首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T cell (TC) activation requires the coordinated signaling of the T cell receptor (TCR) and coreceptor molecules, allowing TCs to respond to lower degrees of TCR occupancy. Coreceptor molecules set the threshold for TC activation by controlling different regulatory signaling loops. The Cbl family members prevent undesired activation of T cells by regulating TCR signals. In this report, we show that TC prestimulation by the CD43 coreceptor molecule before TCR engagement inhibits TCR-dependent c-Cbl tyrosine phosphorylation, c-Cbl interaction with the adapter molecule Crk-L and promotes Cbl-b degradation in a PKCθ-dependent manner. Consequently, the prolonged tyrosine phosphorylation and delayed degradation of ZAP-70 and of the ζ chain lead to enhanced mitogen-activated protein kinase activation and robust TC response. These data indicates that CD43-mediated signals lower the threshold for TC activation by restricting the c-Cbl and Cbl-b inhibitory effects on TCR signaling. In addition to the strength and duration of intracellular signals, our data underscore temporality with which certain molecules are engaged as yet another mechanism to fine tune TC signal quality, and ultimately immune function.  相似文献   

2.
Regulation of helper T cell clone proliferation via the CD2 molecule   总被引:1,自引:0,他引:1  
We have investigated the requirements for CD2-induced proliferation of a CD4+, CD8-, CD3+, CD2+ antigen-specific, class II-restricted proliferating cloned cell line. A combination pair of two monoclonal antibodies (MoAb) recognizing, respectively, TII1 and D66 epitopes on the CD2 molecule was used as a stimulus. The regulatory function of accessory cells and various interleukins in this proliferation was determined. The results show that although this clone was able to proliferate in the absence of accessory cells (AC) or interleukin 1 (IL-1) when stimulated by these MoAb, AC constantly enhanced the response to these MoAb. AC acted by increasing high-affinity IL-2 receptor expression. On the contrary they did not play any role in IL-2 production. This regulation of IL-2 receptor expression by AC was specific of adherent cells, did not involve Fc receptors, was impaired when AC were metabolically inactivated and did not require T cell-AC interaction via LFA1, CD4, or HLA molecules. The AC function was not abrogated by anti-IL-1 antibodies and could not be replaced by exogenous IL-1. These results were compared to previously described AC effects on resting T-cell proliferation when stimulated with the same pair of anti-CD2 MoAb. Clear differences in activation requirements in resting and activated T cells via CD2 molecules were found.  相似文献   

3.
In this study we compare the effect of CD3 and CD2 ligation on tyrosine kinase activation in human peripheral blood T cells. Using antiphosphotyrosine antibody to detect tyrosine phosphorylation of cellular substrates, we demonstrate that mAb stimulation of either CD3 or CD2 results in tyrosine phosphorylation of the TCR-zeta chain and 135- and 100-kDa proteins. However, differences are observed between CD3 and CD2 ligation; only the former results in rapid tyrosine phosphorylation of 72-, 65-, and 40-kDa substrates. Co-aggregation of CD2 and CD45, a tyrosine phosphatase, results in inhibition of intracellular calcium elevation and T cell proliferation. We demonstrate in this study that this manipulation also inhibits polyphosphoinositide hydrolysis and tyrosine phosphorylation of the 100-kDa substrate. The failure of tyrosine phosphorylation of the 100-kDa substrate is specific in that phosphorylation of the 135-kDa protein is not inhibited. Similar results are observed when CD2 and CD45 are independently cross-linked rather than co-aggregated. The observation that CD45 cross-linking alters tyrosine phosphorylation of T cell substrates and effects polyphosphoinositide hydrolysis is further evidence that tyrosine phosphorylation regulates early events in T cell activation including, perhaps, phospholipase C activity.  相似文献   

4.
Inflammation and the elimination of infected host cells during an immune response often cause local tissue injury and immunopathology, which can disrupt the normal functions of tissues such as the lung. Here, we show that both virus-induced inflammation and the host tissue environment combine to influence the capacity of virus-specific CD4 and CD8 T cells to produce cytokines in various tissues. Decreased production of cytokines, such as IFN-γ and TNF-α, by antigen-specific T cells is more pronounced in peripheral tissues, such as the lung and kidney, than in secondary lymphoid organs, such as the spleen or lymph nodes. We also demonstrate that tissues regulate cytokine production by memory T cells independently of virus infection, as memory T cells that traffic into the lungs of naïve animals exhibit a reduced ability to produce cytokines following direct ex vivo peptide stimulation. Furthermore, we show that cytokine production by antigen-specific memory CD4 and CD8 T cells isolated from the lung parenchyma can be rescued by stimulation with exogenous peptide-pulsed antigen-presenting cells. Our results suggest that the regulation of T-cell cytokine production by peripheral tissues may serve as an important mechanism to prevent immunopathology and preserve normal tissue function.  相似文献   

