首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chlorella ellipsoidea is a single-celled eukaryotic green microalgae with high nutritional value. Its value may be further increased if a simple, reliable and cost-effective transformation method for C. ellipsoidea can be developed. In this paper, we describe a novel transformation method for C. ellipsoidea . This system is based on treatment of C. ellipsoidea cells with cellulolytic enzymes to weaken their cell walls, making them become competent to take up foreign DNA. To demonstrate the usefulness and effectiveness of this method, we treated C. ellipsoidea cells with a cell wall-degrading enzyme, cellulase, followed by transformation with plasmid pSP-Ubi-GUS harbouring both the zeocin resistance gene and the beta-glucuronidase (GUS) reporter gene that serve as selective makers for transformation. Transformants were readily obtained on zeocin selection medium, reaching transformation efficiency of 2.25 × 103 transformants/μg of plasmid DNA. PCR analysis has also demonstrated the presence of the GUS reporter gene in the zeocin-resistant transformants. Histochemical assays further showed the expression of the GUS activity in both primary transformants and transformants after long-term growth (10 months) with antibiotic selection on and off. Availability of a simple and efficient transformation system for C. ellipsoidea will accelerate the exploration of this microalga for a broader range of biotechnological applications, including its use as a biologic factory for the production of high-value human therapeutic proteins.  相似文献   

2.
The lack of high-efficiency transformation systems has severely impeded genetic research on methanogenic members of the kingdom Archaeobacteria. By using protoplasts of Methanococcus voltae and an integration vector, Mip1, previously shown to impart puromycin resistance, we obtained natural transformation frequencies that were about 80-fold higher (705 transformants per μg of transforming DNA) than that reported with whole cells. Electroporation-mediated transformation of M. voltae protoplasts with covalently closed circular Mip1 DNA was possible, but at lower frequencies of ca. 177 transformants per μg of vector DNA. However, a 380-fold improvement (3,417 transformants per μg of DNA) over the frequency of natural transformation with whole cells was achieved by electroporation of protoplasts with linearized DNA. This general approach, of using protoplasts, should allow the transformation of other methanogens, especially those that may be gently converted to protoplasts as a result of their tendency to lyse in hypotonic solutions.  相似文献   

3.
Trichoderma harzianum is a soil-borne filamentous fungus that exhibits biological control properties because it parasitizes a large variety of phytopathogenic fungi. In this study the SOD gene was successfully transferred into the bio-control fungus Trichoderma harzianum with an efficiency of 60–110 transformants per 107 spores by using Agrobacterium tumefaciens-mediated transformation. Putative transformants were analyzed to test the transformation by the southern blot. Antifungal activities of the transformants were examined under abiotic stresses. The transformants were exposed to 40°C for three days and 2 mol/l NaCl at 27°C for 5–10 days to assay antifungal activities with Sclerotinia sclerotiorum. The inhibition rates of the transformants, comparing to Trichoderma harzianum with no SOD gene transferred, were respectively 83.96% after 40°C and 60.13% after 2 mol/l NaCl. The results showed that the SOD transformants had significantly higher resistance to heat and salt stress.  相似文献   

4.
Transformation-mediated mutagenesis in both targeted and random manners has been widely applied to decipher gene function in diverse fungi. However, a transformation system has not yet been established for lichen fungi, severely limiting our ability to study their biology and mechanism underpinning symbiosis via gene manipulation. Here, we report the first successful transformation of the lichen fungus, Umbilicaria muehlenbergii, via the use of Agrobacterium tumefaciens. We generated a total of 918 transformants employing a binary vector that carries the hygromycin B phosphotransferase gene as a selection marker and the enhanced green fluorescent protein gene for labeling transformants. Randomly selected transformants appeared mitotically stable, based on their maintenance of hygromycin B resistance after five generations of growth without selection. Genomic Southern blot showed that 88% of 784 transformants contained a single T-DNA insert in their genome. A number of putative mutants affected in colony color, size, and/or morphology were found among these transformants, supporting the utility of Agrobacterium tumefaciens-mediated transformation (ATMT) for random insertional mutagenesis of U. muehlenbergii. This ATMT approach potentially offers a systematic gene functional study with genome sequences of U. muehlenbergii that is currently underway.  相似文献   

