首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The indolequinone ES936 (5-methoxy-1,2-dimethyl-3-[(4-nitrophenol)methyl]-indole-4,7-dione) is a potent mechanism-based inhibitor of NAD(P)H:quinone oxidoreductase 1 (NQO1). Here, we report that ES936 significantly stimulated thymidine incorporation in sparse cultures of human adenocarcinoma HeLa cells, but was without effect in dense cultures. Stimulation of DNA synthesis was not related with a DNA repair response because an increase in thymidine incorporation was not observed in cells treated with 2,5 bis-[1-aziridyl]-1,4 benzoquinone, a well-established antitumor quinone that causes DNA damage. Conversely, it was related with an increase of cell growth. NQO1 inhibition was not involved in ES936 stimulation of DNA synthesis, because the same response was observed in cells where NQO1 expression had been knocked down by small interfering RNA. Stimulation of DNA synthesis was reverted by treatment with ambroxol, a SOD mimetic, and by pyruvate, an efficient peroxide scavenger, supporting the involvement of alterations in cellular redox state. Pharmacological inhibition of p38 with either SB203580 or PD169316 completely abolished ES936-stimulated DNA synthesis, indicating the requirement of p38 activity. This is the first report that demonstrates the existence of an ES936-sensitive system which is separate from NQO1, modulating the redox state and cell growth in HeLa cells through a p38-dependent mechanism. Our results show that the effect ES936 exerts on DNA synthesis may be either positive or negative depending on the cellular context and growth conditions.  相似文献   

2.
NAD(P)H:quinone oxidoreductase 1 (NQO1) is an FAD containing quinone reductase that catalyzes the 2-electron reduction of a broad range of quinones. The 2-electron reduction of quinones to hydroquinones by NQO1 is believed to be a detoxification process since this reaction bypasses the formation of the highly reactive semiquinone. NQO1 is expressed at high levels in normal epithelium, endothelium and adipocytes as well as in many human solid tumors. In addition to its function as a quinone reductase NQO1 has been shown to reduce superoxide and regulate the 20 S proteasomal degradation of proteins including p53. Biochemical studies have indicated that NQO1 is primarily located in the cytosol, however, lower levels of NQO1 have also been found in the nucleus. In these studies we demonstrate using immunocytochemistry and confocal imaging that NQO1 was found associated with mitotic spindles in cells undergoing division. The association of NQO1 with the mitotic spindles was observed in many different human cell lines including nontransformed cells (astrocytes, HUVEC) immortalized cell lines (HBMEC, 16HBE) and cancer (pancreatic adenocarcinoma, BXPC3). Confocal analysis of double-labeling experiments demonstrated co-localization of NQO1with alpha-tubulin in mitotic spindles. In studies with BxPc-3 human pancreatic cancer cells the association of NQO1 with mitotic spindles appeared to be unchanged in the presence of NQO1 inhibitors ES936 or dicoumarol suggesting that NQO1 can associate with the mitotic spindle and still retain catalytic activity. Analysis of archival human squamous lung carcinoma tissue immunostained for NQO1 demonstrated positive staining for NQO1 in the spindles of mitotic cells. The purpose of this study is to demonstrate for the first time the association of the quinone reductase NQO1 with the mitotic spindle in human cells.  相似文献   

3.
Asher G  Dym O  Tsvetkov P  Adler J  Shaul Y 《Biochemistry》2006,45(20):6372-6378
NAD(P)H quinone oxidoreductase 1 (NQO1) is a ubiquitous flavoenzyme that catalyzes two-electron reduction of quinones to hydroquinones utilizing NAD(P)H as an electron donor. NQO1 binds and stabilizes several short-lived proteins including the tumor suppressors p53 and p73 and the enzyme ornithine decarboxylase (ODC). Dicoumarol is a widely used potent competitive inhibitor of NQO1 enzymatic activity, which competes with NAD(P)H for binding to NQO1. Dicoumarol also disrupts the binding of NQO1 to p53, p73, and ODC and induces their ubiquitin-independent proteasomal degradation. We report here the crystal structure of human NQO1 in complex with dicoumarol at 2.75 A resolution. We have identified the interactions of dicoumarol with the different residues of NQO1 and the conformational changes imposed upon dicoumarol binding. The most prominent conformational changes that occur in the presence of dicoumarol involve Tyr 128 and Phe 232 that are present on the surface of the NQO1 catalytic pocket. On the basis of the comparison of the NQO1 structure in complex with different NQO1 inhibitors and our previous analysis of NQO1 mutants, we propose that the specific conformation of Tyr 128 and Phe 232 is important for NQO1 interaction with p53 and other client proteins.  相似文献   

