首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study of changes in the intracellular processes during differentiation of myoblasts into myotubules is of great importance for understanding several fundamental problems of cell biology. At first, this concerns the spatial organization of vacuolar apparatus that reflects the alterations in the properties of cell membranes, cytoskeleton elements and dynamics of vesicular transport in the course of differentiation. The distribution of acidic membrane organelles (lysosomes, late endosomes, Golgi cisternae) during the myotubule formation was revealed. It was shown that perinuclear localization of acidic organelles in myoblasts was replaced by diffuse distribution of these structures in the whole volume of myotubules. Using lipophilic fluorescent dyes, RH 414 and di-8-ANEPPS, the process of formation and dynamics of endocytic vesicles in myoblasts and myotubules was investigated. In the present work, semiconductive nanocrystals, quantum dots (QDs), conjugated with TAT-peptide, which belongs to cell-penetrating peptides, were used to characterize nonspecific endocytosis. It was shown that QDs--TAT complexes penetrate myoblasts but do not penetrate myotubules even after 24 h incubation, which might be connected with plasma membrane changes during the process of skeletal muscle differentiation.  相似文献   

2.
The metabolism of gangliosides was studied during the in vitro differentiation of both normal quail myoblasts and myoblasts which have been transformed by a temperature-sensitive mutant of Rous sarcoma virus (RSV). These transformed cells can be maintained undifferentiated if incubated at 35 degrees C, but they will differentiate when shifted to 41 degrees C. (D. Montarras and M. Y. Fiszman (1983) J. Biol. Chem. 258, 3882-3888). The analysis of [14C]Glucosamine-labeled gangliosides by two-dimensional thin-layer chromatography reveals variations in the metabolism of the gangliosides during the process of differentiation. During the formation of myotubes, it was observed that the accumulation of GD1a is reduced, while the accumulation of GD3 is increased. Therefore, this results in the variation of the ratio GD3/GD1a which increases from 1.8 to 25 in the case of clones of transformed myoblasts, and from 0.5 to 1.7 in the case of uninfected myoblasts. These variations which have been observed seem to be specific of the myogenic differentiation since they cannot be reproduced when differentiation is inhibited by BUdR treatment or when fibroblasts reach confluency and are blocked in the G1 phase of cell cycle. Furthermore, the transformed myoblasts in vitro are shown to be a good model system since their gangliosides composition is very similar to that of muscle cells in vivo.  相似文献   

3.
Using a quantitative enzyme immunoassay, Thy-1 antigen expressed by a rat myoid cell line R615B2 was detected mainly on the cell surface at a single cell stage, whereas at the stage of forming myotubes, Thy-1 was found predominantly in the cytoplasm. The muscle specific creatine kinase activity also increased in association with the shift of Thy-1 from the cell surface to the cytoplasm, suggesting biological significance of Thy-1 redistribution in muscle differentiation from single cells to multinucleated cells.  相似文献   

4.
It has recently been established that exosomes can mediate intercellular cross-talk under normal and pathological conditions through the transfer of specific miRNAs. As muscle cells secrete exosomes, we addressed the question of whether skeletal muscle (SkM) exosomes contained specific miRNAs, and whether they could act as “endocrine signals” during myogenesis. We compared the miRNA repertoires found in exosomes released from C2C12 myoblasts and myotubes and found that 171 and 182 miRNAs were exported into exosomes from myoblasts and myotubes, respectively. Interestingly, some miRNAs were expressed at higher levels in exosomes than in their donor cells and vice versa, indicating a selectivity in the incorporation of miRNAs into exosomes. Moreover miRNAs from C2C12 exosomes were regulated during myogenesis. The predicted target genes of regulated exosomal miRNAs are mainly involved in the control of important signaling pathways for muscle cell differentiation (e.g., Wnt signaling pathway). We demonstrated that exosomes from myotubes can transfer small RNAs (C. elegans miRNAs and siRNA) into myoblasts. Moreover, we present evidence that exosome miRNAs secreted by myotubes are functionally able to silence Sirt1 in myoblasts. As Sirt1 regulates muscle gene expression and differentiation, our results show that myotube–exosome miRNAs could contribute to the commitment of myoblasts in the process of differentiation. Until now, myokines in muscle cell secretome provided a conceptual basis for communication between muscles. Here, we show that miRNA exosomal transfer would be a powerful means by which gene expression is orchestrated to regulate SkM metabolic homeostasis.  相似文献   