5.
Valsa mali var. mali (Vmm), which is the causative agent of Valsa canker of apple tree, causes heavy damage to apple production in eastern Asia. In this article, we report Agrobacterium tumefaciens-mediated transformation (ATMT) of Vmm and expression of gfp (green fluorescent protein) in this fungus. The transformation system was optimized to a transformation efficiency of approximately 150 transformants/106 conidia, and a library containing over 4,000 transformants was generated. The tested transformants were mitotically stable. One hundred percent hph (hygromycin B phosphotransferase) integration into Vmm was identified by PCR and five single-copy integration of T-DNA was detected in the eighteen transformants by Southern blot. To our knowledge, this is the first report of ATMT of Vmm. Furthermore, this library has been used to identify genes involved in the virulence of the pathogen, and the transformation system may also be useful to the transformation of other species of the genus Valsa.  相似文献   

6.
We have investigated transformation with heterologous DNA as a method for insertional mutagenesis of Aspergillus fumigatus. Two methods, polyethylene glycol-mediated transformation of protoplasts and electroporation of germinating spores, were used to establish conditions leading to single-copy integration of transforming DNA at different genomic sites. We have assessed the effect of restriction enzyme-mediated integration (REMI) for both methods. Non-REMI protoplast transformation led to integration of multiple copies of transforming DNA in the majority of transformants. Results of REMI with protoplast transformation varied depending on the enzyme used. Low concentrations of several restriction enzymes stimulated transformation, but of ten enzymes investigated only REMI with XhoI and KpnI resulted in single-copy integration of transforming DNA for the majority of transformants. For protoplast transformation with XhoI- or KpnI-based REMI, 50% and 76% of insertions, respectively, were due to integrations at a genomic enzyme site corresponding to the enzyme used for REMI. Electroporation of spores without addition of restriction enzyme resulted in a high transformation efficiency, with up to 67% of transformants containing a single copy of transforming DNA. In contrast to protoplast transformation, electroporation of spores in the presence of a restriction enzyme did not improve transformation efficiency or lead to insertion at genomic restriction sites. Southern analysis indicated that for both protoplast transformation with REMI using KpnI or XhoI and for electroporation of spores without addition of restriction enzymes, transforming DNA inserted at different genomic sites in a high proportion of transformants.  相似文献   

7.
Transformants of Arabidopsis thaliana can be generated without using tissue culture techniques by cutting primary and secondary inflorescence shoots at their bases and inoculating the wound sites with Agrobacterium tumefaciens suspensions. After three successive inoculations, treated plants are grown to maturity, harvested and the progeny screened for transformants on a selective medium. We have investigated the reproducibility and the overall efficiency of this simple in planta transformation procedure. In addition, we determined the T-DNA copy number and inheritance in the transformants and examined whether transformed progeny recovered from the same Agrobacterium-treated plant represent one or several independent transformation events. Our results indicate that in planta transformation is very reproducible and yields stably transformed seeds in 7–8 weeks. Since it does not employ tissue culture, the in planta procedure may be particularly valuable for transformation of A. thaliana ecotypes and mutants recalcitrant to in vitro regeneration. The transformation frequency was variable and was not affected by lower growth temperature, shorter photoperiod or transformation vector. The majority of treated plants gave rise to only one transformant, but up to nine siblings were obtained from a single parental plant. Molecular analysis suggested that some of the siblings originated from a single transformed cell, while others were descended from multiple, independently transformed germ-line cells. More than 90% of the transformed progeny exhibited Mendelian segregation patterns of NPTII and GUS reporter genes. Of those, 60% contained one functional insert, 16% had two T-DNA inserts and 15% segregated for T-DNA inserts at more than two unlinked loci. The remaining transformants displayed non-Mendelian segregation ratios with a very high proportion of sensitive plants among the progeny. The small numbers of transformants recovered from individual T1 plants and the fact that none of the T2 progeny were homozygous for a specific T-DNA insert suggest that transformation occurs late in floral development.  相似文献   