4.
NAD(P)H:quinone oxidoreductase 1 (NQO1) is currently an emerging target in pancreatic cancer. In this report, we describe a series of indolequinones, based on 5-methoxy-1,2-dimethyl-3-[(4-nitrophenoxy)methyl]indole-4,7-dione (ES936), and evaluate NQO1 inhibition and growth inhibitory activity in the human pancreatic MIA PaCa-2 tumor cell line. The indolequinones with 4-nitrophenoxy, 4-pyridinyloxy, and acetoxy substituents at the (indol-3-yl)methyl position were NADH-dependent inhibitors of recombinant human NQO1, indicative of mechanism-based inhibition. However, those with hydroxy and phenoxy substituents were poor inhibitors of NQO1 enzyme activity, due to attenuated elimination of the leaving group. The ability of this series of indolequinones to inhibit recombinant human NQO1 correlated with NQO1 inhibition in MIA PaCa-2 cells. The examination of indolequinone interactions in complex with NQO1 from computational-based molecular docking simulations supported the observed biochemical data with respect to NQO1 inhibition. The design of both NQO1-inhibitory and noninhibitory indolequinone analogues allowed us to test the hypothesis that NQO1 inhibition was required for growth inhibitory activity in MIA PaCa-2 cells. ES936 and its 6-methoxy analogue were potent inhibitors of NQO1 activity and cell proliferation; however, the 4-pyridinyloxy and acetoxy compounds were also potent inhibitors of NQO1 activity but relatively poor inhibitors of cell proliferation. In addition, the phenoxy compounds, which were not inhibitors of NQO1 enzymatic activity, demonstrated potent growth inhibition. These data demonstrate that NQO1 inhibitory activity can be dissociated from growth inhibitory activity and suggest additional or alternative targets to NQO1 that are responsible for the growth inhibitory activity of this series of indolequinones in human pancreatic cancer.  相似文献   

5.
NAD(P)H:quinone oxidoreductase 1 (NQO1) is a flavoprotein that utilizes NAD(P)H as an electron donor, catalyzing the two-electron reduction and detoxification of quinones and their derivatives. NQO1-/- mice deficient in NQO1 activity and protein were generated in our laboratory (Rajendirane, V., Joseph, P., Lee, Y. H., Kimura, S., Klein-Szanto, A. J. P., Gonzalez, F. J., and Jaiswal, A. K. (1998) J. Biol. Chem. 273, 7382-7389). Mice lacking a functional NQO1 gene (NQO1-/-) were born normal and reproduced adeptly as the wild-type NQO1+/+ mice. In the present report, we show that NQO1-/- mice exhibit significantly lower levels of abdominal adipose tissue as compared with the wild-type mice. The NQO1-/- mice showed lower blood levels of glucose, no change in insulin, and higher levels of triglycerides, beta-hydroxy butyrate, pyruvate, lactate, and glucagon as compared with wild-type mice. Insulin tolerance test demonstrated that the NQO1-/- mice are insulin resistant. The NQO1-/- mice livers also showed significantly higher levels of triglycerides, lactate, pyruvate, and glucose. The liver glycogen reserve was found decreased in NQO1-/- mice as compared with wild-type mice. The livers and kidneys from NQO1-/- mice also showed significantly lower levels of pyridine nucleotides but an increase in the reduced/oxidized NAD(P)H:NAD(P) ratio. These results suggested that loss of NQO1 activity alters the intracellular redox status by increasing the concentration of NAD(P)H. This leads to a reduction in pyridine nucleotide synthesis and reduced glucose and fatty acid metabolism. The alterations in metabolism due to redox changes result in a significant reduction in the amount of abdominal adipose tissue.  相似文献   

