首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work reports for the first time a resonance Raman study of the mixed-valence and fully reduced forms of Paracoccus pantotrophus bacterial cytochrome c peroxidase. The spectra of the active mixed-valence enzyme show changes in the structure of the ferric peroxidatic heme compared to the fully oxidized enzyme; these differences are observed upon reduction of the electron-transferring heme and upon full occupancy of the calcium site. For the mixed-valence form in the absence of Ca(2+), the peroxidatic heme is six-coordinate and low-spin on the basis of the frequencies of the structure-sensitive Raman lines: the enzyme is inactive. With added Ca(2+), the peroxidatic heme is five-coordinate high-spin and active. The calcium-dependent spectral differences indicate little change in the conformation of the ferrous electron-transferring heme, but substantial changes in the conformation of the ferric peroxidatic heme. Structural changes associated with Ca(2+) binding are indicated by spectral differences in the structure-sensitive marker lines, the out-of-plane low-frequency macrocyclic modes, and the vibrations associated with the heme substituents of that heme. The Ca(2+)-dependent appearance of a strong gamma 15 saddling-symmetry mode for the mixed-valence form is consistent with a strong saddling deformation in the active peroxidatic heme, a feature seen in the Raman spectra of other peroxidases. For the fully reduced form in the presence of Ca(2+), the resonance Raman spectra show that the peroxidatic heme remains high-spin.  相似文献   

2.
The structural changes in the heme macrocycle and substituents caused by binding of Ca(2+) to the diheme cytochrome c peroxidase from Paracoccus pantotrophus were clarified by resonance Raman spectroscopy of the inactive fully oxidized form of the enzyme. The changes in the macrocycle vibrational modes are consistent with a Ca(2+)-dependent increase in the out-of-plane distortion of the low-potential heme, the proposed peroxidatic heme. Most of the increase in out-of-plane distortion occurs when the high-affinity site I is occupied, but a small further increase in distortion occurs when site II is also occupied by Ca(2+) or Mg(2+). This increase in the heme distortion explains the red shift in the Soret absorption band that occurs upon Ca(2+) binding. Changes also occur in the low-frequency substituent modes of the heme, indicating that a structural change in the covalently attached fingerprint pentapeptide of the LP heme occurs upon Ca(2+) binding to site I. These structural changes may lead to loss of the sixth ligand at the peroxidatic heme in the semireduced form of the enzyme and activation.  相似文献   

3.
Mutagenesis studies have been used to investigate the role of a heme ligand containing protein loop (67-79) in the activation of di-heme peroxidases. Two mutant forms of the cytochrome c peroxidase of Pseudomonas aeruginosa have been produced. One mutant (loop mutant) is devoid of the protein loop and the other (H71G) contains a non-ligating Gly at the normal histidine ligand site. Spectroscopic data show that in both mutants the distal histidine ligand of the peroxidatic heme in the un-activated enzyme is lost or is exchangeable. The un-activated H71G and loop mutants show, respectively, 75% and 10% of turnover activity of the wild-type enzyme in the activated form, in the presence of hydrogen peroxide and the physiological electron donor cytochrome c(551). Both mutant proteins show the presence of constitutive reactivity with peroxide in the normally inactive, fully oxidised, form of the enzyme and produce a radical intermediate. The radical product of the constitutive peroxide reaction appears to be located at different sites in the two mutant proteins. These results show that the loss of the histidine ligand from the peroxidatic heme is, in itself, sufficient to produce peroxidatic activity by providing a peroxide binding site and that the formation of radical intermediates is very sensitive to changes in protein structure. Overall, these data are consistent with a major role for the protein loop 67-79 in the activation of di-heme peroxidases and suggest a "charge hopping" mechanism may be operative in the process of intra-molecular electron transfer.  相似文献   

