共查询到20条相似文献,搜索用时 0 毫秒
1.
Salova AV Leont'eva EA Mozhenok TP Kornilova ES Krolenko SA Beliaeva TN 《Tsitologiia》2011,53(3):227-234
The study of changes in the intracellular processes during differentiation of myoblasts into myotubules is of great importance for understanding several fundamental problems of cell biology. At first, this concerns the spatial organization of vacuolar apparatus that reflects the alterations in the properties of cell membranes, cytoskeleton elements and dynamics of vesicular transport in the course of differentiation. The distribution of acidic membrane organelles (lysosomes, late endosomes, Golgi cisternae) during the myotubule formation was revealed. It was shown that perinuclear localization of acidic organelles in myoblasts was replaced by diffuse distribution of these structures in the whole volume of myotubules. Using lipophilic fluorescent dyes, RH 414 and di-8-ANEPPS, the process of formation and dynamics of endocytic vesicles in myoblasts and myotubules was investigated. In the present work, semiconductive nanocrystals, quantum dots (QDs), conjugated with TAT-peptide, which belongs to cell-penetrating peptides, were used to characterize nonspecific endocytosis. It was shown that QDs--TAT complexes penetrate myoblasts but do not penetrate myotubules even after 24 h incubation, which might be connected with plasma membrane changes during the process of skeletal muscle differentiation. 相似文献
2.
Changes in ganglioside metabolism during in vitro differentiation of quail embryo myoblasts 总被引:1,自引:0,他引:1
C Dubois B Hauttecoeur M J Coulon-Morelec D Montarras C Rampini M Y Fiszman 《Developmental biology》1984,105(2):509-517
The metabolism of gangliosides was studied during the in vitro differentiation of both normal quail myoblasts and myoblasts which have been transformed by a temperature-sensitive mutant of Rous sarcoma virus (RSV). These transformed cells can be maintained undifferentiated if incubated at 35 degrees C, but they will differentiate when shifted to 41 degrees C. (D. Montarras and M. Y. Fiszman (1983) J. Biol. Chem. 258, 3882-3888). The analysis of [14C]Glucosamine-labeled gangliosides by two-dimensional thin-layer chromatography reveals variations in the metabolism of the gangliosides during the process of differentiation. During the formation of myotubes, it was observed that the accumulation of GD1a is reduced, while the accumulation of GD3 is increased. Therefore, this results in the variation of the ratio GD3/GD1a which increases from 1.8 to 25 in the case of clones of transformed myoblasts, and from 0.5 to 1.7 in the case of uninfected myoblasts. These variations which have been observed seem to be specific of the myogenic differentiation since they cannot be reproduced when differentiation is inhibited by BUdR treatment or when fibroblasts reach confluency and are blocked in the G1 phase of cell cycle. Furthermore, the transformed myoblasts in vitro are shown to be a good model system since their gangliosides composition is very similar to that of muscle cells in vivo. 相似文献
3.
Using a quantitative enzyme immunoassay, Thy-1 antigen expressed by a rat myoid cell line R615B2 was detected mainly on the cell surface at a single cell stage, whereas at the stage of forming myotubes, Thy-1 was found predominantly in the cytoplasm. The muscle specific creatine kinase activity also increased in association with the shift of Thy-1 from the cell surface to the cytoplasm, suggesting biological significance of Thy-1 redistribution in muscle differentiation from single cells to multinucleated cells. 相似文献
4.
Alexis Forterre Audrey Jalabert Karim Chikh Sandra Pesenti Vanessa Euthine Aurélie Granjon 《Cell cycle (Georgetown, Tex.)》2014,13(1):78-89
It has recently been established that exosomes can mediate intercellular cross-talk under normal and pathological conditions through the transfer of specific miRNAs. As muscle cells secrete exosomes, we addressed the question of whether skeletal muscle (SkM) exosomes contained specific miRNAs, and whether they could act as “endocrine signals” during myogenesis. We compared the miRNA repertoires found in exosomes released from C2C12 myoblasts and myotubes and found that 171 and 182 miRNAs were exported into exosomes from myoblasts and myotubes, respectively. Interestingly, some miRNAs were expressed at higher levels in exosomes than in their donor cells and vice versa, indicating a selectivity in the incorporation of miRNAs into exosomes. Moreover miRNAs from C2C12 exosomes were regulated during myogenesis. The predicted target genes of regulated exosomal miRNAs are mainly involved in the control of important signaling pathways for muscle cell differentiation (e.g., Wnt signaling pathway). We demonstrated that exosomes from myotubes can transfer small RNAs (C. elegans miRNAs and siRNA) into myoblasts. Moreover, we present evidence that exosome miRNAs secreted by myotubes are functionally able to silence Sirt1 in myoblasts. As Sirt1 regulates muscle gene expression and differentiation, our results show that myotube–exosome miRNAs could contribute to the commitment of myoblasts in the process of differentiation. Until now, myokines in muscle cell secretome provided a conceptual basis for communication between muscles. Here, we show that miRNA exosomal transfer would be a powerful means by which gene expression is orchestrated to regulate SkM metabolic homeostasis. 相似文献
5.