5.
Regulation of human T lymphocyte mitogenesis by antibodies to CD3   总被引:3,自引:0,他引:3  
The inhibitory and mitogenic effects of anti-CD3 antibodies (anti-CD3) were examined in cultures of human peripheral blood T cells. Resting T cells required the presence of accessory cells (AC) or phorbol myristate acetate (PMA) to be stimulated by soluble anti-CD3 (OKT3 and 64.1). Anti-CD3 was unable to induce activation of AC-depleted T cells as determined by IL 2 receptor expression, IL 2 production, cell cycle analysis, or detectable DNA synthesis. Although T cell responses to PHA also required AC, far fewer were necessary to generate responses. Anti-CD3 inhibited PHA-stimulated T cell IL 2 production, IL 2 receptor expression and proliferation in partially AC-depleted cultures. Moreover, anti-CD3 was able to inhibit PHA responses when added to culture as late as 24 to 42 hr after the initiation of a 96-hr incubation. Increasing concentrations of PHA reduced the inhibitory effect of anti-CD3 on PHA-stimulated T cell proliferation, whereas IL 2 production remained suppressed. Anti-CD3 linked to Sepharose beads effectively inhibited PHA-stimulated T cell DNA synthesis, indicating that internalization of the CD3 molecule was not required for inhibition of PHA responses. Although inhibition of IL 2 production was a major effect of anti-CD3 in PHA-stimulated cultures, it was not the only apparent inhibitory effect because the addition of exogenous IL 2 could not prevent inhibition completely. Intact AC but not IL 1 also reduced anti-CD3-mediated inhibition of PHA responsiveness, whereas the addition of both IL 2 and AC largely prevented inhibition. Thus, anti-CD3 in the absence of adequate AC signals exerted a number of distinct inhibitory effects on mitogen-induced T cell activation. These results suggest that the CD3 molecular complex may play a role in regulating T cell responsiveness after engagement of the T cell receptor by a number of mechanisms, some of which involve inhibition of IL 2 production.  相似文献   

6.
The turnover of phosphoinositides leading to PKC activation constitutes one of the principal axes of intracellular signaling. In T lymphocytes, the enhanced and prolonged PKC activation resulting from the engagement of the TcR and co-receptor molecules ensures a productive T cell response. The CD43 co-receptor promotes activation and proliferation, by inducing IL-2 secretion and CD69 expression. CD43 engagement has been shown to promote phosphoinositide turnover and DAG production. Moreover, PKC activation was found to be required for the activation of the MAP kinase pathway in response to CD43 ligation. Here we show that CD43 engagement led to the membrane translocation and enzymatic activity of specific PKC isoenzymes: cPKC (alpha/beta), nPKC (epsilon and theta;), aPKC (zeta) and PKCmu. We also show that activation of PKCtheta; resulting from CD43 ligation induced CD69 expression through an ERK-dependent pathway leading to AP-1, NF-kappaB activation and an ERK independent pathway promoting NFAT activation. Together, these data suggest that PKCtheta; plays a critical role in the co-stimulatory functions of CD43 in human T cells.  相似文献   

7.
CD1d-restricted NKT cells expressing invariant TCR alpha-chains (iNKT cells) produce both proinflammatory and anti-inflammatory cytokines rapidly upon activation, and are believed to play an important role in both host defense and immunoregulation. To address the potential implications of iNKT cell responses for infectious or inflammatory diseases of the nervous system, we investigated the expression of CD1d in human peripheral nerve. We found that CD1d was expressed on the surface of Schwann cells in situ and on primary or immortalized Schwann cell lines in culture. Schwann cells activated iNKT cells in a CD1d-dependent manner in the presence of alpha-galactosylceramide. Surprisingly, the cytokine production of iNKT cells stimulated by alpha-galactosylceramide presented by CD1d+ Schwann cells showed a predominance of Th2-associated cytokines such as IL-5 and IL-13 with a marked deficiency of proinflammatory Th1 cytokines such as IFN-gamma or TNF-alpha. Our findings suggest a mechanism by which iNKT cells may restrain inflammatory responses in peripheral nerves, and raise the possibility that the expression of CD1d by Schwann cells could be relevant in the pathogenesis of infectious and inflammatory diseases of the peripheral nervous system.  相似文献   

