首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M Sakalian  J W Wills    V M Vogt 《Journal of virology》1994,68(9):5969-5981
In all retrovirus systems studied, the leader region of the RNA contains a cis-acting sequence called psi that is required for packaging the viral RNA genome. Since the pol and env genes are dispensable for formation of RNA-containing particles, the gag gene product must have an RNA binding domain(s) capable of recognizing psi. To gain information about which portion(s) of Gag is required for RNA packaging in the avian sarcoma and leukemia virus system, we utilized a series of gag deletion mutants that retain the ability to assemble virus-like particles. COS cells were cotransfected with these mutant DNAs plus a tester DNA containing psi, and incorporation of RNA into particles were measured by RNase protection. The efficiency of packaging was determined by normalization of the amount of psi+ RNA to the amount of Gag protein released in virus-like particles. Specificity of packaging was determined by comparisons of psi+ and psi- RNA in particles and in cells. The results indicate that much of the MA domain, much of the p10 domain, half of the CA domain, and the entire PR domain of Gag are unnecessary for efficient packaging. In addition, none of these deleted regions is needed for specific selection of the psi RNA. Deletions within the NC domain, as expected, reduce or eliminate both the efficiency and the specificity of packaging. Among mutants that retain the ability to package, a deletion within the CA domain (which includes the major homology region) is the least efficient. We also examined particles of the well-known packaging mutant SE21Q1b. The data suggest that the random RNA packaging behavior of this mutant is not due to a specific defect but rather is the result of the cumulative effect of many point mutations throughout the gag gene.  相似文献   

2.
3.
R D Berkowitz  J Luban    S P Goff 《Journal of virology》1993,67(12):7190-7200
Packaging of retroviral genomic RNA during virion assembly is thought to be mediated by specific interactions between the gag polyprotein and RNA sequences (often termed the psi or E region) near the 5' end of the genome. For many retroviruses, including human immunodeficiency virus type 1 (HIV-1), the portions of the gag protein and the RNA that are required for this interaction remain poorly defined. We have used an RNA gel mobility shift assay to measure the in vitro binding of purified glutathione S-transferase-HIV-1 gag fusion proteins to RNA riboprobes. Both the complete gag polyprotein and the nucleocapsid (NC) protein alone were found to bind specifically to an HIV-1 riboprobe. Either Cys-His box of NC could be removed without eliminating specific binding to the psi riboprobe, but portions of gag containing only the MA and CA proteins without NC did not bind to RNA. There were at least two binding sites in HIV-1 genomic RNA that bound to the gag polyprotein: one entirely 5' to gag and one entirely within gag. The HIV-1 NC protein bound to riboprobes containing other retroviral psi sequences almost as well as to the HIV-1 psi riboprobe.  相似文献   

4.
We have identified p10 as a fifth gag protein of avian sarcoma and leukemia viruses. Amino-terminal protein sequencing of this polypeptide purified from the Prague C strain of Rous sarcoma virus and from avian myeloblastosis virus implies that it is encoded within a stretch of 64 amino acid residues between p19 and p27 on the gag precursor polypeptide. For p10 from the Prague C strain of Rous sarcoma virus the first 30 residues were found to be identical with the predicted amino acid sequence from the Prague C strain of Rous sarcoma virus DNA sequence, whereas for p10 from avian myeloblastosis virus the protein sequence for the same region showed two amino acid substitutions. Amino acid composition data indicate that there are no gross composition changes beyond the region sequenced. The amino terminus of p10 is located two amino acid residues past the carboxy terminus of p19, whereas its carboxy terminus probably is located immediately adjacent to the first amino acid residue of p27.  相似文献   

5.
We determined the sites at which ribosomes form initiation complexes on Rous sarcoma virus RNA in order to determine how initiation of Pr76gag synthesis at the fourth AUG codon from the 5' end of Rous sarcoma virus strain SR-A RNA occurs. Ribosomes bind almost exclusively at the 5'-proximal AUG codon when chloride is present as the major anion added to the translational system. However, when chloride is replaced with acetate, ribosomes bind at the two 5'-proximal AUG codons, as well as at the initiation site for Pr76gag. We confirmed that the 5'-proximal AUG codon is part of a functional initiation site by identifying the seven-amino acid peptide encoded there. Our results suggest that (i) translation in vitro of Rous sarcoma virus virion RNA results in the synthesis of at least two polypeptides; (ii) the pattern of ribosome binding observed for Rous sarcoma virus RNA can be accounted for by the modified scanning hypothesis; and (iii) the interaction between 40S ribosomal subunits or 80S ribosomal complexes is stronger at the 5'-proximal AUG codon than at sites farther downstream, including the initiation site for the major viral proteins.  相似文献   

