR (polymerase chain reaction) using chromosome-specific primers confirmed the specificity of this library. The individual chromosome library is useful in plant genome mapping and gene isolation.  相似文献   

16.
Chromosome sorting by flow cytometry is the main source of chromosome-specific DNA for the production of painting probes. These probes have been used for cross-species in situ hybridization in the construction of comparative maps, in the study of karyotype evolution and phylogenetics, in delineating territories in interphase nuclei, and in the analysis of chromosome breakpoints. We review here the contributions that this technology has made to the analysis of primate genomes.  相似文献   

17.
This study evaluates the potential of flow cytometry for chromosome sorting in two wild diploid wheats Aegilops umbellulata and Ae. comosa and their natural allotetraploid hybrids Ae. biuncialis and Ae. geniculata. Flow karyotypes obtained after the analysis of DAPI-stained chromosomes were characterized and content of chromosome peaks was determined. Peaks of chromosome 1U could be discriminated in flow karyotypes of Ae. umbellulata and Ae. biuncialis and the chromosome could be sorted with purities exceeding 95%. The remaining chromosomes formed composite peaks and could be sorted in groups of two to four. Twenty four wheat SSR markers were tested for their position on chromosomes of Ae. umbellulata and Ae. comosa using PCR on DNA amplified from flow-sorted chromosomes and genomic DNA of wheat-Ae. geniculata addition lines, respectively. Six SSR markers were located on particular Aegilops chromosomes using sorted chromosomes, thus confirming the usefulness of this approach for physical mapping. The SSR markers are suitable for marker assisted selection of wheat-Aegilops introgression lines. The results obtained in this work provide new opportunities for dissecting genomes of wild relatives of wheat with the aim to assist in alien gene transfer and discovery of novel genes for wheat improvement.  相似文献   

18.
Not long ago, scientists paid dearly in time, money and skill for every nucleotide that they sequenced. Today, DNA sequencing technologies epitomize the slogan ‘faster, easier, cheaper and more’, and in many ways, sequencing an entire genome has become routine, even for the smallest laboratory groups. This is especially true for mitochondrial and plastid genomes. Given their relatively small sizes and high copy numbers per cell, organelle DNAs are currently among the most highly sequenced kind of chromosome. But accurately characterizing an organelle genome and the information it encodes can require much more than DNA sequencing and bioinformatics analyses. Organelle genomes can be surprisingly complex and can exhibit convoluted and unconventional modes of gene expression. Unravelling this complexity can demand a wide assortment of experiments, from pulsed‐field gel electrophoresis to Southern and Northern blots to RNA analyses. Here, we show that it is exactly these types of ‘complementary’ analyses that are often lacking from contemporary organelle genome papers, particularly short ‘genome announcement’ articles. Consequently, crucial and interesting features of organelle chromosomes are going undescribed, which could ultimately lead to a poor understanding and even a misrepresentation of these genomes and the genes they express. High‐throughput sequencing and bioinformatics have made it easy to sequence and assemble entire chromosomes, but they should not be used as a substitute for or at the expense of other types of genomic characterization methods.  相似文献   

19.
介绍了染色体分选技术的基本原理和样品处理的基本流程,对根尖分生区采用同步化处理,制备染色体悬浮液,最后通过流式细胞仪的分析与收集获得纯度高、数量多的目标染色体.综述了染色体分选技术在植物学研究中的主要应用,包括物理图谱的构建、DNA分子标记的开发、以及复杂多倍体植物的基因组测序等.通过染色体分选技术的不断完善与发展,应...  相似文献   

20.
Determination of the DNA content of human chromosomes by flow cytometry   总被引:10,自引:0,他引:10  
The mean relative DNA content of each human chromosome was calculated from flow karyotypes of ethidium bromide-stained chromosomes obtained from healthy, normal individuals. These values were found to correlate closely with previously published data obtained by photometric scanning of stained, fixed chromosomes. Calculations of the normal variation in DNA content of each human chromosome indicated that chromosomes 1, 9, 16, and Y (chromosomes with large centric heterochromatic regions) were the most variable, followed by the acrocentrics, 13, 14, 15, 21, and 22. Chromosomes 2, 3, 18, and 19 were also found to vary significantly in DNA content. Chromosomes from a number of subjects with extreme heteromorphisms were flow karyotyped to obtain an estimate of the extent of variation in DNA content of each chromosome. The greatest difference between extreme variants was found for chromosome 1 (which differed by 0.82% of the total genomic DNA), followed by 16 and 9. The largest Y-chromosome variant was 85.9% bigger than the smallest. The precise karyotype analysis produced by flow cytometry resolved many differences between chromosome homologs, including some that cannot be readily distinguished cytogenetically. The implications of these findings for detection of chromosome abnormalities by flow karyotype analysis are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号