6.
The mechanism of cell cycle arrest of tumor cells induced by ganoderic acid Me (GA-Me) is not understood. In this work, GA-Me was found to possess remarkable cytotoxicity on highly metastatic lung carcinoma 95-D cell line in both dose- and time-dependent manners. The effect of GA-Me on cell cycle arrest was found in 95-D, p53-null lung cancer cells H1299, HCT-116 p53+/+ and HCT-116 p53?/? human colon cancer cells. To obtain an insight into the role of p53 in cell cycle arrest by GA-Me, 95-D, H1299, HCT-116 p53+/+ and HCT-116 p53?/? cells were used for further investigation. GA-Me arrested cell cycle at G1 phase in 95-D and HCT-116 p53+/+ cells while S phase or G1/S transition arrest in H1299 and HCT-116 p53?/? cells. The results suggested that p53 may be a target of GA-Me, and it may be looked at as a new promising candidate for the treatment of carcinoma cells.  相似文献   

7.
8.
Accumulative experimental evidence suggests feasibility of chemotherapeutic intervention targeting human cancer cells by pharmacological modulation of cellular oxidative stress. Current efforts aim at personalization of redox chemotherapy through identification of predictive tumour genotypes and redox biomarkers. Based on earlier research demonstrating that anti-melanoma activity of the pro-oxidant 2,6-dichlorophenolindophenol (DCPIP) is antagonized by cellular NAD(P)H:quinone oxidoreductase (NQO1) expression, this study tested DCPIP as a genotype-directed redox chemotherapeutic targeting homozygous NQO1*2 breast carcinoma, a common missense genotype [rs1800566 polymorphism; NP_000894.1:p.Pro187Ser] encoding a functionally impaired NQO1 protein. In a panel of cultured breast carcinoma cell lines and NQO1-transfectants with differential NQO1 expression levels, homozygous NQO1*2 MDA-MB231 cells were hypersensitive to DCPIP-induced caspase-independent cell death that occurred after early onset of oxidative stress with glutathione depletion and loss of genomic integrity. Array analysis revealed upregulated expression of oxidative (GSTM3, HMOX1, EGR1), heat shock (HSPA6, HSPA1A, CRYAB) and genotoxic stress response (GADD45A, CDKN1A) genes confirmed by immunoblot detection of HO-1, Hsp70, Hsp70B', p21 and phospho-p53 (Ser15). In a murine xenograft model of human homozygous NQO1*2-breast carcinoma, systemic administration of DCPIP displayed significant anti-tumour activity, suggesting feasibility of redox chemotherapeutic intervention targeting the NQO1*2 genotype.  相似文献   

9.
The goal was to determine whether endogenous cytosolic NAD(P)H:quinone oxidoreductase 1 (NQO1) preferentially uses NADPH or NADH in intact pulmonary arterial endothelial cells in culture. The approach was to manipulate the redox status of the NADH/NAD(+) and NADPH/NADP(+) redox pairs in the cytosolic compartment using treatment conditions targeting glycolysis and the pentose phosphate pathway alone or with lactate, and to evaluate the impact on the intact cell NQO1 activity. Cells were treated with 2-deoxyglucose, iodoacetate, or epiandrosterone in the absence or presence of lactate, NQO1 activity was measured in intact cells using duroquinone as the electron acceptor, and pyridine nucleotide redox status was measured in total cell KOH extracts by high-performance liquid chromatography. 2-Deoxyglucose decreased NADH/NAD(+) and NADPH/NADP(+) ratios by 59 and 50%, respectively, and intact cell NQO1 activity by 74%; lactate restored NADH/NAD(+), but not NADPH/NADP(+) or NQO1 activity. Iodoacetate decreased NADH/NAD(+) but had no detectable effect on NADPH/NADP(+) or NQO1 activity. Epiandrosterone decreased NQO1 activity by 67%, and although epiandrosterone alone did not alter the NADPH/NADP(+) or NADH/NAD(+) ratio, when the NQO1 electron acceptor duroquinone was also present, NADPH/NADP(+) decreased by 84% with no impact on NADH/NAD(+). Duroquinone alone also decreased NADPH/NADP(+) but not NADH/NAD(+). The results suggest that NQO1 activity is more tightly coupled to the redox status of the NADPH/NADP(+) than NADH/NAD(+) redox pair, and that NADPH is the endogenous NQO1 electron donor. Parallel studies of pulmonary endothelial transplasma membrane electron transport (TPMET), another redox process that draws reducing equivalents from the cytosol, confirmed previous observations of a correlation with the NADH/NAD(+) ratio.  相似文献   