6.
We have studied the interactions of single-stranded polyribonucleotides with murine leukemia virus structural proteins p10, p10' (a p10 variant), and Pr65gag, as well as Rous sarcoma virus (RSV) pp12 (a p10 analog). Two quantitative assays have been used to monitor protein-RNA association: the fluorescence enhancement of polyethenoadenylic acid) poly(epsilon A) upon binding protein, and tryptophan fluorescence quenching upon binding to poly(U). With each assay p10 was shown to bind stoichiometrically to single-stranded RNA, covering a length of nucleic acid chain (occluded site size, n) of about 6 residues. RSV pp12 was also shown to bind to poly(epsilon A), with n = 5 +/- 1. Addition of NaCl to fully titrated MuLV p10-nucleic acid mixtures effected nearly complete restoration of poly(epsilon A) or MuLV p10 fluorescence. Under conditions of 0.06 M NaCl, p10 bound noncooperatively to poly(epsilon A) with an intrinsic association constant, K = 2.3 X 10(6) M-1. K and n determined in this study were shown to relate to Kapp determined by other methods, by the approximation Kapp approximately NK, where N is the number of binding sites along the polynucleotide chain ((nucleotides/chain)/n). Chemical modifications of the p10 cysteine residues did not alter the affinity for poly(epsilon A). The affinity of Pr65gag for poly(epsilon A) appears to be higher than that of p10.  相似文献   

7.
The internal structural proteins of avian sarcoma and leukemia viruses are derived from a precursor polypeptide that is the product of the viral gag gene. The N-terminal domain of the precursor gives rise to p19, a protein that interacts with the lipid envelope of the virus and that may also interact with viral RNA. The C terminus of p19 from the Prague C strain of Rous sarcoma virus was previously assigned to a tyrosine residue 175 amino acids from the N terminus. We have used metabolic labeling and carboxypeptidase digestion to show that the C terminus of p19 is actually tyrosine 155. This implies the existence of a sixth gag protein 22 amino acids in length and located between p19 and p10 on the gag precursor. The p19 species of some recombinant avian sarcoma viruses and of the defective endogenous virus derived from the ev-1 locus migrate on sodium dodecyl sulfate-polyacrylamide gel electrophoresis as if they were about 4,000 daltons smaller than p19. We have elucidated the structure of these forms, called p19 beta, by analysis of the proteins and determination of the DNA sequence of the p19 region of the gag gene from ev-1 and ev-2. Esterification of carboxyl groups completely suppressed the differences in migration of p19 and p19 beta. Peptide mapping showed the altered mobility to be determined by sequences in the C-terminal cyanogen bromide fragment of the proteins. We conclude from the DNA sequence that a single glutamate-lysine alteration is responsible for the altered electrophoretic mobility.  相似文献   

8.
We have purified two low-molecular-weight polypeptides from the Prague C strain of Rous sarcoma virus and have identified these as products of the gag precursor Pr76 by protein sequencing and by amino acid analysis. Both polypeptides are derived from a stretch of 22 amino acids within Pr76 that separates p19 and p10. We refer to this region as p2. Together the two cleavage products form the entire p2 region. The junctions of p19 with the amino-terminal fragment of p2 and of p10 with the carboxy-terminal fragment of p2 define two new processing sites within the gag precursor, Tyr-155-His-156 and Gly-177-Ser-178. Both polypeptides are major cleavage products of Pr76 that occur in Prague C Rous sarcoma virus at an estimated 1,000 copies per virion. They also are prominent components of avian myeloblastosis virus. The combination of gel filtration and reverse-phase high-pressure liquid chromatography, which was used for the isolation of the two fragments of p2, resolved over a dozen other low-molecular-weight polypeptides from avian sarcoma and leukemia viruses that previously were undetected. This technique thus should serve as a useful procedure for further characterization of viral components.  相似文献   