6.
7.
8.
The regulation of glycosphingolipid (GSL) synthesis in culture by fusion-competent (E63) myoblasts and fusion-defective (fu-1) cells was examined. Upon reaching confluency E63 cells fused to form multinucleated myotubes and demonstrated many characteristics of developing skeletal muscle including induction of creatine kinase activity and a shift in creatine kinase isozymes to the MM isoform. The fu-1 cells displayed none of these characteristics, despite the fact that both cells were cloned from the same parental myoblast line (rat L8). There was a transient increase in the synthesis of total neutral GSLs by E63 cells at the time of membrane fusion. In contrast, neutral GSL synthesis by fu-1 cells gradually decreased with time in culture. The major GSLs synthesized by both cell types were lactosylceramide and ganghoside GM3, with more complex structures being observed with prolonged time in culture. Several glycosyltransferase activities were assayed at varying times in culture. Generally, the changes in activities fell into three groups. One group was maximally activated at the end of the culture period (GalT-3, GalNAcT-1 and GalT-6). Another group was maximally activated during the time of active membrane fusion (GlcT and SAT-1). A third group was maximally activated at the time of cell contact and the beginning of membrane fusion (GlcNAcT-1 and GalT-2). In terms of the times of maximal activation there were few differences between E63 and fu-1 cells, with one notable exception. The activity of GalT-2 (lactosylceramide synthase) in E63 cells increased dramatically upon contact and the beginning of membrane fusion, whereas there were no changes in GalT-2 activity in fu-1 cells during time in culture. These results support our hypothesis that membrane glycosphingolipids play an important role in the differentiation of skeletal muscle cells.Abbreviations GSL
glycosphingolipid
- CK
creatine kinase
- HPTLC
high performance thin layer chromatography
- PMSF
phenylmethylsulfonyl fluoride
- CTH
ceramide trihexoside (GbOse3Cer)
- GlcCer
glycosylceramide
- LacC
N-acetylglucosamine
- NeuNAc
N-acetylneuraminic acid (sialic acid) 相似文献
9.
10.
11.
alpha-smooth muscle actin (SMA) is typically not present in post-embryonic skeletal muscle myoblasts or skeletal muscle fibers. However, both primary myoblasts isolated from neonatal mouse muscle tissue, and C2C12, an established myoblast cell line, produced SMA in culture within hours of exposure to differentiation medium. The SMA appeared during the cells' initial elongation, persisted through differentiation and fusion into myotubes, remained abundant in early myotubes, and was occasionally observed in a striated pattern. SMA continued to be present during the initial appearance of sarcomeric actin, but disappeared shortly thereafter leaving only sarcomeric actin in contractile myotubes derived from primary myoblasts. Within one day after implantation of primary myoblasts into mouse skeletal muscle, SMA was observed in the myoblasts; but by 9 days post-implantation, no SMA was detectable in myoblasts or muscle fibers. Thus, both neonatal primary myoblasts and an established myoblast cell line appear to similarly reprise an embryonic developmental program during differentiation in culture as well as differentiation within adult mouse muscles. 相似文献
12.
Ichida M Yui Y Yoshioka K Tanaka T Wakamatsu T Yoshikawa H Itoh K 《FEBS letters》2011,585(24):4018-4024
We showed that the migration, morphology and adhesiveness of undifferentiated mesenchymal cells dramatically changed during osteogenic differentiation. The migration of these cells was transiently upregulated early in osteogenic differentiation. At a later stage, migration was decreased but adhesiveness was increased. Furthermore, Cdc42 and Rac1 Rho-family small GTPases were activated at early stages of differentiation and the phosphorylation level of FAK decreased as differentiation progressed. We also showed cell migration was promoted by inhibition of the Rho-ROCK-myosin signaling. Finally, using a mouse model of ectopic bone formation, we confirmed that treatment with ROCK inhibitor, Y-27632 increased cell movement into bone formation sites, resulting in enhanced osteogenesis. These results provide a new insight into the link between cell migration and osteogenic differentiation. 相似文献
13.
