首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
A nonlinear theory is developed that describes the interaction between an annular electron beam and an electromagnetic surface wave propagating strictly transverse to a constant external axial magnetic field in a cylindrical metal waveguide partially filled with a cold plasma. It is shown theoretically that surface waves with positive azimuthal mode numbers can be efficiently excited by an electron beam moving in the gap between the plasma column and the metal waveguide wall. Numerical simulations prove that, by applying a constant external electric field oriented along the waveguide radius, it is possible to increase the amplitude at which the surface waves saturate during the beam instability. The full set of equations consisting of the waveenvelope equation, the equation for the wave phase, and the equations of motion for the beam electrons is solved numerically in order to construct the phase diagrams of the beam electrons in momentum space and to determine their positions in coordinate space (in the radial variable-azimuthal angle plane).  相似文献   

2.
Yang  Aiping  Du  Luping  Dou  Xiujie  Meng  Fanfei  Zhang  Chonglei  Min  Changjun  Lin  Jiao  Yuan  Xiaocong 《Plasmonics (Norwell, Mass.)》2018,13(3):991-996

Gap mode surface-enhanced Raman spectroscopy (SERS) enables high enhancement of Raman signal. However, the polarization of excitation light shows great influence on the excitation of gap mode and hence on the Raman enhancement. Here, we propose a nanoparticle-on-film gap mode SERS accompanying with a new type of excitation source called as perfect radially polarized (PRP) beam. The PRP beam possesses a ring-shaped beam pattern that can be tuned to match the surface plasmon resonance angle under a tight focusing condition, hence improving greatly the excitation efficiency of surface plasmon polaritons, and eventually the sensitivity of gap mode SERS. Such kind of enhanced-Raman system with a PRP beam has a great potential on the applications such as single molecule Raman detection.

  相似文献   

3.
Results are presented from studies of a two-beam scheme of ion acceleration by a high-frequency field excited by an electron beam due to the instabilities associated with anomalous and normal Doppler effects. The dynamics of the excitation of eigenmodes in a periodic slow wave structure (SWS) by a relativistic electron beam via the anomalous Doppler effect is investigated theoretically. Mechanisms for the saturation of the instability are considered, analytical expressions for the maximum field amplitude and the efficiency with which the energy of beam electrons is converted into the energy of the excited wave are derived, and the results of numerical simulations of such excitation are presented. An experimental stand designed to test the principles and possibility of proton acceleration up to an energy of 8 MeV at a current up to 3 A is described. A double resonance (associated with anomalous and normal Doppler effects) occurring in the interaction of an electron beam with a helical SWS is studied experimentally. In this case, an increase in the efficiency with which the accelerating high-frequency field is excited is observed.  相似文献   

4.
The simultaneous excitation of a paramagnetic sample with optical (laser) and microwave radiation can cause an amplitude or phase modulation of the transmitted light at the microwave frequency. The detection of this modulation indicates the presence of coupled optical and electron paramagnetic resonance (EPR) transitions in the sample. Here we report the first application of this technique to a biomolecule: the blue copper centre of Pseudomonas aeruginosa azurin. Using optical excitation at 686 nm, in the thiol to copper(II) charge transfer band, we measure a coherent Raman-detected EPR spectrum of a frozen aqueous solution. Its lineshape is characteristic of the magnetic circular dichroism along each principal g-value axis. This information allows electronic and structural models of transition metal ion centres in proteins to be tested.  相似文献   

5.
Abstract

Poly(dG-dC)?poly(dG-dC) at low salt concentration (0.1 M NaCl) and at high salt concentration (4.5 M NaCl) has been studied by Raman resonance spectroscopy using two excitation wavelengths: 257 nm and 295 nm. As resonance enhances the intensity of the lines in a proportion corresponding to the square of the molar absorption coefficient, the intensities of the lines with 295 nm wavelength excitation are enhanced about sevenfold during the B to Z transition.

With 257 nm excitation wavelength the 1580 cm?1 line of guanosine is greatly enhanced in the Z form whereas with 295 nm excitation several lines are sensitive to the modifications of the conformation: the guanine band around 650 cm?1 and at 1193 cm?1 and the bands of the cytosines at 780 cm?1, 1242 cm?1 and 1268 cm?1.