9.
The retrovirus precursor protein has an arrangement of several characteristic domains with which it achieves selective and efficient packaging of the genome RNA during particle assembly. In this study, we analyzed the composition of the bovine leukemia virus (BLV) gag proteins and examined their RNA-binding properties in gel mobility shift assays, using various genomic RNA probes synthesized in vitro. Results obtained in amino acid sequence and composition analyses indicate that the matrix-associated protein MA(p15) is further processed by the BLV protease (PR) to generate MA(p10), a short peptide of seven amino acid residues, and p4. The gag precursor is now mapped as NH2-MA(p10)-p4-CA(p24)-NC(p12)-COOH. MA(p15) formed a specific complex with the dimer RNA of the U5-5' gag region presumed to contain the BLV packaging signal but not with other RNAs. The NH2-terminal cleavage product, MA(p10), bound all RNA fragments tested, while the COOH-terminal peptides with a sequence common to mammalian type C retroviruses had little affinity for RNA. The nucleocapsid protein NC(p12) bound to RNAs nonspecifically and randomly in the presence or absence of zinc ions. These results suggest a possible interaction of the NH2 terminus of the gag precursor with the 5' terminus of the genomic RNA in an early phase of particle assembly, when the conserved structure between the MA and CA domains might be involved.  相似文献   

10.
The genome of avian leukemia virus E26 shares homology with v-myb, the oncogene of avian myeloblastosis virus, and encodes a protein with an Mr of 135,000. Analyses of tryptic oligopeptides show that this protein is related to the proteins encoded by gag (Pr76gag) as well as v-myb (p45v-myb[AMV] ) and c-myb (p75c-myb). We found no evidence for the existence of additional myb-related proteins or subgenomic species of myb-related RNA in myeloblasts transformed by strain E26.  相似文献   

11.
A purified 15,000-molecular-weight (Mr) Prague strain Rous sarcoma virus gag gene-coded structural protein, p15, was shown to enzymatically cleave the previously described 130,000 Mr feline sarcoma virus-coded polyprotein, Pr130. Cleavage products included proteins ranging in molecular weight from 12,000 to 110,000. The specificity of this cleavage reactivity was indicated by the fact that, under similar conditions, neither purified type C viral structural proteins nor nonviral proteins such as bovine serum albumin were cleaved to significant extents. Moreover, feline leukemia virus Pr65gag was efficiently cleaved, resulting in the generations of proteins of 30,000 (p30), 15,000 (p15), 12,000 (p12), and 10,000 (p10) Mr. Using enzymatically (p15) treated feline sarcoma virus Pr130 as starting material, we were able to purify a major 72,000 Mr cleavage product and to show it to contain the previously described feline sarcoma virus-coded nonstructural component.  相似文献   

12.
In vitro detection of a specific complex of the bovine leukemia virus (BLV) MA(p15) protein and the 5'-terminal RNA dimer led to the hypothesis that the NH2-terminal domain of retrovirus gag protein precursor is involved in the selective viral RNA packaging mechanism. Here we describe mapping of the BLV RNA for dimer-forming and MA(p15)-binding abilities by a simple cDNA probing method followed by mutation analyses with the reactive U5-5' gag RNA. The RNA dimerization is mediated by the region harboring U5, the primer binding site (PBS), and the 30 bases immediately downstream of PBS. This conclusion is supported by computer-assisted RNA secondary-structure analysis which predicted a multibranched stem-loop folding throughout the dimer region determined. Another region from PBS to the 5'-terminal 60 residues of the gag gene, partially overlapping the dimer region, likely provides essential elements for the MA(p15) binding reaction, although the presence of either the 3' or 5' neighboring sequences increases the complex-forming efficiency significantly, and each of the substructures predicted within the core region has, if any, only very weak affinity to MA(p15). These in vitro characterizations of the BLV RNA may reflect general features of the specific protein-RNA interaction in the packaging events of various retroviruses. 5'-terminal folded structures of retroviral RNA molecules and their biological activities are discussed.  相似文献   

13.
An RNA directed DNA polymerase was purified over 2500 fold from gibbon ape leukemia virus by successive column chromatography on Sephadex G100, DEAE cellulose, phosphocellulose and hydroxyapatite. The purified DNA polymerase has a molecular weight of 68 000, a pH optimum of 7.5, a Mn2+ optimum of 0.8 mM, and KCl optimum of 80 mM. The purified enzyme transcribes heteropolymeric regions of viral 60-70 S RNA isolated from avian myeloblastosis virus, Rauscher murine leukemia virus and simian sarcoma virus and it is inhibited by antiserum prepared against either gibbon ape leukemia virus or simian sarcoma virus DNA polymerases.  相似文献   

