首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lesions in the cerebellar vermis abolish acquisition of fear-conditioned bradycardia in animals and human patients. The δ2 glutamate receptor (GluD2) is predominantly expressed in cerebellar Purkinje cells. The mouse mutant ho15J carries a spontaneous mutation in GluD2 and these mice show a primary deficiency in parallel fiber-Purkinje cell synapses, multiple innervations of Purkinje cells by climbing fibers, and impairment of long-term depression. In the present study, we used ho15J mice to investigate the role of the cerebellum in fear-conditioned bradycardia. We recorded changes in heart rate of ho15J mice induced by repeated pairing of an acoustic (conditioned) stimulus (CS) with an aversive (unconditioned) stimulus (US). The mice acquired conditioned bradycardia on Day 1 of the CS-US phase, similarly to wild-type mice. However, the magnitude of the conditioned bradycardia was not stable in the mutant mice, but rather was exaggerated on Days 2–5 of the CS-US phase. We examined the effects of reversibly inactivating the cerebellum by injection of an antagonist against the α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor (AMPAR). The antagonist abolished expression of conditioned responses in both wild-type and ho15J mice. We conclude that the GluD2 mutation in the ho15J mice affects stable retention of the acquired conditioned bradycardia.  相似文献   

2.
The delta family of ionotropic glutamate receptors consists of glutamate δ1 (GluD1) and glutamate δ2 (GluD2) receptors. While the role of GluD2 in the regulation of cerebellar physiology is well understood, the function of GluD1 in the central nervous system remains elusive. We demonstrate for the first time that deletion of GluD1 leads to abnormal emotional and social behaviors. We found that GluD1 knockout mice (GluD1 KO) were hyperactive, manifested lower anxiety-like behavior, depression-like behavior in a forced swim test and robust aggression in the resident-intruder test. Chronic lithium rescued the depression-like behavior in GluD1 KO. GluD1 KO mice also manifested deficits in social interaction. In the sociability test, GluD1 KO mice spent more time interacting with an inanimate object compared to a conspecific mouse. D-Cycloserine (DCS) administration was able to rescue social interaction deficits observed in GluD1 KO mice. At a molecular level synaptoneurosome preparations revealed lower GluA1 and GluA2 subunit expression in the prefrontal cortex and higher GluA1, GluK2 and PSD95 expression in the amygdala of GluD1 KO. Moreover, DCS normalized the lower GluA1 expression in prefrontal cortex of GluD1 KO. We propose that deletion of GluD1 leads to aberrant circuitry in prefrontal cortex and amygdala owing to its potential role in presynaptic differentiation and synapse formation. Furthermore, these findings are in agreement with the human genetic studies suggesting a strong association of GRID1 gene with several neuropsychiatric disorders including schizophrenia, bipolar disorder, autism spectrum disorders and major depressive disorder.  相似文献   

3.
Glutamate delta-1 (GluD1) receptors are expressed throughout the forebrain during development with high levels in the hippocampus during adulthood. We have recently shown that deletion of GluD1 receptor results in aberrant emotional and social behaviors such as hyperaggression and depression-like behaviors and social interaction deficits. Additionally, abnormal expression of synaptic proteins was observed in amygdala and prefrontal cortex of GluD1 knockout mice (GluD1 KO). However the role of GluD1 in learning and memory paradigms remains unknown. In the present study we evaluated GluD1 KO in learning and memory tests. In the eight-arm radial maze GluD1 KO mice committed fewer working memory errors compared to wildtype mice but had normal reference memory. Enhanced working memory in GluD1 KO was also evident by greater percent alternation in the spontaneous Y-maze test. No difference was observed in object recognition memory in the GluD1 KO mice. In the Morris water maze test GluD1 KO mice showed no difference in acquisition but had longer latency to find the platform in the reversal learning task. GluD1 KO mice showed a deficit in contextual and cue fear conditioning but had normal latent inhibition. The deficit in contextual fear conditioning was reversed by D-Cycloserine (DCS) treatment. GluD1 KO mice were also found to be more sensitive to foot-shock compared to wildtype. We further studied molecular changes in the hippocampus, where we found lower levels of GluA1, GluA2 and GluK2 subunits while a contrasting higher level of GluN2B in GluD1 KO. Additionally, we found higher postsynaptic density protein 95 (PSD95) and lower glutamate decarboxylase 67 (GAD67) expression in GluD1 KO. We propose that GluD1 is crucial for normal functioning of synapses and absence of GluD1 leads to specific abnormalities in learning and memory. These findings provide novel insights into the role of GluD1 receptors in the central nervous system.  相似文献   