10.
《Free radical research》2013,47(3):276-292
Abstract

Accumulative experimental evidence suggests feasibility of chemotherapeutic intervention targeting human cancer cells by pharmacological modulation of cellular oxidative stress. Current efforts aim at personalization of redox chemotherapy through identification of predictive tumour genotypes and redox biomarkers. Based on earlier research demonstrating that anti-melanoma activity of the pro-oxidant 2,6-dichlorophenolindophenol (DCPIP) is antagonized by cellular NAD(P)H:quinone oxidoreductase (NQO1) expression, this study tested DCPIP as a genotype-directed redox chemotherapeutic targeting homozygous NQO1*2 breast carcinoma, a common missense genotype [rs1800566 polymorphism; NP_000894.1:p.Pro187Ser] encoding a functionally impaired NQO1 protein. In a panel of cultured breast carcinoma cell lines and NQO1-transfectants with differential NQO1 expression levels, homozygous NQO1*2 MDA-MB231 cells were hypersensitive to DCPIP-induced caspase-independent cell death that occurred after early onset of oxidative stress with glutathione depletion and loss of genomic integrity. Array analysis revealed upregulated expression of oxidative (GSTM3, HMOX1, EGR1), heat shock (HSPA6, HSPA1A, CRYAB) and genotoxic stress response (GADD45A, CDKN1A) genes confirmed by immunoblot detection of HO-1, Hsp70, Hsp70B’, p21 and phospho-p53 (Ser15). In a murine xenograft model of human homozygous NQO1*2-breast carcinoma, systemic administration of DCPIP displayed significant anti-tumour activity, suggesting feasibility of redox chemotherapeutic intervention targeting the NQO1*2 genotype.  相似文献   

11.
We report the characterization of 5-methoxy-1,2-dimethyl-3-[(4-nitrophenoxy)methyl]indole-4,7-dione (ES936) as a mechanism-based inhibitor of NQO1. Inactivation of NQO1 by ES936 was time- and concentration-dependent and required the presence of a pyridine nucleotide cofactor consistent with a need for metabolic activation. That ES936 was an efficient inhibitor was demonstrated in these studies by the low partition ratio (1.40 +/- 0.03). The orientation of ES936 in the active site of NQO1 was examined by X-ray crystallography and found to be opposite to that observed for other indolequinones acting as substrates. ES936 was oriented in such a manner that, after enzymatic reduction and loss of a nitrophenol leaving group, a reactive iminium species was located in close proximity to nucleophilic His 162 and Tyr 127 and Tyr 129 residues in the active site. To determine if ES936 was covalently modifying NQO1, ES936-treated protein was analyzed by electrospray ionization liquid chromatography/mass spectrometry (ESI-LC/MS). The control NQO1 protein had a mass of 30864 +/- 6 Da (n = 20, theoretical, 30868.6 Da) which increased by 217 Da after ES936 treatment (31081 +/- 7 Da, n = 20) in the presence of NADH. The shift in mass was consistent with adduction of NQO1 by the reactive iminium derived from ES936 (M + 218 Da). Chymotryptic digestion of the protein followed by LC/MS analysis located a tetrapeptide spanning amino acids 126-129 which was adducted with the reactive iminium species derived from ES936. LC/MS/MS analysis of the peptide fragment confirmed adduction of either Tyr 127 or Tyr 129 residues. This work demonstrates that ES936 is a potent mechanism-based inhibitor of NQO1 and may be a useful tool in defining the role of NQO1 in cellular systems and in vivo.  相似文献   