14.
UR2 is a newly characterized avian sarcoma virus whose genome contains a unique sequence that is not related to the sequences of other avian sarcoma virus transforming genes thus far identified. This unique sequence, termed ros, is fused to part of the viral gag gene. The product of the fused gag-ros gene of UR2 is a protein of 68,000 daltons (P68) immunoprecipitable by antiserum against viral gag proteins. In vitro translation of viral RNA and in vivo pulse-chase experiments showed that P68 is not synthesized as a large precursor and that it is the only protein product encoded in the UR2 genome, suggesting that it is involved in cell transformation by UR2. In vivo, P68 was phosphorylated at both serine and tyrosine residues. Immunoprecipitates of P68 with anti-gag antisera had a cyclic nucleotide-independent protein kinase activity that phosphorylated P68, rabbit immunoglobulin G in the immune complex, and alpha-casein. The phosphorylation by P68 was specific to tyrosine of the substrate proteins. P68 was phosphorylated in vitro at only one tyrosine site, and the tryptic phosphopeptide of in vitro-labeled P68 was different from those of Fujinami sarcoma virus P140 and avian sarcoma virus Y73-P90. A comparison of the protein kinases encoded by UR2, Rous sarcoma virus, Fujinami sarcoma virus, and avian sarcoma virus Y73 revealed that UR2-P68 protein kinase is distinct from the protein kinases encoded by those viruses by several criteria. Our results suggest that several different protein kinases encoded by viral transforming genes have the same functional specificity and cause essentially the same cellular alterations.  相似文献   

15.
Kirsten murine sarcoma-leukemia virus (Ki-MSV[MLV]) was found to contain less RNase H per unit of viral DNA polymerase than avian Rous sarcoma virus (RSV). Upon purification by chromatography on Sephadex G-200 and subsequent glycerol gradient sedimentation the avian DNA polymerase was obtained in association with a constant amount of RNase H. By contrast, equally purified DNA polymerase of Ki-MSV(MLV) and Moloney [Mo-MSV(MLV)] lacked detectable RNase H if assayed with two homopolymer and phage fd DNA-RNA hybrids as substrates. On the basis of picomoles of nucleotides turned over, the ratio of RNase H to purified avian DNA polymerase was 1:20 and that of RNase H to purified murine DNA polymerase ranged between <1:2,800 and 5,000. Based on the same activity with poly (A).oligo(dT) the activity of the murine DNA polymerase was 6 to 60 times lower than that of the avian enzyme with denatured salmon DNA template or with avian or murine viral RNA templates assayed under various conditions (native, heat-dissociated, with or without oligo(dT) and oligo(dC) and at different template enzyme ratios). The template activities of Ki-MSV(MLV) RNA and RSV RNA were enhanced uniformly by oligo(dT) but oligo(dC) was much less efficient in enhancing the activity of MSV(MLV) RNA than that of RSV RNA. It was concluded that the purified DNA polymerase of Ki-MSV(MLV) differs from that of Rous sarcoma virus in its lack of detectable RNase H and in its low capacity to transcribe viral RNA and denatured salmon DNA. Some aspects of these results are discussed.  相似文献   

16.
A Moloney murine leukemia virus (M-MuLV) recombinant carrying the v-src gene of avian sarcoma virus was generated by the introduction of a cloned portion of v-src from Schmidt-Ruppin A avian sarcoma virus into a molecular clone of M-MuLV provirus at the recombinant DNA level. The v-src sequences (lacking a portion of the 5' end of v-src) were inserted into the p30 region of the M-MulV gag gene so that M-MuLV gag and v-src were in the same reading frame. Transfection of this chimeric clone, pMLV(src), into NIH 3T3 cells which were constitutively producing M-MuLV gag and pol protein resulted in the formation of foci of transformed cells. Infectious and transforming virus could be recovered from the transformed cells. This virus was designated M-MuLV(src). M-MuLV(src)-transformed cells contained two novel proteins of 78 and 90 kilodaltons. The 78-kilodalton protein, p78gag-src, contained both gag and src determinants, exhibited kinase activity in an immune kinase assay, and is probably a fusion of Pr65gag and src. The 90-kilodalton protein, which is of the appropriate size to be the gPr80gag fused to src, contained gag determinants as well as a V8 protease cleavage fragment typical of the carboxy terminus of avian sarcoma virus pp60src. However, it could not be immunoprecipitated with an anti-v-src serum. M-MuLV(src)-transformed cells showed elevated levels of intracellular phosphotyrosine in proteins, although the elevation was intermediate compared with cells transformed with wild-type v-src. M-MuLV and amphotropic murine leukemia virus pseudotypes of M-MuLV(src) were inoculated into newborn NIH Swiss mice. Inoculated mice developed solid tumors at the site of inoculation after 3 to 6 weeks, with most animals dying by 14 weeks. Histopathological analysis indicated that the solid tumors were mesenchymally derived fibrosarcomas that were both invasive and metastatic.  相似文献   