8.
CD43 (large sialoglycoprotein) is a heavily glycosylated protein expressed on virtually all thymus-derived lymphocytes, on a subpopulation of B cells and on granulocytes. Recently, an anti-CD43 mAb (L10) was shown to induce proliferation in T cells comparable to that induced by anti-CD3. The L10 antibody was reported to react with both sialylated and desialylated CD43. In order to further elucidate the role of CD43 in various T cell functions we have studied the biologic properties of two other mAb (B1B6 and E11B, IgG1) directed against sialic acid-dependent epitopes on CD43. Addition of low amounts of antibody (5 to 10 ng/ml) to freshly isolated T cells or to T cell lines resulted in a rapid clustering of the cells. Fab fragments were also active albeit at a 10-fold higher concentration. Aggregation was dependent on active cell metabolism (inhibited by azide and at low temperatures), on the presence of divalent cations (Mg2+) and was inhibited by antibodies to CD18 but not by antibodies to CD11a (leukocyte function-associated Ag-1 alpha). B1B6 and E11B were poorly mitogenic when added alone in soluble form to PBL or to T cells. However, supernatants from cultures of PBL treated with B1B6 for 2 days contained IL-2 activity. No increase in the number of CD25+ cells was seen during the same period. Exogenously added IL-2 did not synergize with B1B6 or E11B in activation of PBL, whereas proliferation was significantly increased by the addition of the antibodies to activation systems with low endogenous production of IL-2 (PMA or soluble anti-CD3). The anti-CD43 antibodies amplified T cell proliferative responses induced by Con A or leukoagglutinin from Phaseolus vulgaris. F(ab')2 fragments enhanced proliferation significantly better than Fab fragments suggesting that cross-linking of CD43 molecules was an essential features of the amplifying signal. Compared with cultures activated by Con A alone, an increased number of CD25+ cells and of blast cells as well as an increased IL-2 production was observed in cultures activated by B1B6-Con A. The results indicate that regulatory signals, which may function to modify homo- or heterotypic T cell adhesion as well as autocrine production of IL-2, can be transduced through CD43.  相似文献   

9.
Dynamic regulation of T cell immunity by CD43   总被引:5,自引:0,他引:5  
During a viral response, Ag-specific effector T cells show dramatically increased binding by the mAb 1B11 and the lectin peanut agglutinin (PNA). We investigated the contribution of CD43 expression to 1B11 and PNA binding as well as its role in generation and maintenance of a CD8 T cell response. Analysis of CD43(-/-) mice revealed no increased 1B11 binding and reduced PNA binding on virus-specific CD8 T cells from -/- mice compared with +/+ mice. Furthermore, we examined the role of CD43 in the kinetics of an immune response. We show that CD43 expression modestly effects generation of a primary virus-specific CD8 T cell response in vivo but plays a more significant role in trafficking of CD8 T cells to tissues such as the brain. More interestingly, CD43 plays a role in the contraction of the immune response, with CD43(-/-) mice showing increased numbers of Ag-specific CD8 T cells following initial expansion. Following the peak of expansion, Ag-specific CD8 T cells from -/- mice show similar proliferation but demonstrate increased Bcl-2 levels and decreased apoptosis of Ag-specific effector CD8 T cells in vitro. Consistent with a delay in the down-modulation of the immune response, following chronic viral infection CD43(-/-) mice show increased morbidity. These data suggest a dynamic role of CD43 during an immune response: a positive regulatory role in costimulation and trafficking of T cells to the CNS and a negative regulatory role in the down-modulation of an immune response.  相似文献   