4.
Versatile peroxidase (VP) from Bjerkandera adusta, as other class II peroxidases, is inactivated by Ca(2+) depletion. In this work, the spectroscopic characterizations of Ca(2+)-depleted VP at pH 4.5 (optimum for activity) and pH 7.5 are presented. Previous works on other ligninolytic peroxidases, such as lignin peroxidase and manganese peroxidase, have been performed at pH 7.5; nevertheless, at this pH these enzymes are inactive independently of their Ca(2+) content. At pH 7.5, UV-Vis spectra indicate a heme-Fe(3+) transition from 5-coordinated high-spin configuration in native peroxidase to 6-coordinated low-spin state in the inactive Ca(2+)-depleted form. This Fe(3+) hexa-coordination has been proposed as the origin of inactivation. However, our results at pH 4.5 show that Ca(2+)-depleted enzyme has a high spin Fe(3+). EPR measurements on VP confirm the differences in the Fe(3+) spin states at pH 4.5 and at 7.5 for both, native and Ca(2+)-depleted enzymes. In addition, EPR spectra recorded after the addition of H(2)O(2) to Ca(2+)-depleted VP show the formation of compound I with the radical species delocalized on the porphyrin ring. The lack of radical delocalization on an amino acid residue exposed to solvent, W170, as determined in native enzyme at pH 4.5, explains the inability of Ca(2+)-depleted VP to oxidize veratryl alcohol. These observations, in addition to a notorious redox potential decrease, suggest that Ca(2+)-depleted versatile peroxidase is able to form the active intermediate compound I but its long range electron transfer has been disrupted.  相似文献   

5.
A class III peroxidase, isolated and characterized from the latex of the perennial Mediterranean shrub Euphorbia characias, contains one ferric iron-protoporphyrin IX pentacoordinated with a histidine 'proximal' ligand as heme prosthetic group. In addition, the purified peroxidase contained 1 mole of endogenous Ca(2+) per mole of enzyme, and in the presence of excess Ca(2+), the catalytic efficiency was enhanced by three orders of magnitude. The incubation of the native enzyme with Ni(2+) causes reversible inhibition, whereas, in the presence of excess Ca(2+), Ni(2+) leads to an increase of the catalytic activity of Euphorbia peroxidase. UV/visible absorption spectra show that the heme iron remains in a quantum mechanically mixed-spin state as in the native enzyme after addition of Ni(2+), and only minor changes in the secondary or tertiary structure of the protein could be detected by fluorescence or CD measurements in the presence of Ni(2+). In the presence of H(2)O(2) and in the absence of a reducing agent, Ni(2+) decreases the catalase-like activity of Euphorbia peroxidase and accelerates another pathway in which the inactive stable species accumulates with a shoulder at 619 nm. Analysis of the kinetic measurements suggests that Ni(2+) affects the H(2)O(2)-binding site and inhibits the formation of compound I. In the presence of excess Ca(2+), Ni(2+) accelerates the reduction of compound I to the native enzyme. The reported results are compatible with the hypothesis that ELP has two Ni(2+)-binding sites with opposite functional effects.  相似文献   

6.
J Wang  H Zhu  M R Ondrias 《Biochemistry》1992,31(51):12847-12854
Ferric cytochrome c peroxidase (CCP) undergoes a ligation-state transition from a pentacoordinate, high-spin (5c/hs) heme to a hexacoordinate, low-spin (6c/1s) heme when titrated over a pH range of 7.30-9.70. This behavior is similar to that exhibited by the ferrous form of the enzyme. However, the photodissociation of the low-spin, axial ligand, exhibited by ferrous CCP at alkaline pH, is not observed for ferric CCP. Instead, a photoinduced reduction of the ferric heme is apparent in the pH range 7.90-9.70. In the absence of O2 and redox mediators such as methyl viologen (MV2+), the reoxidation of the photoreduced enzyme is very slow (tau 1/2 approximately 3 min). F(-)-bound CCP(III) (6c/hs) displays similar pH-dependent photoreduction. Horseradish peroxidase, however, does not. The formation of 6c/1s heme coincides with the onset of appreciable photoreduction (between laser pulses, > 60 ms) of CCP (III) at alkaline pH, suggesting a global protein conformational rearrangement within or around its heme pocket. Photoreduction of alkaline CCP(III) most likely involves intramolecular electron transfer (ET) from the aromatic residue in the proximal heme pocket to the photoexcited heme. We speculate that the kinetics of electron transfer are affected by changes in the orientation of Trp-191.  相似文献   