5.
6.
7.
8.
9.
The regulation of glycosphingolipid (GSL) synthesis in culture by fusion-competent (E63) myoblasts and fusion-defective (fu-1) cells was examined. Upon reaching confluency E63 cells fused to form multinucleated myotubes and demonstrated many characteristics of developing skeletal muscle including induction of creatine kinase activity and a shift in creatine kinase isozymes to the MM isoform. The fu-1 cells displayed none of these characteristics, despite the fact that both cells were cloned from the same parental myoblast line (rat L8). There was a transient increase in the synthesis of total neutral GSLs by E63 cells at the time of membrane fusion. In contrast, neutral GSL synthesis by fu-1 cells gradually decreased with time in culture. The major GSLs synthesized by both cell types were lactosylceramide and ganghoside GM3, with more complex structures being observed with prolonged time in culture. Several glycosyltransferase activities were assayed at varying times in culture. Generally, the changes in activities fell into three groups. One group was maximally activated at the end of the culture period (GalT-3, GalNAcT-1 and GalT-6). Another group was maximally activated during the time of active membrane fusion (GlcT and SAT-1). A third group was maximally activated at the time of cell contact and the beginning of membrane fusion (GlcNAcT-1 and GalT-2). In terms of the times of maximal activation there were few differences between E63 and fu-1 cells, with one notable exception. The activity of GalT-2 (lactosylceramide synthase) in E63 cells increased dramatically upon contact and the beginning of membrane fusion, whereas there were no changes in GalT-2 activity in fu-1 cells during time in culture. These results support our hypothesis that membrane glycosphingolipids play an important role in the differentiation of skeletal muscle cells.Abbreviations GSL glycosphingolipid - CK creatine kinase - HPTLC high performance thin layer chromatography - PMSF phenylmethylsulfonyl fluoride - CTH ceramide trihexoside (GbOse3Cer) - GlcCer glycosylceramide - LacC N-acetylglucosamine - NeuNAc N-acetylneuraminic acid (sialic acid)  相似文献   

10.
Expression of type I and III procollagen genes was studied in embryonic chicken myoblast cell cultures, obtained from thigh muscles of 11-day-old embryos. Differentiation initiated by the addition of ovotransferrin (30 micrograms/ml) was followed visually by phase-contrast microscopy. Myoblast fusion and myotube formation were detected by day 3 and appeared to be complete by day 7. The synthesis of procollagens was monitored by labeling cell cultures for 1 h with [3H]proline and determining the radioactivity in procollagen chains by scanning densitometry of the fluorograms of the sodium dodecyl sulfate-polyacrylamide gels. A 10- to 20-fold increase in the rate of pro alpha-1(I), pro alpha-2(I), and pro alpha-1(III) collagen synthesis was observed, with the greatest increase occurring between days 3 and 9. Collagen mRNA levels in the myoblast cultures were examined by Northern blot and dot blot hybridization assays. The 10- to 20-fold increased rate of protein synthesis was accompanied by a 15-fold increase in the steady-state levels of pro alpha-1(I) and pro alpha-2(I) mRNAs and a 10-fold increase in the steady-state levels of pro alpha-1(III). As a correlate to the studies of collagen expression during myoblast differentiation, the expression of actin mRNAs was examined. Although alpha actin could be detected by day 4, a complete switch from lambda and beta to alpha actin was not observed in the time periods examined. Similar results were obtained in the analysis of RNA extracted from embryonic legs at days 12 and 17 of gestation. Myoblast differentiation is manifested by the accumulation of both muscle-specific mRNAs, such as actin, and type I and III procollagen mRNAs.  相似文献   