By comparison with the U.V. resonance Raman spectra of DNA, we conclude that resonance Raman spectroscopy allows one to characterize the B to Z transition from one line with 257 nm excitation wavelength and from three lines with 295 nm excitation. The conjoined study of these four lines should permit to observe a few base pairs being in Z form in a DNA.  相似文献   

6.
Vibrations in living environments are generally distributed over a wide frequency spectrum and exhibit multiple motion directions over time, which renders most of the current vibration energy harvesters unpractical for their harvesting purposes. Here, a 3D triboelectric nanogenerator (3D‐TENG) is designed based on the coupling of the triboelectrification effect and the electrostatic induction effect. The 3D‐TENG operates in a hybridization mode of conjuntioning the vertical contact‐separation mode and the in‐plane sliding mode. The innovative design facilitates harvesting random vibrational energy in multiple directions over a wide bandwidth. An analytical model is established to investigate the mechano‐triboelectric transduction of 3D‐TENG and the results agree well with experimental data. The 3D‐TENG is able to harvest ambient vibrations with an extremely wide working bandwidth. Maximum power densities of 1.35 W m‐2 and 1.45 W m‐2 are achieved under out‐of‐plane and in‐plane excitation, respectively. The 3D TENG is designed for harvesting ambient vibration energy, especially at low frequencies, under a range of conditions in daily life and has potential applications in environmental/infrastructure monitoring and charging portable electronics.  相似文献   

7.
In this paper, we establish the existence of travelling wave solution to an intrinsically non-linear differential–integral equation formed as a result of mathematical modelling of the evolution of an asexual population in a changing environment. This equation is first converted to a non-linear integral equation. The discretization and manipulation of the corresponding eigenvalue problem allows us to use the theory of positive matrices to get some very useful estimates and then to confirm the existence of solution. We also exhibit numerical simulation results and explain the biological meaning of the results.  相似文献   

8.
We describe measurements of lateral diffusion in membranes using resonance energy transfer. The donor was a rhenium (Re) metal-ligand complex lipid, which displays a donor decay time near 3 micros. The long donor lifetime resulted in an ability to measure lateral diffusion coefficient below 10(-8) cm(2)/s. The donor decay data were analyzed using a new numerical algorithm for calculation of resonance energy transfer for donors and acceptors randomly distributed in two dimensions. An analytical solution to the diffusion equation in two dimensions is not known, so the equation was solved by the relaxation method in Laplace space. This algorithm allows the donor decay in the absence of energy transfer to be multiexponential. The simulations show that mutual lateral diffusion coefficients of the donor and acceptor on the order of 10(-8) cm(2)/s are readily recovered from the frequency-domain data with donor decay times on the microsecond timescale. Importantly, the lateral diffusion coefficients and acceptor concentrations can be recovered independently despite correlation between these parameters. This algorithm was tested and verified using the donor decays of a long lifetime rhenium lipid donor and a Texas red-lipid acceptor. Lateral diffusion coefficients ranged from 4.4 x 10(-9) cm(2)/s in 1,2-dimyristoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DMPG) at 10 degrees C to 1.7 x 10(-7) cm(2)/s in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) at 35 degrees C. These results demonstrated the possibility of direct measurements of lateral diffusion coefficients using microsecond decay time luminophores.  相似文献   

9.
We show that DNA carrying 5-methylcytosine modifications or methylated DNA (m-DNA) can be distinguished from DNA with unmodified cytosine by Raman spectroscopy enhanced by both a bowtie nanoantenna and excitation resonance. In particular, m-DNA can be identified by a peak near 1000 cm?1 and changes in the Raman peaks in the 1200–1700 cm?1 band that are enhanced by the ring-absorption resonance. The identification is robust to the use of resonance Raman and nanoantenna excitation used to obtain significant signal improvement. The primary differences are three additional Raman peaks with methylation at 1014, 1239, and 1639 cm?1 and spectral intensity inversion at 1324 (C5=C6) and 1473 cm?1 (C4=N3) in m-DNA compared to that of DNA with unmodified cytosine. We attribute this to the proximity of the methyl group to the antenna, which brings the (C5=C6) mode closer to experiencing a stronger near-field enhancement. We also show distinct Raman spectral features attributed to the transition of DNA from a hydrated state, when dissolved, to a dried/denatured state. We observe a general broadening of the larger lines and a transfer of spectral weight from the ~1470 cm?1 vibration to the two higher-energy lines of the dried m-DNA solution. We attribute the new spectral characteristics to DNA softening under high salt conditions and find that the m-DNA is still distinguishable via the ~1000 cm?1 peak and distribution of the signal in the 1200–1700 cm?1 band. The nanoantenna gain exceeds 20,000, whereas the real signal ratio is much less because of a low average enhanced region occupancy even with these relatively high DNA concentrations. It is improved when fixed DNA in a salt crystal lies near the nanoantenna. The Raman resonance gain profile is consistent with A-term expectations, and the resonance is found at ~259 nm excitation wavelength.  相似文献   

10.
《IRBM》2009,30(4):168-170
Magnetic resonance elastography (MRE) is typically performed using harmonic shear vibrations. We are investigating a new approach in which transient shear waves are induced by the radiation force of an ultrasound beam. This technique can induce the vibration directly inside the organ under examination.  相似文献   