4.
Neonatal maternal separation alters learning and memory. Glucocorticoids also modulate adult learning and memory, and neonatal maternal separation alters forebrain glucocorticoid receptor (GR) concentrations. We used eyeblink classical conditioning to assess the effect of neonatal maternal separation on associative learning. We assessed delay eyeblink conditioning, GR expression, and total neuron number in the interpositus nucleus, a critical site of plasticity in eyeblink conditioning, in adult rats that had undergone either standard animal facilities rearing, handling for 15 min, or maternal separation for either 15 or 60 min per day on postnatal days 2-14. At 2-3 months of age, delay eyeblink classical conditioning was assessed. Brains were processed for GR immunohistochemistry, and GR expression in the interpositus nucleus was assessed using a computer-based densitometry system. Neuron counts and nuclear volumes were obtained from an alternate series of thionin-stained sections. Maternal separation significantly impaired eyeblink conditioning in male but not female rats. Handling and maternal separation did not significantly affect interpositus neuron number and volume. However, prolonged maternal separation significantly increased GR expression in the posterior interpositus in males, and increases were correlated with eyeblink conditioning. In female rats, maternal separation and handling did not significantly alter interpositus neuron number, volume, or GR protein expression, and GR expression did not correlate with eyeblink conditioning. Thus, neonatal maternal separation produces adult deficits in eyeblink conditioning and alterations in GR expression in its neural substrate in a sex-dependent manner.  相似文献   

5.
Cerebellar long-term depression (LTD) at the parallel fiber-Purkinje cell synapses has been proposed to be a neural substrate for classical eyeblink conditioning. Mutant mice lacking the glutamate receptor subunit 2 (GluR2), in which the cerebellar LTD is disrupted, exhibited a severe impairment in the delay eyeblink conditioning with a temporal overlap of CS and US. However, they learned normally trace and delay conditioning without CS-US overlap, suggesting a learning mechanism which does not require the cerebellar LTD.In the present study, we tested possible involvement of the hippocampus in this cerebellar LTD-independent learning. We examined effects of scopolamine and hippocampal lesion on the delay conditioning without CS-US overlap. TheGluR2 mutant mice that received scopolamine or aspiration of the dorsalhippocampus together with its overlying cortex exhibited a severe impairment in learning, while the control mutant mice that received saline or aspiration of the overlying cortex learned normally. In contrast, wild-type mice that received either treatment learned as normally as the control wild-type mice. These results suggest that the hippocampus is essential in the cerebellar LTD-independent learning in the GluR2 mutant mice, indicating a newrole of hippocampus in the paradigm with a short trace interval.  相似文献   

6.
Mori H  Mishina M 《Life sciences》2003,74(2-3):329-336
Glutamate receptor (GluR) channels play a major role in fast excitatory synaptic transmission in vertebrate central nervous system. We revealed the molecular diversity of the GluR channel by molecular cloning and investigated their physiological roles by subunit-specific gene targeting. NMDA receptor GluRepsilon1 KO mice showed increase in thresholds for hippocampal long-term potentiation and hippocampus-dependent contextual learning. The mutant mice performed delay eyeblink conditioning, but failed to learn trace eyeblink conditioning. GluRepsilon1 mutant suffered less brain injury after focal cerebral ischemia. NMDA receptor GluRepsilon2 KO mice showed impairment of the whisker-related neural pattern formation and suckling response, and died shortly after birth. Heterozygous (+/-) GluRepsilon2 mutant mice were viable and showed enhanced startle response to acoustic stimuli. GluRdelta2, a member of novel GluR channel subfamily we found by molecular cloning, is selectively expressed in the Purkinje cells of the cerebellum. GluRdelta2 KO mice showed impairments of cerebellar synaptic plasticity and synapse stability. GluRdelta2 KO mice exhibited impairment in delay eyeblink conditioning, but learned normally trace eyeblink conditioning. The phenotypes of NMDA receptor subunits and GluRdelta2 mutant mice suggest that diverse GluR subunits play differential roles in the brain functions.  相似文献   