12.
13.
NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1) is a widely-distributed FAD-dependent flavoprotein that promotes obligatory 2-electron reductions of quinones, quinoneimines, nitroaromatics, and azo dyes, at rates that are comparable with NADH or NADPH. These reductions depress quinone levels and thereby minimize opportunities for generation of reactive oxygen intermediates by redox cycling, and for depletion of intracellular thiol pools. NQO1 is a highly-inducible enzyme that is regulated by the Keap1/Nrf2/ARE pathway. Evidence for the importance of the antioxidant functions of NQO1 in combating oxidative stress is provided by demonstrations that induction of NQO1 levels or their depletion (knockout, or knockdown) are associated with decreased and increased susceptibilities to oxidative stress, respectively. Furthermore, benzene genotoxicity is markedly enhanced when NQO1 activity is compromised. Not surprisingly, human polymorphisms that suppress NQO1 activities are associated with increased predisposition to disease. Recent studies have uncovered protective roles for NQO1 that apparently are unrelated to its enzymatic activities. NQO1 binds to and thereby stabilizes the important tumor suppressor p53 against proteasomal degradation. Indeed, NQO1 appears to regulate the degradative fate of other proteins. These findings suggest that NQO1 may exercise a selective “gatekeeping” role in regulating the proteasomal degradation of specific proteins, thereby broadening the cytoprotective role of NQO1 far beyond its highly effective antioxidant functions.  相似文献   

14.
To investigate the function of 15-lipoxygenase-1 (15-LOX-1) in human colorectal cancer, we overexpressed 15-LOX-1 in HCT-116 human colorectal cancer cells. Clones expressing the highest levels of 15-LOX-1 displayed reduced viability compared with the HCT-116-Vector control cells. Further, by cell cycle gene array analyses, the cyclin-dependent kinase inhibitor p21WAF1/CIP1 and MDM2 genes were up-regulated in 15-LOX-1-overexpressing cells. The induction of p21(WAF1/CIP1) and MDM2 were linked to activation of p53 by 15-LOX-1, as there was a dramatic induction of phosphorylated p53 (Ser15) in 15-LOX-1-overesxpressing cells. However, the 15-LOX-1 metabolites 13(S)-hydroxyoctadecadienoic acid and 15(S)-hydroxyeicosatetraenoic acid failed to induce phosphorylation of p53 at Ser15, and the 15-LOX-1 inhibitor PD146176 did not inhibit the phosphorylation of p53 at Ser15 in 15-LOX-1-overexpressing cells. Nonetheless, the growth-inhibitory effects of 15-LOX-1 were p53 dependent, as 15-LOX-1 overexpression had no effect on cell growth in p53 (-/-) HCT-116 cells. Finally, treatment of HCT-116-15-LOX-1 cells with different kinase inhibitors suggested that the effects of 15-LOX-1 on p53 phosphorylation and activation were due to effects on DNA-dependent protein kinase. Collectively, these findings suggest a new mechanism to explain the biological activity of 15-LOX-1, where 15-LOX plays a stoichiometric role in activating a DNA-dependent protein kinase-dependent pathway that leads to p53-dependent growth arrest.  相似文献   

15.
NQO1酶及其被氧环境诱导表达的研究进展   总被引:4,自引:0,他引:4  
NAD(P)H:醌氧化还原酶1(NQO1)是真核细胞内普遍存在的一类黄素蛋白酶,它专性催化胞内双电子还原反应,能够解除醌类物质对细胞的毒害,从而起到保护细胞的作用。同时,它又能活化一些醌类抗肿瘤药物。本文综述了NQO1的基因结构、多态性、功能和活性调节,以有它在包内氧化还原环境和肿瘤治疗中的地位等方面的研究进展。  相似文献   

16.
Objectives: This study was performed to explore the strategy of combining Chk1 inhibitors with ionizing radiation (IR) to selectively target p53‐deficient cancer cells. Materials and methods: Survival and cell cycle progression were measured in response to IR and the Chk1 inhibitors, UCN‐01 and CEP‐3891, in colon carcinoma HCT116 p53+/+ and p53?/? cells, and in osteosarcoma U2OS‐VP16 cells with conditional expression of dominant‐negative p53 (p53DD). Results: Clonogenic survival was selectively reduced in HCT116 p53?/? compared to p53+/+ cells after treatment with UCN‐01 and IR, and HCT116 p53+/+ cells also displayed strong p53‐dependent G1 arrest in the 1st cell cycle after IR. In contrast, clonogenic survival was affected similarly in U2OS‐VP16 cells with and without expression of p53DD. However, death of U2OS‐VP16 cells was p53 dependent as assessed by cell viability assay at 72 h, and this was associated with p53‐dependent G1 arrest in the 2nd cell cycle after treatment. Notably, HCT116 cells were overall more resistant than U2OS cells to cytotoxic effects of Chk1 inhibitors. Conclusion: Our results suggest that p53‐dependent G1 arrest in both 1st and 2nd cell cycles may protect human cancer cells from cell death after treatment with IR and Chk1 inhibitors. However, a challenge for future clinical use will be that different cancers display different intrinsic sensitivity to such inhibitors.  相似文献   