8.
9.
T-DNA transfer and integration frequencies during Agrobacterium-mediated root explant cocultivation and floral dip transformations of Arabidopsis thaliana were analyzed with and without selection for transformation-competent cells. Based on the presence or absence of CRE recombinase activity without or with the CRE T-DNA being integrated, transient expression versus stable transformation was differentiated. During root explant cocultivation, continuous light enhanced the number of plant cells competent for interaction with Agrobacterium and thus the number of transient gene expression events. However, in transformation competent plant cells, continuous light did not further enhance cotransfer or cointegration frequencies. Upon selection for root transformants expressing a first T-DNA, 43–69 % of these transformants showed cotransfer of another non-selected T-DNA in two different light regimes. However, integration of the non-selected cotransferred T-DNA occurred only in 19–46 % of these transformants, indicating that T-DNA integration in regenerating root cells limits the transformation frequencies. After floral dip transformation, transient T-DNA expression without integration could not be detected, while stable T-DNA transformation occurred in 0.5–1.3 % of the T1 seedlings. Upon selection for floral dip transformants with a first T-DNA, 8–34 % of the transformants showed cotransfer of the other non-selected T-DNA and in 93–100 % of them, the T-DNA was also integrated. Therefore, a productive interaction between the agrobacteria and the female gametophyte, rather than the T-DNA integration process, restricts the floral dip transformation frequencies.  相似文献   

10.
Restriction enzyme-mediated DNA integration (REMI) has recently received attention as a new technique for the generation of mutants by transformation in fungi. Here we analyse this method in the basidiomycete Coprinus cinereus using the homologous pab1 gene as a selectable marker and the restriction enzymes BamHI, EcoRI and PstI. Addition of restriction enzymes to transformation mixtures results in an earlier appearance of transformants and influences transformation rates in an enzyme- and concentration-dependent manner. Low concentrations of restriction enzyme result in increased numbers of transformants compared to no addition of enzymes. Transformation rates decrease with higher enzyme concentrations. If protoplasts are made from cells stored in the cold, the transformation rates drop drastically even in the presence of low amounts of enzyme. In several transformants, plasmid integration directly correlated with the action of restriction enzyme at random chromosomal restriction sites. In some cases, restriction enzymes appear to reduce the number of integration events per transformant. Simultaneously, mutation rates can be enhanced due to the presence of restriction enzymes. Although restriction enzymes clearly promote plasmid integration into the host genome they also have cytotoxic and possibly mutagenic effects that result from processes other than plasmid integration. In consequence, for any given enzyme used in REMI mutagenesis, the enzyme concentration that gives the highest number of transformants must be defined experimentally. Such optimal transformation conditions should give the highest probability of obtaining mutations caused by a single restriction enzyme-mediated integration of the selection marker.  相似文献   

11.
We induced mutants of Gibberella fujikuroi deficient in gibberellin (GA) biosynthesis by transformation-mediated mutagenesis with the vector pAN7-1. We recovered 24 GA-defective mutants in one of nine transformation experiments performed without the addition of a restriction enzyme. Each mutant had a similar Southern blot pattern, suggesting the integration of the vector into the same site. The addition of a restriction enzyme by restriction enzyme-mediated integration (REMI) significantly increased the transformation rate and the rate of single-copy integration events. Of 1,600 REMI transformants, two produced no GAs. Both mutants had multiple copies of the vector pAN7-1 and one had a Southern blot pattern similar to those of the 24 conventionally transformed GA-deficient mutants. Biochemical analysis of the two REMI mutants confirmed that they cannot produce ent-kaurene, the first specific intermediate of the GA pathway. Feeding the radioactively labelled precursors ent-kaurene and GA12-aldehyde followed by high-performance liquid chromatography and gas chromatography-mass spectrometry analysis showed that neither of these intermediates was converted to GAs in the mutants. Southern blot analysis and pulsed-field gel electrophoresis of the transformants using the bifunctional ent-copalyl diphosphate/ent-kaurene synthase gene (cps/ks) and the flanking regions as probes revealed a large deletion in the GA-deficient REMI transformants and in the GA-deficient transformants obtained by conventional insertional transformation. We conclude that transformation procedures with and without the addition of restriction enzymes can lead to insertion-mediated mutations and to deletions and chromosome translocations.  相似文献   