11.
Time-resolved fluorescence anisotropy spectroscopy has been used to study the chlorophyll a (Chl a) to Chl a excitation energy transfer in the water-soluble peridinin-chlorophyll a-protein (PCP) of the dinoflagellate Amphidinium carterae. Monomeric PCP binds eight peridinins and two Chl a. The trimeric structure of PCP, resolved at 2 A (, Science. 272:1788-1791), allows accurate calculations of energy transfer times by use of the F?rster equation. The anisotropy decay time constants of 6.8 +/- 0.8 ps (tau(1)) and 350 +/- 15 ps (tau(2)) are respectively assigned to intra- and intermonomeric excitation equilibration times. Using the ratio tau(1)/tau(2) and the amplitude of the anisotropy, the best fit of the experimental data is achieved when the Q(y) transition dipole moment is rotated by 2-7 degrees with respect to the y axis in the plane of the Chl a molecule. In contrast to the conclusion of, Biochemistry. 23:1564-1571) that the refractive index (n) in the F?rster equation should be equal to that of the solvent, n can be estimated to be 1.6 +/- 0.1, which is larger than that of the solvent (water). Based on our observations we predict that the relatively slow intermonomeric energy transfer in vivo is overruled by faster energy transfer from a PCP monomer to, e.g., the light-harvesting a/c complex.  相似文献   

12.
Aromatic amino-acid side chains are essential components for the structure and function of proteins. We present herein a set of NMR experiments for time-efficient resonance assignment of histidine and tyrosine side chains in uniformly 13C/15N-labeled proteins. The use of band-selective 13C pulses allows to deal with linear chains of coupled spins, thus avoiding signal loss that occurs in branched spin systems during coherence transfer. Furthermore, our pulse schemes make use of longitudinal 1H relaxation enhancement, Ernst-angle excitation, and simultaneous detection of 1H and 13C steady-state polarization to achieve significant signal enhancements.  相似文献   

13.
BACKGROUND: Ultrasound/microbubble-mediated gene delivery has the potential to be targeted to tissue deep in the body by directing the ultrasound beam following vector administration. Application of this technology would be minimally invasive and benefit from the widespread clinical experience of using ultrasound and microbubble contrast agents. In this study we evaluate the targeting ability and spatial distribution of gene delivery using focused ultrasound. METHODS: Using a custom-built exposure tank, Chinese hamster ovary cells in the presence of SonoVue microbubbles and plasmid encoding beta-galactosidase were exposed to ultrasound in the focal plane of a 1 MHz transducer. Gene delivery and cell viability were subsequently assessed. Characterisation of the acoustic field and high-resolution spatial analysis of transfection were used to examine the relationship between gene delivery efficiency and acoustic pressure. RESULTS: In contrast to that seen in the homogeneous field close to the transducer face, gene delivery in the focal plane was concentrated on the ultrasound beam axis. Above a minimum peak-to-peak value of 0.1 MPa, transfection efficiency increased as acoustic pressure increased towards the focus, reaching a maximum above 1 MPa. Delivery was microbubble-dependent and cell viability was maintained. CONCLUSIONS: Gene delivery can be targeted using focused ultrasound and microbubbles. Since delivery is dependent on acoustic pressure, the degree of targeting can be determined by appropriate transducer design to modify the ultrasound field. In contrast to other physical gene delivery approaches, the non-invasive targeting ability of ultrasound makes this technology an attractive option for clinical gene therapy.  相似文献   

14.
A living cell is viewed as a system of biochemical reaction pathways which are self- and mutually-regulating. A matrix differential equation is proposed which governs the system behavior. A periodic boundary condition is introduced which allows the equation to be solved for its eigenvalues and eigenvectors. The nature of the solution is such that a set of coordinates representing strongly interacting chemical populations is converted into a set of collective coordinates representing weakly interacting oscillatory modes. The modes are travelling waves which transport matter through an open loop and information through a closed loop. The validity of the model is examined, as is the relation to other models of the cellular regulatory apparatus. An experiment is outlined which should detect these modes if they are present in living cells. The main impediment to their detection is nonlinearity, which produces decay of the modes. Several predictions of the model may be associated with specific cellular attributes. The “growth mode” belongs to zero frequency. An unstable mode acts like a switch causing a cell to enter a new phase. Cell division is seen as such a phase transition. Although there is discontinuity in the global aspect (one cell becoming two), there is still a slow variation in chemical concentrations, in keeping with biochemical evidence.  相似文献   