17.
DNA polymerases purified by the same procedure from four mammalian RNA viruses, simian sarcoma virus type 1, gibbon ape lymphoma virus, Mason-Pfizer monkey virus, and Rauscher murine leukemia virus are capable of transcribing heteropolymeric regions of viral 70S RNA without any other primer. In this reconstituted system the enzymes from simian sarcoma virus type 1, Mason-Pfizer monkey virus, and Rauscher murine leukemia virus transcribe viral 70S RNA almost as efficiently as the DNA polymerase from the avian myeloblastosis virus, but gibbon ape lymphoma virus DNA polymerase is approximately three-to fivefold less efficient. Although there is a substantial difference among the sizes of these DNA polymerases (160,000 daltons for the avian myeloblastosis virus enzyme, 110,000 daltons for the Mason-Pfizer monkey virus enzyme, and 70,000 daltons for the mammalian type C viral polymerases), the ability to transcribe viral 70S RNA is a characteristic common to these enzymes.  相似文献   

18.
In avian sarcoma and leukemia viruses, the gag protein p19 functions structurally as a matrix protein, connecting internal components with the viral envelope. We have used a combination of in situ cross-linking and peptide mapping to localize within p19 the regions responsible for two major interactions in this complex, p19 with lipid and p19 with p19. Lipid-protein cross-links were localized near the amino terminus within the first 35 amino acids of the polypeptide. Homotypic protein-protein disulfide bridges were found to originate from near the carboxy terminus of p19, from cysteine residues at amino acids 111 and 153. These results suggest that p19 is divided into domains with distinct functions. The peptide maps constructed for p19, and for the related proteins p23 in avian sarcoma and leukemia viruses and p19 beta in recombinant avian sarcoma viruses, should serve as useful tools for other types of studies involving these proteins.  相似文献   

19.
Because Pr65gag is in part located in the nucleus and contains a putative bipartite nuclear targeting signal, we investigated the cellular location and structure of P55gag, a gag-encoded polyprotein known to lack the nucleocapsid (NC) protein NCp10. P55gag was found to be restricted to the cytoplasm of Moloney murine leukemia virus-infected cells. Of interest, P55gag was produced in cells infected by a viral protease deletion mutant and by a recombinant murine sarcoma virus known to lack the protease gene. Surprisingly, our structural and immunological studies indicated that P55gag also lacks carboxy-terminal residues of CAp30. During the course of studying P55gag, we detected a new viral protein within purified virus particles that contained NCp10 tryptic peptide sequences and a CAp30 tryptic peptide lacking in P55gag. This viral protein, which we have named nucleocapsid-related protein (NCRP), also contained antigenic epitopes present in CAp30 and NCp10. P55gag- and NCRP-like proteins were also observed in AKV murine leukemia virus and feline leukemia virus systems. The precise site of cleavage within Pr65gag that produces P55gag and NCRP is unknown but lies upstream of the CAp30-NCp10 junction within the carboxy-terminal domain of CAp30. The existence of a form of NCp10 containing carboxy-terminal CAp30 sequences raises interesting possibilities about its functional role in genomic RNA packaging and/or viral RNA dimerization.  相似文献   

20.
The nucleotide sequence of a feline v-myc gene and feline leukemia virus (FeLV) flanking regions was determined. Both the nucleotide and predicted amino acid sequences are very similar to the murine and human c-myc genes (ca. 90% identity). The entire c-myc coding sequence is represented in feline v-myc and replaces portions of the gag and env genes and the entire pol gene. The coding sequence is in phase with the gag gene reading frame; v-myc, therefore, appears to be expressed as a gag-myc fusion protein. Viral sequences at the 3' myc-FeLV junction begin with the hexanucleotide CTCCTC, which is also found at the 3' fes-FeLV junction of both Gardner-Arnstein and Snyder-Theilen feline sarcoma viruses. These similarities suggest that some sequence specificity may exist for the transduction of cellular genes by FeLV. Feline v-myc lacks a potential phosphorylation site at amino acid 343 in the putative DNA-binding domain, whereas both human and murine c-myc have such sites. Avian v-myc has lost a potential phosphorylation site which is present in avian c-myc five amino acids from the potential mammalian site. If these sites are actually phosphorylated in normal c-myc proteins, their loss may alter the DNA-binding affinity of v-myc proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号