12.
Agrobacterium tumefaciens was used to transform Aspergillus fumigatus by either random or site-directed integration of transforming DNA (T-DNA). Random mutagenesis via Agrobacterium tumefaciens-mediated transformation (ATMT) was accomplished with T-DNA containing a hygromycin resistance cassette. Cocultivation of A. fumigatus conidia and Agrobacterium (1:10 ratio) for 48 h at 24°C resulted in high frequencies of transformation (>100 transformants/107 conidia). The majority of transformants harbored a randomly integrated single copy of T-DNA and were mitotically stable. We chose alb1, a polyketide synthase gene, as the target gene for homologous integration because of the clear phenotype difference between the white colonies of Δalb1 mutant strains and the bluish-green colonies of wild-type strains. ATMT with a T-DNA-containing alb1 disruption construct resulted in 66% albino transformants. Southern analysis revealed that 19 of the 20 randomly chosen albino transformants (95%) were disrupted by homologous recombination. These results suggest that ATMT is an efficient tool for transformation, random insertional mutagenesis, and gene disruption in A. fumigatus.  相似文献   

13.
Plasmids containing two inverted 0.6-kb stretches of human telomeric repeats transform Aspergillus nidulans at frequencies characteristic of autonomously replicating vectors. Transformation frequency is not affected when the plasmids are linearized in vitro prior to transformation by cutting between the inverted repeats. Southern analysis reveals the presence of a homogeneous pool of linear plasmid molecules in mycelium of transformants. Addition of the AMA1 plasmid replicator to the telomere-containing plasmids has only a minor effect on transformation. The phenotypic stability of the transformants is low. However, unlike conventional replicative transformants containing AMA1-bearing plasmids, these transformants are prone to spontaneous stabilization which occurs predominantly by conversion of the mutant chromosomal allele of the marker gene to the plasmid-borne allele. The data strongly suggest that telomeric DNA can act as a plasmid replicator. An alternative interpretation is that autonomous replication of linear DNA fragments, in contrast to covalently closed supercoiled molecules, does not require any special replicator sequences.  相似文献   

14.
Plant transformation is an important tool for basic research and agricultural biotechnology. In most cases, selection of putative transformants is based on antibiotic or herbicide resistance. Overexpression of plant genes that provide protection from abiotic or biotic stresses can result in a conferred phenotype that can be used as a means for selection. We have demonstrated herein that specific methionine sulfoxide reductase B (MsrB) genes that are overexpressed in transgenic plants may constitute a new selectable marker with concomitantly increased tolerance to methyl viologen (MV) treatment. Arabidopsis transformants overexpressing cytosolic MsrB7, MsrB8 or MsrB9 are viable and survive after MV selection. To establish whether these native plant origin genes serve as new non-antibiotic markers that can be applied to crop transformation, tomato cotyledons were used as transformation materials. MsrB7 transgenic tomato plants were successfully obtained by Agrobacterium-mediated transformation and selection on medium supplemented with MV. We suggest that specific MsrB genes that are overexpressed in transgenic plants may constitute a new selectable marker with increased tolerance to oxidative stress concomitant with MV treatment.  相似文献   

15.
An altered β-tubulin gene that confers resistance to the fungicide benomyl was isolated from a genomic library of a UV-induced mutant of Cercospora kikuchii and used as a selectable marker for transformation. The level of benomyl resistance conferred to the transformants was at least 150-fold greater than the intrinsic resistance of the C. kikuchii recipient protoplasts. In the majority of cases, the tubulin fragment was integrated at the native β-tubulin locus, apparently by gene replacement or gene conversion. The frequency of transformation ranged from 0.2 to 6 transformants per μg of DNA, depending on the recipient strain. Transformation with linearized plasmid resulted in a higher frequency, without changing the type of integration event. Transformants were phenotypically stable after eight consecutive transfers on medium without benomyl. This is the first report of a genetic transformation system for a Cercospora species.  相似文献   

16.
Monokaryons of Coprinus cinereus constitutively form small spores (oidia) in the aerial mycelium. Some strains also produce large, inflated single cells (chlamydospores) at the agar/air interface, and hyphal aggregates (hyphal knots) that can develop into sclerotia. Monokaryons show various reactions upon transformation with heterologous A mating type genes. Production of oidia in such A-activated transformants is repressed in the dark and induced by blue light. Five of six monokaryons tested following transformation with A genes showed induced production of hyphal knots and sclerotia in the dark, and at least three strains showed enhanced chlamydospore production in the dark. Continuous incubation under blue light inhibited formation of hyphal knots, sclerotia and chlamydospores in both competent monokaryons and in A-activated transformants. On artificial medium and on a 12?h light/12?h dark regime, A-activated transformants of one distinct monokaryon (218) formed fruit-body primordia that were arrested in development before karyogamy. Our studies show that A mating type genes control all major differentiation processes in Coprinus, but whether developmental processes can proceed depends on the genetic background of the strain.  相似文献   

17.