15.
经颅聚焦超声是一种有效的神经调控技术,具有非侵入性、聚焦靶点多和焦点可调控等优势。但由于颅骨的强声衰减和非均质特性,聚焦超声经颅后存在焦点偏移、焦域能量不足以及颅骨烫伤等问题。多阵元超声相控阵可以修正超声经颅后的相位偏差和幅值衰减,实现准确、有效的颅内聚焦。本文首先介绍了换能器的阵元排布方式,进一步归纳了相控阵激励信号的调控方法,最后对其基础研究和临床应用进行了回顾与展望。  相似文献   

16.
We report the employment of an optical window between 1600 nm and 1850 nm for bond‐selective deep tissue imaging through harmonic vibrational excitation and acoustic detection of resultant pressure waves. In this window where a local minimum of water absorption resides, we found a 5 times enhancement of photoacoustic signal by first overtone excitation of the methylene group CH2 at 1730 nm, compared to the second overtone excitation at 1210 nm. The enhancement allows 3D mapping of intramuscular fat with improved contrast and of lipid deposition inside an atherosclerotic artery wall in the presence of blood. Moreover, lipid and protein are differentiated based on the first overtone absorption profiles of CH2 and methyl group CH3 in this window. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
18.
A general mathematical model is proposed that is based on the Vlasov kinetic equation with a self-consistent field and describes the nonlinear dynamics of the electromagnetic instabilities of a relativistic electron beam in a spatially bounded plasma. Two limiting cases are analyzed, namely, high-frequency (HF) and low-frequency (LF) instabilities of a relativistic electron beam, of which the LF instability is a qualitatively new phenomenon in comparison with the known Cherenkov resonance effects. For instabilities in the regime of the collective Cherenkov effect, the equations containing cubic nonlinearities and describing the nonlinear saturation of the instabilities of a relativistic beam in a plasma are derived by using the methods of expansion in small perturbations of the trajectories and momenta of the beam electrons. Analytic expressions for the amplitudes of the interacting beam and plasma waves are obtained. The analytical results are shown to agree well with the exact solutions obtained numerically from the basic general mathematical model of the instabilities in question. The general mathematical model is also used to discuss the effects associated with variation in the constant component of the electron current in a beam-plasma system.  相似文献   

19.
To develop an analytical system for single-nucleotide polymorphisms (SNPs), the fluorescence resonance energy transfer (FRET) technique was employed on a bacterial magnetic particle (BMP) surface. A combination of fluorescein isothiocyanate (FITC; excitation 490 nm/emission 520 nm) labeled at the 5' end of DNA and an intercalating compound (POPO-3, excitation 534 nm/emission 570 nm) was used to avoid the interference from light scattering caused by nanoparticles. After hybridization between target DNA immobilized onto BMPs and FITC-labeled probes, fluorescence from POPO-3, which was excited by the energy from the FITC, was detected. The major homozygous (ALDH2*1), heterozygous (ALDH2*1/*2), and minor homozygous (ALDH2*2) genotypes in the blood samples were discriminated by this method. The assay described herein allows for a simple and rapid SNP analysis using a fully automated system.  相似文献   

20.
The effect of the magnetospheric MHD cavity on the excitation of the magnetosphere by stochastic and unsteady hydromagnetic waves incident from the solar wind is investigated theoretically by using a one-dimensional nonuniform model of the medium. It is shown that most of the energy of stochastic waves is reflected from the magnetopause and that the only waves that penetrate into the magnetosphere are those with frequencies in narrow spectral ranges near the eigenfrequencies of the cavity. These waves lead to steadystate excitation of the eigenmodes of the cavity, the energy of which is determined by the spectral density of the energy flux of the incident waves at the corresponding eigenfrequencies. The energy of the eigenmodes penetrates through the opacity barrier in the vicinity of the Alfvén resonance points (each corresponding to a particular mode), where the perturbation amplitude is sharply amplified, so the total energy localized close to the Alfvén resonance point is much higher than the total energy of the corresponding eigenmode. In the vicinities, the perturbation energy is dissipated by the finite conductivity of the ionosphere, the dissipation power being equal to the energy flux of the incident waves that penetrates into the magnetosphere. The case of unsteady waves is analyzed by considering a wave pulse as an example. It is shown that most of the energy of the wave pulse is reflected from the magnetopause. The portion of the incident perturbation that penetrates into the magnetosphere leads to unsteady excitation of the eigenmodes of the magnetospheric cavity, which are then slowly damped because part of the energy of the cavity is emitted through the magnetopause back to the solar wind while the other part penetrates into the vicinities of the Alfvén resonance points. In the vicinities, the perturbation is an Alfvén wave standing between magnetically conjugate ionospheres and its energy is dissipated by the finite conductivity of the ionosphere at a rate slower than the damping rate of the eigenmodes of the cavity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号