7.
The peroxidatic activity of the heme octapeptide from cytochrome c, microperoxidase-8 (MP-8), was assayed at 25 degrees C under conditions where formation of Compound I is rate limiting. In the pH range 6-9, the reaction rate increased linearly with a slope close to unity. The active form of the substrate is the hydroperoxide anion, HO2-, and an extrapolated second-order rate constant was obtained for the reaction of aquoMP-8 with HO2- of 3.7 X 10(8) M-1 sec-1, which is close to the second-order rate constants reported for reaction of the peroxidase enzymes with H2O2. Comparison with published data shows that the Fe3+ ion of MP-8 reacts as expected with simple anions, electrons, and HO2-, while the analogous reactions of the enzymes all show a requirement for one H+. We conclude that the peroxidase enzymes activate H2O2 under physiological conditions through a pH-independent, H+-coupled binding of the required H2O2-. The peroxidase activity of MP-8 can be increased more than tenfold by the presence of the guanidinium ion, which is ascribed to formation of the ion-pair GuaH+HO2-; this suggests a role for the invariant distal Arg in the enzymes.  相似文献   

8.
The production of cytochrome c peroxidase (CCP) from Pseudomonas ( Ps.) stutzeri (ATCC 11607) was optimized by adjusting the composition of the growth medium and aeration of the culture. The protein was isolated and characterized biochemically and spectroscopically in the oxidized and mixed valence forms. The activity of Ps. stutzeri CCP was studied using two different ferrocytochromes as electron donors: Ps. stutzeri cytochrome c(551) (the physiological electron donor) and horse heart cytochrome c. These electron donors interact differently with Ps. stutzeri CCP, exhibiting different ionic strength dependence. The CCP from Paracoccus ( Pa.) denitrificans was proposed to have two different Ca(2+) binding sites: one usually occupied (site I) and the other either empty or partially occupied in the oxidized enzyme (site II). The Ps. stutzeri enzyme was purified in a form with tightly bound Ca(2+). The affinity for Ca(2+) in the mixed valence enzyme is so high that Ca(2+) returns to it from the EGTA which was added to empty the site in the oxidized enzyme. Molecular mass determination by ultracentrifugation and behavior on gel filtration chromatography have revealed that this CCP is isolated as an active dimer, in contrast to the Pa. denitrificans CCP which requires added Ca(2+) for formation of the dimer and also for activation of the enzyme. This is consistent with the proposal that Ca(2+) in the bacterial peroxidases influences the monomer/dimer equilibrium and the transition to the active form of the enzyme. Additional Ca(2+)does affect both the kinetics of oxidation of horse heart cytochrome c (but not cytochrome c(551)) and higher aggregation states of the enzyme. This suggests the presence of a superficial Ca(2+)binding site of low affinity.  相似文献   

9.
Basic artichoke (Cynara scolymus L.) peroxidase (AKP-C), when purified from the plant, has an unusually intense and sharp Soret absorption peak. The resonance Raman spectrum [López-Molina, D., et al. (2003) J. Inorg. Biochem. 94, 243-254] suggested a mixture of pentacoordinate high-spin (5cHS) and 6-aquo hexacoordinate high-spin (6cHS) ferric heme species. The rate constant (k(1)) of compound I formation with hydrogen peroxide (H(2)O(2)) was also lower than expected. Further stopped-flow studies have shown this reaction to be biphasic: a nonsaturating fast phase and a slow phase with complex H(2)O(2) concentration dependence. Addition of calcium ions (Ca(2+)) changed the absorption spectrum, suggesting the formation of a fully 5cHS species with a k(1) more than 5 orders of magnitude greater than that in the absence of Ca(2+) using the chelator ethylenediaminetetraacetic acid. Ca(2+) titrations gave a dissociation constant for a single Ca(2+) of approximately 20 microM. The circular dichroism spectrum of AKP-C was not significantly altered by Ca(2+), indicating that any structural changes will be minor, but removal of Ca(2+) did suppress the alkaline transition between pH 10 and 11. A kinetic analysis of the reaction of Ca(2+)-free AKP-C with H(2)O(2) supports an equilibrium between a slow-reacting 6cHS form and a more rapidly reacting 5cHS species, the presence of which was confirmed in nonaqueous solution. AKP-C, as purified, is a mixture of Ca(2+)-bound 5cHS, 6-aquo 6cHS, and Ca(2+)-free 5cHS species. The possibility that Ca(2+) concentration could control peroxidase activity in the plant is discussed.  相似文献   