10.
CD103 is an integrin with specificity for the epithelial cell-specific ligand, E-cadherin. Recent studies indicate that CD103 expression endows peripheral CD8 cells with a unique capacity to access the epithelial compartments of organ allografts. In the present study we used a nonvascularized mouse renal allograft model to 1) define the mechanisms regulating CD103 expression by graft-infiltrating CD8 effector populations, and 2) identify the cellular compartments in which this occurs. We report that CD8 cells responding to donor alloantigens in host lymphoid compartments do not initially express CD103, but dramatically up-regulate CD103 expression to high levels subsequent to migration to the graft site. CD103+CD8+ cells that infiltrated renal allografts exhibited a classic effector phenotype and were selectively localized to the graft site. CD8 cells expressing low levels of CD103 were also present in lymphoid compartments, but three-color analyses revealed that these are almost exclusively of naive phenotype. Adoptive transfer studies using TCR-transgenic CD8 cells demonstrated that donor-specific CD8 cells rapidly and uniformly up-regulate CD103 expression following entry into the graft site. Donor-specific CD8 cells expressing a dominant negative TGF-beta receptor were highly deficient in CD103 expression following migration to the graft, thereby implicating TGF-beta activity as a dominant controlling factor. The relevance of these data to conventional (vascularized) renal transplantation is confirmed. These data support a model in which TGF-beta activity present locally at the graft site plays a critical role in regulating CD103 expression, and hence the epitheliotropism, of CD8 effector populations that infiltrate renal allografts.  相似文献   

11.
The elimination of activated T cells by FAS-mediated signaling is an important immunoregulatory mechanism used to maintain homeostasis and prevent tissue damage. T cell receptor-dependent signals are required to confer sensitivity to FAS-mediated re-stimulation-induced cell death (RICD), however, the nature of these signals is not well understood. In this report, we show, using T cells from CD4-deficient mice reconstituted with a tail-less CD4 transgene, that CD4-dependent signaling events are a critical part of the competency signal required for RICD. This is in part due to defects in FAS receptor signaling complex formation as shown by decreased recruitment of FAS and caspase 8 into lipid rafts following antigen re-stimulation in the absence of CD4-dependent signals. In addition, in the absence of CD4-dependent signals, effector T cells have a selective defect in IL-2 secretion following peptide re-stimulation, while provision of exogenous IL-2 during re-stimulation partially restores susceptibility to RICD. Importantly, IL-2 production and proliferation after primary peptide stimulation is comparable between wild type and CD4-deficient T cells indicating that the requirement for CD4-dependent signaling events for IL-2 production is developmentally regulated and is particularly critical in previously activated effector T cells. In total, our results indicate that CD4 co-receptor dependent signaling events specifically regulate effector T cell survival and function. Further, these data suggest that CD4-dependent signaling events may protect against the decreased IL-2 production and resistance to cell death seen during chronic immune stimulation.  相似文献   

12.
Tissue homing of activated T cells is typically mediated through their specific integrin and chemokine receptor repertoire. Activation of human primary CD4(+) T cells in the presence of CD46 cross-linking induces the development of a distinct immunomodulatory T cell population characterized by high IL-10/granzyme B production. How these regulatory T cells (Tregs) migrate/home to specific tissue sites is not understood. In this study, we determined the adhesion protein and chemokine receptor expression pattern on human CD3/CD46-activated peripheral blood CD4(+) T cells. CD3/CD46-activated, but not CD3/CD28-activated, T cells up-regulate the integrin alpha(4)beta(7). The interaction of alpha(4)beta(7) with its ligand mucosal addressin cell adhesion molecule 1 (MAdCAM-1) mediates homing or retention of T cells to the intestine. CD3/CD46-activated Tregs adhere to/roll on MAdCAM-1-expressing HeLa cells, similar to T cells isolated from the human lamina propria (LP). This interaction is inhibited by silencing MAdCAM-1 expression in HeLa cells or by the addition of blocking Abs to beta(7). CD46 activation of T cells also induced the expression of the surface-bound cytokine LIGHT and the chemokine receptor CCR9, both marker constitutively expressed by gut LP-resident T cells. In addition, we found that approximately 10% of the CD4(+) T lymphocytes isolated from the LP of patients undergoing bariatric surgery contain T cells that spontaneously secrete a cytokine pattern consistent with that from CD46-activated T cells. These data suggest that CD46-induced Tregs might play a role in intestinal immune homeostasis where they could dampen unwanted effector T cell responses through local IL-10/granzyme B production.  相似文献   