7.
The δ subfamily of ionotropic glutamate receptor subunits consists of GluD1 and GluD2. GluD2, which is selectively expressed in cerebellar Purkinje neurons, has been shown to contribute to the formation of synapses between granule neurons and Purkinje neurons through interaction with Cbln1 (cerebellin precursor protein1) and presynaptic Neurexin. On the other hand, the synaptogenic activity of GluD1, which is expressed not in the cerebellum but in the hippocampus, remains to be characterized. Here, we report that GluD1 expressed in non-neuronal HEK cells, induced presynaptic differentiation of granule neurons through its N-terminal domain in co-cultures with cerebellar neurons, similarly to GluD2. We also show that GluD1 rescued the defect of synapse formation in GluD2-knockout Purkinje neurons, indicating the functional similarity of GluD1 and GluD2. In contrast, GluD1 expression alone did not induce presynaptic differentiation in co-cultures of HEK cells with hippocampal neurons. However, when Cbln1 was exogenously added to the culture medium, GluD1 induced presynaptic differentiation of not only glutamatergic presynaptic terminals but also GABAergic ones. Cbln1 is not expressed in hippocampal neurons but is expressed in entorhinal cortical neurons projecting to the hippocampus. In co-cultures of HEK cells expressing GluD1 and entorhinal cortical neurons, both glutamatergic and GABAergic presynaptic terminals were formed on the HEK cells without exogenous application of Cbln1. These results suggest that GluD1 might contribute to the formation of specific synapses in the hippocampus such as those formed by the projecting neurons of the entorhinal cortex.  相似文献   

8.
Mice lacking the prion protein (PrPC) gene (Prnp), Ngsk Prnp 0/0 mice, show late-onset cerebellar Purkinje cell (PC) degeneration because of ectopic overexpression of PrPC-like protein (PrPLP/Dpl). Because PrPC is highly expressed in cerebellar neurons (including PCs and granule cells), it may be involved in cerebellar synaptic function and cerebellar cognitive function. However, no studies have been conducted to investigate the possible involvement of PrPC and/or PrPLP/Dpl in cerebellum-dependent discrete motor learning. Therefore, the present cross-sectional study was designed to examine cerebellum-dependent delay eyeblink conditioning in Ngsk Prnp 0/0 mice in adulthood (16, 40, and 60 weeks of age). The aims of the present study were two-fold: (1) to examine the role of PrPC and/or PrPLP/Dpl in cerebellum-dependent motor learning and (2) to confirm the age-related deterioration of eyeblink conditioning in Ngsk Prnp 0/0 mice as an animal model of progressive cerebellar degeneration. Ngsk Prnp 0/0 mice aged 16 weeks exhibited intact acquisition of conditioned eyeblink responses (CRs), although the CR timing was altered. The same result was observed in another line of PrPc-deficient mice, ZrchI PrnP 0/0 mice. However, at 40 weeks of age, CR incidence impairment was observed in Ngsk Prnp 0/0 mice. Furthermore, Ngsk Prnp 0/0 mice aged 60 weeks showed more significantly impaired CR acquisition than Ngsk Prnp 0/0 mice aged 40 weeks, indicating the temporal correlation between cerebellar PC degeneration and motor learning deficits. Our findings indicate the importance of the cerebellar cortex in delay eyeblink conditioning and suggest an important physiological role of prion protein in cerebellar motor learning.  相似文献   