10.
The ferrous form of native cytochrome c peroxidase (CCP) is known to undergo a reversible transition when titrated over the pH range of 7.00-9.70. This transition produces a conversion from a pentacoordinate high-spin to a hexacoordinate low-spin heme active site and is clearly apparent in the heme optical absorption spectra. Here, we report the characterization of this transition and its effect upon the local heme environment using various optical spectroscopies. The formation of hexacoordinate low-spin heme is interpreted to involve the binding of His-52 at the distal site after the perturbation of the extensive H-bonded network within and around the heme pocket of CCP(II) at alkaline pH. Interestingly, CD investigations of CCP(II) in the far-UV and Soret regions indicate the dissappearance of a single high-spin species and the existence of at least two low-spin species of CCP(II) as the pH is raised above 7.90. Furthermore, transient resonance Raman experiments demonstrate that the hexacoordinate low-spin species can be photolyzed within 10-ns laser pulses, producing a species similar to the low-pH (high-spin) form of CCP(II) at alkaline pH. However, the extent of photolysis is quite pH dependent, with a maximum photodissociation yield at pH = 8.50.  相似文献   

11.
Peroxidases catalyze the dehydrogenation by hydrogen peroxide (H2O2) of various phenolic and endiolic substrates in a peroxidatic reaction cycle. In addition, these enzymes exhibit an oxidase activity mediating the reduction of O2 to superoxide (O2.-) and H2O2 by substrates such as NADH or dihydroxyfumarate. Here we show that horseradish peroxidase can also catalyze a third type of reaction that results in the production of hydroxyl radicals (.OH) from H2O2 in the presence of O2.-. We provide evidence that to mediate this reaction, the ferric form of horseradish peroxidase must be converted by O2.- into the perferryl form (Compound III), in which the haem iron can assume the ferrous state. It is concluded that the ferric/perferryl peroxidase couple constitutes an effective biochemical catalyst for the production of .OH from O2.- and H2O2 (iron-catalyzed Haber-Weiss reaction). This reaction can be measured either by the hydroxylation of benzoate or the degradation of deoxyribose. O2.- and H2O2 can be produced by the oxidase reaction of horseradish peroxidase in the presence of NADH. The .OH-producing activity of horseradish peroxidase can be inhibited by inactivators of haem iron or by various O2.- and .OH scavengers. On an equimolar Fe basis, horseradish peroxidase is 1-2 orders of magnitude more active than Fe-EDTA, an inorganic catalyst of the Haber-Weiss reaction. Particularly high .OH-producing activity was found in the alkaline horseradish peroxidase isoforms and in a ligninase-type fungal peroxidase, whereas lactoperoxidase and soybean peroxidase were less active, and myeloperoxidase was inactive. Operating in the .OH-producing mode, peroxidases may be responsible for numerous destructive and toxic effects of activated oxygen reported previously.  相似文献   

12.
A cationic peroxidase was isolated and characterized from the latex of the perennial Mediterranean plant Euphorbia characias. The purified enzyme contained one heme prosthetic group identified as ferric iron-protoporphyrin IX. In addition, the purified peroxidase contained 1 mol of endogenous calcium per mol of enzyme; removal of this calcium ion resulted in almost complete loss of the enzyme activity. However, when excess Ca(2+) was added to the native enzyme the catalytic efficiency was enhanced by 3 orders of magnitude. The mechanism of activation was studied using a wide range of spectroscopic and analytic techniques. Analysis of the steady state by stopped-flow measurements suggests that the main effect of calcium ions is to favor the oxidation of the ferric enzyme by hydrogen peroxide to form compound I, whereas the other steps of the catalytic cycle seem to be affected to a lesser extent. UV/vis absorption spectra and CD measurements show that the heme iron is pentacoordinated high-spin in native enzyme and remains so after the binding of Ca(2+). Only minor changes in the secondary or tertiary structure of the protein could be detected by fluorescence or CD measurements in the presence of Ca(2+) ions, except for a significant perturbation of the Fe(3+) inner sphere geometry, as detected by EPR measurements. We propose that Ca(2+) binding to a low affinity site induces a reorientation of the distal histidine changing the almost inactive form of Euphorbia peroxidase to a high activity form. This is the first example of a peroxidase that responds as an on/off switch to variations in the external Ca(2+) level.  相似文献   