13.
Regulation of interleukin 2 synthesis by cAMP in human T cells   总被引:14,自引:0,他引:14  
T cell activation requires two initial signals that first lead to the expression of interleukin 2 (IL 2) receptors and the initiation of IL 2 synthesis and then to T cell proliferation. Jurkat T lymphoma cells have been shown to be a good model for studying IL 2 synthesis because these cells also require two signals for activation. The first signal can be provided by the lectin phytohaemagglutinin (PHA), and the second one by the phorbol ester, 12-o-tetradecanoylphorbol 13-acetate (TPA). The regulation of IL 2 synthesis in Jurkat cells, however, is unclear, and the present study deals with the role of cAMP on IL 2 synthesis. In Jurkat cells, IL 2 synthesis appears to be highly regulated by the activity of adenylate cyclase. This was demonstrated by using different means to increase intracellular cAMP level, namely by using permeant cAMP analogs, using the activator of adenylate cyclase, forskolin, using the activator of the alpha subunit of the stimulatory GTP binding protein cholera toxin, and using inhibitors of phosphodiesterase. In addition, prostaglandins E1 and E2 were shown to bind specifically to Jurkat cells, to induce a rise in intracellular cAMP level, and to markedly decrease IL 2 synthesis. All together, these results suggest that in T lymphocytes, the prostaglandin E2 receptor is linked to adenylate cyclase through a GTP binding protein and regulates the production of IL 2 by controlling the intracellular cAMP level.  相似文献   

14.
15.
The role of leukocyte function-associated Ag-1 (LFA-1, CD11a/CD18) and intercellular adhesion molecule 1 (ICAM-1, CD54) interactions in the suppression of human B cell function by immobilized anti-CD3-activated CD4+ T cells was examined by studying the effects of mAb to these determinants. The suppressive activity was assessed by the effects of CD4+ T cells without mitomycin C treatment activated by immobilized anti-CD3 for 72 hr on the differentiation into Ig-secreting cells of B cells activated for 72 hr with immobilized anti-CD3-stimulated CD4+ T cells that had been treated with mitomycin C (T4 mito). Suppression was not observed when activated CD4+ T cells and B cells were separated by filter membranes, indicating that the suppression requires the direct interactions between anti-CD3-activated CD4+ T cells and activated B cells. In this model system, mAb to either the alpha (CD11a) or beta (CD18) chain of LFA-1 or ICAM-1 (CD54) reversed the suppression of B cell function by suppressor CD4+ T cells significantly. Reversal of suppression of B cell function was most marked when activated B cells were treated with mAb to ICAM-1 and suppressor CD4+ T cells were treated with mAb to LFA-1, but not vice versa. Studies using fluorescence-activated cell sorter revealed marked increase of expression of ICAM-1 on B cells after 72 hr of activation with immobilized anti-CD3-stimulated T4 mito. These results indicate that the interactions between LFA-1 and ICAM-1 play an important role in mediating the suppressive activity of anti-CD3-activated CD4+ T cells to B cells. Moreover, the data are consistent with a model of T-cell-mediated B cell suppression in which interactions between LFA-1 on suppressor T cells and ICAM-1 on activated B cells play a central role in the suppression of B cell function.  相似文献   

16.
Jolly C  Mitar I  Sattentau QJ 《Journal of virology》2007,81(24):13916-13921
Human immunodeficiency virus type 1 (HIV-1) can spread between CD4+ T cells by using a virological synapse (VS). The VS assembly is a cytoskeleton-driven process dependent on HIV-1 envelope glycoprotein (Env)-receptor engagement and is hypothesized to require adhesion molecule interactions. Here we demonstrate that leukocyte function-associated antigen 1 (LFA-1), intercellular adhesion molecule 1 (ICAM-1), and ICAM-3 are enriched at the VS and that inhibition of these interactions influences conjugate formation and reduces VS assembly. Moreover, CD4+ T cells deficient in LFA-1 or with modified LFA-1 function were less able to support VS assembly and cell-cell transfer of HIV-1. Thus, cognate adhesion molecule interactions at the VS are important for HIV-1 spread between T cells.  相似文献   

17.
The CD8 receptor plays a central role in the recognition and elimination of virally infected and malignant cells by cytolytic CD8(+) T cells. In conjunction with the TCR, the CD8 coreceptor binds Ag-specific class I MHC (MHC-I) molecules expressed by target cells, initiating signaling events that result in T cell activation. Whether CD8 can further function as an adhesion molecule for non-Ag MHC-I is currently unclear in humans. In this study, we show that in human CD8(+) T cells, TCR complex signaling activates CD8 adhesion molecule function, resulting in a CD8 interaction with MHC-I that is sufficient to maintain firm T cell adhesion under shear conditions. Secondly, we found that while CD8 adhesive function was triggered by TCR complex activation in differentiated cells, including in vitro generated CTL and ex vivo effector/memory phenotype CD8(+) T cells, naive CD8(+) T cells were incapable of activated CD8 adhesion. Lastly, we examine the kinetics of, and signaling for, activated CD8 adhesion in humans and identify notable differences from the equivalent CD8 function in mouse. Activated CD8 adhesion induced by TCR signaling may contribute to the more rapid and robust elimination of pathogen-infected cells by differentiated CD8(+) T cells.  相似文献   