9.
Glutamate receptor δ2 (GluD2) is selectively expressed on the postsynaptic spines at parallel-fiber (PF)-Purkinje neuron (PN) synapses. GluD2 knockout mice show a reduced number of PF-PN synapses, suggesting that GluD2 is involved in synapse formation. Recent studies revealed that GluD2 induces presynaptic differentiation in a manner dependent on its N-terminal domain (NTD) through binding of Cbln1 secreted from cerebellar granule neurons. However, the underlying mechanism of the specific binding of the NTD to Cbln1 remains elusive. Here, we have identified the flap loop (Arg321-Trp339) in the NTD of GluD2 (GluD2-NTD) as a crucial region for the binding to Cbln1 and the induction of presynaptic differentiation. Both induction of presynaptic differentiation and binding of Cbln1 were abolished in the HEK cells expressing not wild-type GluD2 but GluD2 with mutations in the flap loop. Especially, single amino acid substitution of either Arg321 or Trp323 to alanine was sufficient to disable the GluD2 function. Finally, a homology model of GluD2-NTD suggested that the flap loop is located at the distal end, which appears consistent with an interaction with Cbln1 and a presynaptic varicosity.  相似文献   

10.

Duchenne muscular dystrophy (DMD) patients, having mutations of the DMD gene, present with a range of neuropsychiatric disorders, in addition to the quintessential muscle pathology. The neurobiological basis remains poorly understood because the contributions of different DMD gene products (dystrophins) to the different neural networks underlying such symptoms are yet to be fully characterised. While full-length dystrophin clusters in inhibitory synapses, with inhibitory neurotransmitter receptors, the precise subcellular expression of truncated DMD gene products with excitatory synapses remains unresolved. Furthermore, inflammation, involving P2X purinoceptor 7 (P2RX7) accompanies DMD muscle pathology, yet any association with brain dystrophins is yet to be established. The aim of this study was to investigate the comparative expression of different dystrophins, alongside ionotropic glutamate receptors and P2RX7s, within the cerebellar circuitry known to express different dystrophin isoforms. Immunoreactivity for truncated DMD gene products was targeted to Purkinje cell (PC) distal dendrites adjacent to, or overlapping with, signal for GluA1, GluA4, GluN2A, and GluD2 receptor subunits. P2X7R immunoreactivity was located in Bergmann glia profiles adjacent to PC-dystrophin immunoreactivity. Ablation of all DMD gene products coincided with decreased mRNA expression for Gria2, Gria3, and Grin2a and increased GluD2 immunoreactivity. Finally, dystrophin-null mice showed decreased brain mRNA expression of P2rx7 and several inflammatory mediators. The data suggest that PCs target different dystrophin isoforms to molecularly and functionally distinct populations of synapses. In contrast to muscle, dystrophinopathy in brain leads to the dampening of the local immune system.

  相似文献   

11.
Patch clamp recordings of neurons in the adult rat deep cerebellar nuclei have been limited by the availability of viable brain slices. Using a new slicing technique, this study was designed to explore the maturation of membrane properties of neurons in the deep cerebellar nuclei (DCN)—an area involved in rat eyeblink conditioning. Compared to whole‐cell current–clamp recordings in DCN in rat pups at postnatal day 16 (P16) to P21, recordings from weanling rats at P22–P40 revealed a number of significant changes including an increase in the amplitude of the afterhyperpolarization (AHP)—an index of membrane excitability which has been shown to be important for eyeblink conditioning—a prolonged interval between the first and second evoked action potential, and an increase in AHP amplitude for hyperpolarization‐induced rebound spikes. This is the first report of developmental changes in membrane properties of DCN which may contribute to the ontogeny of eyeblink conditioning in the rat. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 74: 1268–1276, 2014  相似文献   

12.
Long-term depression at parallel fiber-Purkinje cell synapses (PF-PC LTD) has been proposed to be required for cerebellar motor learning. To date, tests of this hypothesis have sought to interfere with receptors (mGluR1) and enzymes (PKC, PKG, or αCamKII) necessary for induction of PF-PC LTD and thereby determine if cerebellar motor learning is impaired. Here, we tested three mutant mice that target the expression of PF-PC LTD by blocking internalization of AMPA receptors. Using three different cerebellar coordination tasks (adaptation of the vestibulo-ocular reflex, eyeblink conditioning, and locomotion learning on the Erasmus Ladder), we show that there is no motor learning impairment in these mutant mice that lack PF-PC LTD. These findings demonstrate that PF-PC LTD is not essential for cerebellar motor learning.  相似文献   