13.
H C Kelly  D M Davies  M J King  P Jones 《Biochemistry》1977,16(16):3543-3549
The pH dependence of formation of a peroxidatic intermediate from the reaction of deuteroferriheme with hydrogen peroxide has been determined for the region pH 8.7-10.1 from stopped-flow kinetic studies in which absorbancy changes are observed at heme monomer-dimer isosbestic points. Results are interpreted primarily in terms of the attainment of double "steady-state" concentrations of Michaelis-Menten complex I and peroxidatic intermediate I'. A linear correlation of observed first-order rate constants with alpha, the degree of dissociation of heme dimer, has been demonstrated and nonzero intercepts are obtained. Slopes and intercepts show a linear logarithmic dependence on pH which is interpreted in terms of HO2-participation both in the formation and subsequent (catalatic) decomposition of a peroxidatically active intermediate. General acid catalysis of intermediate formation is indicated from studies in phosphate, arsenate, and citrate buffer at pH 7.4-9.3. It is suggested that such catalysis may be responsible for anomalously high rates of H2O2 decomposition previously observed in phosphate buffer solution.  相似文献   

14.
Degradation of myelin basic protein during incubations with high concentrations of horseradish peroxidase has been demonstrated [Johnson & Cammer (1977) J. Histochem. Cytochem.25, 329-336]. Possible mechanisms for the interaction of the basic protein with peroxidase were investigated in the present study. Because the peroxidase samples previously observed to degrade basic protein were mixtures of isoenzymes, commercial preparations of the separated isoenzymes were tested, and all three degraded basic protein, but to various extents. Three other basic proteins, P(2) protein from peripheral nerve myelin, lysozyme and cytochrome c, were not degraded by horseradish peroxidase under the same conditions. Inhibitor studies suggested a minor peroxidatic component in the reaction. Therefore the peroxidatic reaction with basic protein was studied by using low concentrations of peroxidase along with H(2)O(2). Horseradish peroxidase plus H(2)O(2) caused the destruction of basic protein, a reaction inhibited by cyanide, azide, ferrocyanide, tyrosine, di-iodotyrosine and catalase. Lactoperoxidase plus H(2)O(2) and myoglobin plus H(2)O(2) were also effective in destroying the myelin basic protein. Low concentrations of horseradish peroxidase plus H(2)O(2) were not active against other basic proteins, but did destroy casein and fibrinogen. Although high concentrations of peroxidase alone degraded basic protein to low-molecular-weight products, suggesting the operation of a proteolytic enzyme contaminant in the absence of H(2)O(2), incubations with catalytic concentrations of peroxidase in the presence of H(2)O(2) converted basic protein into products with high molecular weights. Our data suggest a mechanism for the latter, peroxidatic, reaction where polymers would form by linking the tyrosine side chains in basic-protein molecules. These data show that the myelin basic protein is unusually susceptible to peroxidatic reactions.  相似文献   

15.
Ascorbate peroxidase (APX) is a heme-containing protein that plays a central role in scavenging H(2)O(2) in higher plants. The structure of stromal APX (sAPX) was determined at 1.6 A to an R-factor of 19.1% and an R-free-factor of 22.3%. The electrostatic potential of the gamma-channel that connects the molecular surface of sAPX to the gamma-edge of heme was more positive than that of cytosolic APX (cAPX) from pea, so sAPX might bind more easily with ascorbate than cAPX. The overall structure of sAPX was similar to those of cAPX from pea and cytochrome c peroxidase (CCP) from yeast, with a substantial difference in a loop structure located in the vicinity of the heme. The side chain of Arg169 in sAPX corresponding to His169 in cAPX and His181 in CCP extended in the opposite direction from the heme, forming two hydrogen bonds with carbonyl groups in the loop structure. The rapid inactivation of sAPX might be due to the characteristic conformation of Arg169 owing to the loop structure of sAPX.  相似文献   