11.
alpha-smooth muscle actin (SMA) is typically not present in post-embryonic skeletal muscle myoblasts or skeletal muscle fibers. However, both primary myoblasts isolated from neonatal mouse muscle tissue, and C2C12, an established myoblast cell line, produced SMA in culture within hours of exposure to differentiation medium. The SMA appeared during the cells' initial elongation, persisted through differentiation and fusion into myotubes, remained abundant in early myotubes, and was occasionally observed in a striated pattern. SMA continued to be present during the initial appearance of sarcomeric actin, but disappeared shortly thereafter leaving only sarcomeric actin in contractile myotubes derived from primary myoblasts. Within one day after implantation of primary myoblasts into mouse skeletal muscle, SMA was observed in the myoblasts; but by 9 days post-implantation, no SMA was detectable in myoblasts or muscle fibers. Thus, both neonatal primary myoblasts and an established myoblast cell line appear to similarly reprise an embryonic developmental program during differentiation in culture as well as differentiation within adult mouse muscles.  相似文献   

12.
Early embryo development is characterized by alteration of cellular dimensions and fating of blastomeres. An emerging concept is that cell size and shape drive cellular differentiation during early embryogenesis in a variety of model organisms. In this review, we summarize recent advances that elucidate the contribution of the physical dimensions of a cell to major embryonic transitions and cell fate specification in vivo. We also highlight techniques and newly evolving methods for manipulating the sizes and shapes of cells and whole embryos in situ and ex vivo. Finally, we provide an outlook for addressing fundamental questions in the field and more broadly uncovering how changes to cell size control decision making in a variety of biological contexts.  相似文献   

13.
14.
15.
Changes in sialyltransferase activity during murine T cell differentiation   总被引:2,自引:0,他引:2  
The main aim of our study was to investigate whether the marked decrease in the expression of peanut agglutinin (PNA) receptors during T-cell maturation in the mouse is accompanied by increased activity of sialyltransferase. By differential agglutination with PNA, mature thymocytes (PNA-) were separated from immature ones (PNA+) and the separated fractions were tested for their sialyltransferase activity with asialofetuin as acceptor. In parallel, sialyltransferase activities of hydrocortisone-resistant thymocytes and untreated thymocytes were also compared. Optimization of the enzyme assay revealed that previous results in the literature were obtained under suboptimal conditions. Using manganese chloride instead of magnesium chloride, we have now found that hydrocortisone-resistant thymocytes contain 3.3-fold more sialyltransferase activity compared to untreated thymocytes. PNA- thymocytes contain 8.1-fold more enzyme activity compared to the PNA+ cells. Studies with fluorescein conjugated PNA of the agglutinated and unagglutinated thymocyte fractions suggest that the trace amount of sialyltransferase activity found in the PNA+ fraction may result from 5 to 10% cross-contamination with PNA- cells. These results suggest that the cellular levels of sialyltransferase specific for asialofetuin may play an important role in T-cell differentiation.  相似文献   

16.
17.
18.
We showed that the migration, morphology and adhesiveness of undifferentiated mesenchymal cells dramatically changed during osteogenic differentiation. The migration of these cells was transiently upregulated early in osteogenic differentiation. At a later stage, migration was decreased but adhesiveness was increased. Furthermore, Cdc42 and Rac1 Rho-family small GTPases were activated at early stages of differentiation and the phosphorylation level of FAK decreased as differentiation progressed. We also showed cell migration was promoted by inhibition of the Rho-ROCK-myosin signaling. Finally, using a mouse model of ectopic bone formation, we confirmed that treatment with ROCK inhibitor, Y-27632 increased cell movement into bone formation sites, resulting in enhanced osteogenesis. These results provide a new insight into the link between cell migration and osteogenic differentiation.  相似文献   

19.
Detergent-extracted, critical point dried chicken myoblasts at early stages of development in tissue culture were observed by electron microscopy. It was found that the organization of filaments within these cells changes significantly during development. A particular specialization of the cellular filament framework is the formation of microprocesses; long extensions of the cellular filament system. These microprocesses appear to be involved in cell-to-cell contact. The filaments of these processes appear to integrate with the filament system of a contacted cell, and possibly transmit tension from one cell to another. The role of these structures in effecting muscle differentiation by forming cytoplasmic connections and the implications for muscle gene expression are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号