18.
We used replication-dependent retroviral vectors to identify cell surface antigens involved in the cell-to-cell transmission of human T cell leukemia virus type 1 (HTLV-1). We generated monoclonal antibodies (MAbs) against Jurkat T cells and selected several IgM MAbs that strongly inhibited HTLV-1 but not human immune deficiency virus type 1 (HIV-1) cell-to-cell infection. These MAbs recognized the so-called Tn antigen (GalNAcα1-O-Ser/Thr) that arises on Jurkat cells from a mutation in the T-synthase-specific chaperone Cosmc and the consequent loss of O-glycan elongation. Anti-Tn MAbs precipitated two major O-glycan carrier proteins, CD43 and CD45, and caused a strong aggregation of Jurkat cells. The restoration of O-glycosylation in Jurkat cells by stably transducing the wild-type Cosmc gene resulted in a 3- to 4-fold increase in the level of surface expression of CD43 and enhanced HTLV-1 transmission 10-fold in comparison to that of parental cells. The short hairpin RNA (shRNA) knockdown of CD43 or CD45 expression in Jurkat-Cosmc, HBP-ALL, and CEM T cells decreased HTLV-1 infection severalfold. The knockdown of CD45 in Jurkat cells severely reduced both HTLV-1 and HIV-1 infections, but Cosmc coexpression partially rescued infection. HTLV-1 proteins, which assembled in small patches on Jurkat cells, formed large clusters on the surface of Jurkat-Cosmc cells. These data indicate that large aggregates of HTLV-1 assemblies are more infectious than multiple clustered virions. We suggest that heavily O-glycosylated CD43 and CD45 molecules render cells less adhesive, prevent inappropriate cell-cell contacts, and favor the assembly of HTLV-1 particles into large, highly infectious structures on the surface of T cells.  相似文献   

19.
We have used HSCA-2, an mAb that recognizes a sialic acid-dependent epitope on the low molecular mass (approximately 115-kDa) glycoform of CD43 that is expressed in resting T and NK cells, to examine the expression characteristics and stimulatory functions of CD43 in human CD4+ memory T cells. Having previously reported that the memory cells that respond to recall Ags in a CD4+ CD45RO+ T cell population almost all belong to a subset whose surface CD43 expression levels are elevated, we now find that exposing these same memory T cells to HSCA-2 mAb markedly increases their proliferative responsiveness to recall Ags. We think it unlikely that this increase in responsiveness is a result of CD43-mediated monocyte activation, especially given that the HSCA-2 mAb differs from all previously used CD43 mAbs in having no obvious binding specificity for monocyte CD43. Predictably, treatment with HSCA-2 mAb did not lead to significant recall responses in CD4+ CD45RO+ T cells, whose CD43 expression levels were similar to or lower than those of naive cells. Other experiments indicated that the HSCA-2 mAb was capable of enhancing the proliferative responsiveness of CD4+ memory T cells that had been exposed to polyclonal stimulation by monocyte-bound CD3 mAb and could also act in synergy with CD28 mAb to enhance the responsiveness of CD4+ T cells to CD3 stimulation. Taken together, these findings suggest that the CD43 molecules expressed on CD4+ memory T cells may be capable of enhancing the costimulatory signaling and hence providing accessory functions to TCR-mediated activation processes.  相似文献   

20.
Decay-accelerating factor (CD55) is a complement regulatory protein, which is expressed by most cells to protect them from complement-mediated attack. CD55 also binds CD97, an EGF-TM7 receptor constitutively expressed on granulocytes and monocytes and rapidly up-regulated on T and B cells upon activation. Early results suggested that CD55 could further enhance T cell proliferation induced by phorbol ester treatment. The present study demonstrates that coengagement of CD55, using either cross-linking mAbs or its natural ligand CD97, and CD3 results in enhanced proliferation of human peripheral blood CD4(+) T cells, expression of the activation markers CD69 and CD25, and secretion of IL-10 and GM-CSF. Recently, an increase in T cell responsiveness in CD55(-/-) mice was shown to be mediated by a lack of complement regulation. In this study, we show that direct stimulation of CD55 on CD4(+) T cells with CD97 can modulate T cell activation but does not interfere with CD55-mediated complement regulation. Our results support a multifaceted role for CD55 in human T cell activation, constituting a further link between innate and adaptive immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号