13.
Cerebellar function in consolidation of a motor memory   总被引:9,自引:0,他引:9  
Attwell PJ  Cooke SF  Yeo CH 《Neuron》2002,34(6):1011-1020
Several forms of motor learning, including classical conditioning of the eyeblink and nictitating membrane response (NMR), are dependent upon the cerebellum, but it is not known how motor memories are stored within the cerebellar circuitry. Localized infusions of the GABA(A) agonist muscimol were used to target putative consolidation processes by producing reversible inactivations after NMR conditioning sessions. Posttraining inactivations of eyeblink control regions in cerebellar cortical lobule HVI completely prevented conditioning from developing over four sessions. In contrast, similar inactivations of eyeblink control regions in the cerebellar nuclei allowed conditioning to develop normally. These findings provide evidence that there are critical posttraining memory consolidation processes for eyeblink conditioning mediated by the cerebellar cortex.  相似文献   

14.
A leading candidate in the process of memory formation is hippocampal long-term potentiation (LTP), a persistent enhancement in synaptic strength evoked by the repetitive activation of excitatory synapses, either by experimental high-frequency stimulation (HFS) or, as recently shown, during actual learning. But are the molecular mechanisms for maintaining synaptic potentiation induced by HFS and by experience the same? Protein kinase Mzeta (PKMζ), an autonomously active atypical protein kinase C isoform, plays a key role in the maintenance of LTP induced by tetanic stimulation and the storage of long-term memory. To test whether the persistent action of PKMζ is necessary for the maintenance of synaptic potentiation induced after learning, the effects of ZIP (zeta inhibitory peptide), a PKMζ inhibitor, on eyeblink-conditioned mice were studied. PKMζ inhibition in the hippocampus disrupted both the correct retrieval of conditioned responses (CRs) and the experience-dependent persistent increase in synaptic strength observed at CA3-CA1 synapses. In addition, the effects of ZIP on the same associative test were examined when tetanic LTP was induced at the hippocampal CA3-CA1 synapse before conditioning. In this case, PKMζ inhibition both reversed tetanic LTP and prevented the expected LTP-mediated deleterious effects on eyeblink conditioning. Thus, PKMζ inhibition in the CA1 area is able to reverse both the expression of trace eyeblink conditioned memories and the underlying changes in CA3-CA1 synaptic strength, as well as the anterograde effects of LTP on associative learning.  相似文献   

15.
16.
The cerebellum in transgenic mice expressing pseudorabies virus immediate-early protein IE180 (TgIE96) was substantially diminished in size, and its histoarchitecture was severely disorganized, resulting in severe ataxia. TgIE96 mice can therefore be used as an experimental model to study the involvement of cerebellar circuits in different learning tasks. The performance of three-month-old TgIE96 mice was studied in various behavioral tests, including associative learning (classical eyeblink conditioning), object recognition, spatial orientation (water maze), startle response and prepulse inhibition, and passive avoidance, and compared with that of wild-type mice. Wild-type and TgIE96 mice presented similar reflexively evoked eyeblinks, and acquired classical conditioned eyelid responses with similar learning curves for both trace and delay conditioning paradigms. The two groups of mice also had similar performances during the object recognition test. However, they showed significant differences for the other three tests included in this study. Although both groups of animals were capable of swimming, TgIE96 mice failed to learn the water maze task during the allowed time. The startle response to a severe tone was similar in both control and TgIE96 mice, but the latter were unable to produce a significant prepulse inhibition. TgIE96 mice also presented evident deficits for the proper accomplishment of a passive avoidance test. These results suggest that the cerebellum is not indispensable for the performance of classical eyeblink conditioning and for object recognition tasks, but seems to be necessary for the proper performance of water maze, prepulse inhibition, and passive avoidance tests.  相似文献   