17.
We aimed to characterize the role of NAD(P)H:quinone oxidoreductase (NQO1) in apoptosis induction by antitumour quinones RH1 (2,5-diaziridinyl-3-hydroxymethyl-6-methyl-1,4-benzoquinone) and MeDZQ (2,5-dimethyl-3,6-diaziridinyl-1,4-benzoquinone). Digitonin-permeabilized FLK cells catalyzed NADPH-dependent single- and two-electron reduction of RH1 and MeDZQ. At equitoxic concentrations, RH1 and MeDZQ induced apoptosis more efficiently than the nonalkylating duroquinone or H(2)O(2). The antioxidant N,N'-diphenyl-p-phenylene diamine, desferrioxamine, and the inhibitor of NQO1 dicumarol, protected against apoptosis induction by all compounds investigated, but to a different extent. The results of multiparameter regression analysis indicate that RH1 and MeDZQ most likely induce apoptosis via NQO1-linked formation of alkylating species but not via NQO1-linked redox cycling.  相似文献   

18.
Nanosecond pulsed electric fields (nsPEFs) are ultrashort pulses with high electric field intensity (kV/cm) and high power (megawatts), but low energy density (mJ/cc). To determine roles for p53 in response to nsPEFs, HCT116 cells (p53+/+ and p53-/-) were exposed to nsPEF and analyzed for membrane integrity, phosphatidylserine externalization, caspase activation, and cell survival. Decreasing plasma membrane effects were observed in both HCT116p53+/+ and p53-/- cells with decreasing pulse durations and/or decreasing electric fields. However, addition of ethidium homodimer-1 and Annexin-V-FITC post-pulse demonstrated greater fluorescence in p53-/- versus p53+/+ cells, suggesting a postpulse p53-dependent biological effect at the plasma membrane. Caspase activity was significantly higher than nonpulsed cells only in the p53-/- cells. HCT116 cells exhibited greater survival in response to nsPEFs than HL-60 and Jurkat cells, but survival was more evident for HCT116p53+/+ cells than for HCT116p53-/- cells. These results indicate that nsPEF effects on HCT116 cells include (1) apparent direct electric field effects, (2) biological effects that are p53-dependent and p53-independent, (3) actions on mechanisms that originate at the plasma membranes and at intracellular structures, and (4) an apparent p53 protective effect. NsPEF applications provide a means to explore intracellular structures and functions that can reveal mechanisms in health and disease.  相似文献   

19.
20.
Altered redox signaling and regulation in cancer cells represent a chemical vulnerability that can be targeted by selective chemotherapeutic intervention. Here, we demonstrate that 3,7-diaminophenothiazinium-based redox cyclers (PRC) induce selective cancer cell apoptosis by NAD(P)H:quinone oxidoreductase (NQO1)-dependent bioreductive generation of cellular oxidative stress. Using PRC lead compounds including toluidine blue against human metastatic G361 melanoma cells, apoptosis occurred with phosphatidylserine externalization, loss of mitochondrial transmembrane potential, cytochrome c release, caspase-3 activation, and massive ROS production. Consistent with reductive activation and subsequent redox cycling as the mechanism of PRC cytotoxicity, coincubation with catalase achieved cell protection, whereas reductive antioxidants enhanced PRC cytotoxicity. Unexpectedly, human A375 melanoma cells were resistant to PRC-induced apoptosis, and PRC-sensitive G361 cells were protected by preincubation with the NQO1 inhibitor dicoumarol. Indeed, NQO1 specific enzymatic activity was 9-fold higher in G361 than in A375 cells. The critical role of NQO1 in PRC bioactivation and cytotoxicity was confirmed, when NQO1-transfected breast cancer cells (MCF7-DT15) stably overexpressing active NQO1 displayed strongly enhanced PRC sensitivity as compared to vector control-transfected cells with baseline NQO1 activity. Based on the known overexpression of NQO1 in various tumors these findings suggest the feasibility of developing PRC lead compounds into tumor-selective bioreductive chemotherapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号