Background

Strawberry (Fragaria × ananassa) is an economically important soft fruit crop with polyploid genome which complicates the breeding of new cultivars. For certain traits, genetic engineering offers a potential alternative to traditional breeding. However, many strawberry varieties are quite recalcitrant for Agrobacterium-mediated transformation, and a method allowing easy handling of large amounts of starting material is needed. Also the genotyping of putative transformants is challenging since the isolation of DNA for Southern analysis is difficult due to the high amount of phenolic compounds and polysaccharides that complicate efficient extraction of digestable DNA. There is thus a need to apply a screening method that is sensitive and unambiguous in identifying the different transformation events.

Results

Hygromycin-resistant strawberries were developed in temporary immersion bioreactors by Agrobacterium-mediated gene transfer. Putative transformants were screened by TAIL-PCR to verify T-DNA integration and to distinguish between the individual transformation events. Several different types of border sequence arrangements were detected.

Conclusion

This study demonstrates that temporary immersion bioreactor system suits well for the regeneration of transgenic strawberry plants as a labour-efficient technique. Small amount of DNA required by TAIL-PCR is easily recovered even from a small transformant, which allows rapid verification of T-DNA integration and detection of separate gene transfer events. These techniques combined clearly facilitate the generation of transgenic strawberries but should be applicable to other plants as well.  相似文献   

18.
Agrobacterium-mediated plant transformation via floral-dip is a widely used technique in the field of plant transformation and has been reported to be successful for many plant species. However, flax (Linum usitatissimum) transformation by floral-dip has not been reported. The goal of this protocol is to establish that Agrobacterium and the floral-dip method can be used to generate transgenic flax. We show that this technique is simple, inexpensive, efficient, and more importantly, gives a higher transformation rate than the current available methods of flax transformation.In summary, inflorescences of flax were dipped in a solution of Agrobacterium carrying a binary vector plasmid (T-DNA fragment plus the Linum Insertion Sequence, LIS-1) for 1 - 2 min. The plants were laid flat on their side for 24 hr. Then, plants were maintained under normal growth conditions until the next treatment. The process of dipping was repeated 2 - 3 times, with approximately 10 - 14 day intervals between dipping. The T1 seeds were collected and germinated on soil. After approximately two weeks, treated progenies were tested by direct PCR; 2 - 3 leaves were used per plant plus the appropriate T-DNA primers. Positive transformants were selected and grown to maturity. The transformation rate was unexpectedly high, with 50 - 60% of the seeds from treated plants being positive transformants. This is a higher transformation rate than those reported for Arabidopsis thaliana and other plant species, using floral-dip transformation. It is also the highest, which has been reported so far, for flax transformation using other methods for transformation.  相似文献   

19.
Electrotransformation of Rhizobium leguminosarum was successfully carried out with a 15.1-kb plasmid, pMP154 (Cmr), containing a nodABC-lacZ fusion by electroporation. The maximum transformation efficiency, 108 transformants/μg of DNA, was achieved at a field strength of 14 kV/cm with a pulse of 7.3 ms (186 Ω). The number of transformants was found to increase with increasing cell density, with no sign of saturation. In relation to DNA dosage, the maximum transformation efficiency (5.8 × 108 transformants/μg of DNA) was obtained with 0.5 μg of DNA/ml of cell suspension, and a further increase in the DNA concentration resulted in a decline in transformation efficiency.  相似文献   

20.
Hybrid or polyploid clones of Saccharomyces cerevisiae produced by protoplast fusion were easily isolated by selecting transformants with the plasmid phenotype because the transformation was directly associated with cell fusion. When haploid cells were used as the original strain, the transformants were mostly diploids with a significant fraction of polyploids (triploids or tetraploids). Repeated transformation after curing the plasmid gave rise to clones with higher ploidy, but the frequency of cell fusion was severely reduced as ploidy increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号