17.
Several forms of learning, including classical conditioning of the eyeblink, depend upon the cerebellum. In examining mechanisms of eyeblink conditioning in rabbits, reversible inactivations of the control circuitry have begun to dissociate aspects of cerebellar cortical and nuclear function in memory consolidation. It was previously shown that post-training cerebellar cortical, but not nuclear, inactivations with the GABAA agonist muscimol prevented consolidation but these findings left open the question as to how final memory storage was partitioned across cortical and nuclear levels. Memory consolidation might be essentially cortical and directly disturbed by actions of the muscimol, or it might be nuclear, and sensitive to the raised excitability of the nuclear neurons following the loss of cortical inhibition. To resolve this question, we simultaneously inactivated cerebellar cortical lobule HVI and the anterior interpositus nucleus of rabbits during the post-training period, so protecting the nuclei from disinhibitory effects of cortical inactivation. Consolidation was impaired by these simultaneous inactivations. Because direct application of muscimol to the nuclei alone has no impact upon consolidation, we can conclude that post-training, consolidation processes and memory storage for eyeblink conditioning have critical cerebellar cortical components. The findings are consistent with a recent model that suggests the distribution of learning-related plasticity across cortical and nuclear levels is task-dependent. There can be transfer to nuclear or brainstem levels for control of high-frequency responses but learning with lower frequency response components, such as in eyeblink conditioning, remains mainly dependent upon cortical memory storage.  相似文献   

18.
Previous studies have shown that deep cerebellar nuclei (DCN)-lesioned mice develop conditioned responses (CR) on delay eyeblink conditioning when a salient tone conditioned stimulus (CS) is used, which suggests that the cerebellum potentially plays a role in more complicated cognitive functions. In the present study, we examined the role of DCN in tone frequency discrimination in the delay eyeblink-conditioning paradigm. In the first experiment, DCN-lesioned and sham-operated mice were subjected to standard simple eyeblink conditioning under low-frequency tone CS (LCS: 1 kHz, 80 dB) or high-frequency tone CS (HCS: 10 kHz, 70 dB) conditions. DCN-lesioned mice developed CR in both CS conditions as well as sham-operated mice. In the second experiment, DCN-lesioned and sham-operated mice were subjected to two-tone discrimination tasks, with LCS+ (or HCS+) paired with unconditioned stimulus (US), and HCS− (or LCS−) without US. CR% in sham-operated mice increased in LCS+ (or HCS+) trials, regardless of tone frequency of CS, but not in HCS− (or LCS−) trials. The results indicate that sham-operated mice can discriminate between LCS+ and HCS− (or HCS+ and LCS−). In contrast, DCN-lesioned mice showed high CR% in not only LCS+ (or HCS+) trials but also HCS− (or LCS−) trials. The results indicate that DCN lesions impair the discrimination between tone frequency in eyeblink conditioning. Our results suggest that the cerebellum plays a pivotal role in the discrimination of tone frequency.  相似文献   

19.
Olfactory learning and memory processes in Drosophila have been well investigated with aversive conditioning, but appetitive conditioning has rarely been documented. Here, we report for the first time individual olfactory conditioning of proboscis activity in restrained Drosophila melanogaster. The protocol was adapted from those developed for proboscis extension conditioning in the honeybee Apis mellifera. After establishing a scale of small proboscis movements necessary to characterize responses to olfactory stimulation, we applied Pavlovian conditioning, with five trials consisting of paired presentation of a banana odour and a sucrose reward. Drosophila showed conditioned proboscis activity to the odour, with a twofold increase of percentage of responses after the first trial. No change occurred in flies experiencing unpaired presentations of the stimuli, confirming an associative basis for this form of olfactory learning. The adenylyl cyclase mutant rutabaga did not exhibit learning in this paradigm. This protocol generated at least a short-term memory of 15 min, but no significant associative memory was detected at 1 h. We also showed that learning performance was dependent on food motivation, by comparing flies subjected to different starvation regimes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号