14.
15.
16.
Cell cycle studies, using PLM analysis, were carried out on a mouse-Chinese hamster cell hybrid and its derivatives which stably retained all parental chromosomes during the year of study. Parameter estimates were obtained from the PLM curves, using conjugate gradient curve fitting procedures. The hybrid initially grew very slowly, and all phases (especially G1) were longer than those of either parent. During propagation, mean generation time decreased progressively, and the phase times approached those of the mouse parent (which had the longer G1 and S). DNA replication could be scored separately in mouse and hamster chromosome sets; initially termination was highly asynchronous, but during growth asynchrony was progressively reduced as DNA synthesis in the hamster set was prolonged. We conclude that cell hybrids may undergo progressive modifications of the cell cycle, even in the absence of significant chromosome segregation, and suggest that such changes may at least partly account for the great variety of relationships between the growth rates and phase times of parent and hybrid cells which have been reported. Because of the complexity of these changes in the cycles of interspecific cell hybrids, we believe that somatic cell genetic analysis of the regulation of the cell cycle would be more usefully applied to intraspecific hybrids whose parents differ in only one specific cycle characteristic. 相似文献
17.
Filament-directed intercellular contacts during differentiation of cultured chick myoblasts 总被引:4,自引:0,他引:4
Detergent-extracted, critical point dried chicken myoblasts at early stages of development in tissue culture were observed by electron microscopy. It was found that the organization of filaments within these cells changes significantly during development. A particular specialization of the cellular filament framework is the formation of microprocesses; long extensions of the cellular filament system. These microprocesses appear to be involved in cell-to-cell contact. The filaments of these processes appear to integrate with the filament system of a contacted cell, and possibly transmit tension from one cell to another. The role of these structures in effecting muscle differentiation by forming cytoplasmic connections and the implications for muscle gene expression are discussed. 相似文献
18.
19.
Adipose cell differentiation in culture 总被引:6,自引:0,他引:6
G. Ailhaud 《Molecular and cellular biochemistry》1982,49(1):17-31
Summary The isolation of preadipocyte cell strains from adipose tissue and from bone marrow, and the establishment of preadipocyte cell lines from embryonic and adult mouse, have been useful tools to study the process of adipose cell differentiation.This process is regulated both by extracellular signals present in serum and by intracellular signals; the characterization of these signals is under investigation. During adipose cell differentiation morphological and enzymatic changes are dramatic and they are accompanied by qualitative and quantitative variations of the cell protein content. These changes include the induction of the enzymes of the fatty acid and triglyceride synthesizing pathways and a subsequent triglyceride accumulation. The development of hormonal responses to insulin and to -adrenergics is also observed, and differentiated adipose cells behave essentially like mature adipocytes isolated from adipose tissue.The present review will be devoted to the main events of adipose conversion in cell lines and cell strains, and to current work which concerns the identification of the triggering signals possibly involved in that process.Abbreviations LPL
lipoprotein lipase
- MGL
monoglyceride lipase
- T3
triiodothyronine
- dbcAMP
dibutyryl-CAMP
- MIX
1-methyl-3-isobutylxanthine
- PG
prostaglandins
- FCS
fetal calf serum
- EDGF
eye-derived growth factor
- PDGF
platelet-derived growth factor
- FGF
fibroblast growth factor
- VLDL
very low density proteins 相似文献
20.
The regulation of phosphofructokinase during development of C2C12 myoblasts to myotubes was investigated. Enzyme activity was markedly increased during myogenic development. The increase was observed when enzyme activity was measured under optimal conditions and was not due to changes in the allosteric kinetic properties of the enzyme. Immunoprecipitation of phosphofructokinase from [35S]methionine-labeled myogenic cells revealed that equal amounts of liver and muscle isozymes are present in myoblasts, while in myotubes there was a much higher level of the muscle isozyme. These results were confirmed using an immunoblotting technique. The increase in the level of muscle isozyme in myotubes is due to an increase in the rate of synthesis of the muscle isozyme and occurs in spite of a measurably small increase in its degradation rate. Northern blot analysis using a synthetic oligonucleotide probe showed a 25-fold increase in the level of muscle phosphofructokinase mRNA in myotubes. The conclusion is drawn that the increase in muscle isozyme in myotubes during myogenesis is due to an increase in its mRNA level. 相似文献