16.
Eukaryotic typical 2-Cys type peroxiredoxin (Prx) is inactivated by hyperoxidation of the peroxidatic cysteine to a sulphinic acid in a catalytic cycle-dependent manner. This inactivation process has been well documented for cytosolic isoforms of Prx. However, such a hyperoxidative inactivation has not fully been investigated in Prx-4, a secretable endoplasmic reticulum-resident isoform, in spite of being a typical 2-Cys type, and details of this process are reported herein. As has been observed in many peroxiredoxins, the peroxidase activity of Prx-4 was almost completely inhibited in the reaction with t-butyl hydroperoxide. On the other hand, when H(2)O(2) was used as the substrate, the peroxidase activity significantly remained after oxidative damage. In spite of these different consequences, mass spectrometric analyses indicated that both reactions resulted in the same oxidative damage, i.e. sulphinic acid formation at the peroxidatic cysteine, suggesting that another cysteine in the active site confers the peroxidase activity. As suggested by the analyses using cysteine-substituted mutants sulphinic acid formation at the peroxidatic cysteine may play a role in the development of the possible alternative mechanism, thereby sustaining the peroxidase activity that prefers H(2)O(2).  相似文献   

17.
CO recombination to the cloned cytochrome c peroxidase [CCP(MI)] and mutants of CCP(MI) prepared by site-directed mutagenesis was examined as a function of pH by flash photolysis. The mutants examined included distal Arg 48----Leu, Lys; proximal Asp 235----Asn; and His 181----Gly. At alkaline pH, ferrous CCP(MI) was converted to a hexacoordinate form by a cooperative two-proton ionization, apparent pK(a) = 8.0. This change was observed in all of the mutants, although in the His 181----Gly mutant, the conversion to the hexacoordinate form was the result of a single-proton ionization, implicating His 181 as one of the two residues deprotonated in this isomerization. The pH-dependent conversion of CO ferrous CCP(MI) from acidic to alkaline forms was also observed and was similar to that reported for cytochrome c peroxidase from bakers' yeast [Iizuka, T., Makino, R., Ishimura, Y., & Yonetani, T. (1985) J. Biol. Chem. 260, 1407-1412]. Photolysis of the acidic form of the CO complex of CCP(MI) produces a kinetic form of the ferrous enzyme (form A) which exhibits the slow rate of CO recombination (l1' approximately 10(3) M-1 s-1) characteristic of peroxidases, while photolysis of the alkaline form of the CO complex produces a second kinetic form (form B), which exhibits a much faster rate of recombination (l2' approximately 10(5) M-1 s-1). Kinetic forms analogous to forms A and B were observed in all of the mutants examined. A third kinetic form (form B*) with a bimolecular rate constant l3' approximately 10(6) M-1 s-1 was also observed in the mutants at alkaline pH. Although the pH dependence for the conversion of form A to form B with increasing pH was altered by changes in the local heme environment, the rate of CO recombination by the respective forms was not dramatically altered in the mutants. Transient spectra of the reaction of CO with ferrous CCP(MI) after photolysis show that equilibrium between penta- and hexacoordinate ferrous enzyme is rapid relative to CO recombination. The presence of the internal sixth ligand has no discernible effect on the observed rate of recombination, however. The results presented indicate that in CCP(MI) the rate of ligand binding is determined primarily by isomerization of the protein from a closed conformation at acidic pH to an open conformation at alkaline pH and that polar effects of proximal Asp 235 and distal Arg 48 are of minor significance in the rate of CO recombination in both conformations.  相似文献   

18.
Analysis of the peroxidatic mode of action of catalase   总被引:4,自引:0,他引:4  
Catalase is an enzyme which can function either in the catabolism of hydrogen peroxide or in the peroxidatic oxidation of small substrates such as ethanol, methanol, or elemental mercury (Hg0). It has been reported that native catalase can peroxidatically oxidize larger organic molecules (e.g. L-dopa) and that catalase maintained at alkaline pH for various lengths of time demonstrates an increase in peroxidase activity using guaiacol as substrate. We have shown, by using two distinct methods of H2O2 introduction for measuring peroxidase activity, that native catalase shows no peroxidatic activity toward these larger organic molecules. We have also shown, through the use of these peroxidase assays and by enzyme absorption spectra, that the peroxidase activity attributed to catalase maintained at alkaline pH is a catalytic but not enzymatic activity associated with a hematin group attached to a denatured catalase monomer. Possible mechanisms for the catalytic and peroxidatic modes of action of catalase involving hydride-ion transfer are discussed.  相似文献   

19.
We have previously shown that the K(+) site found in ascorbate peroxidase can be successfully engineered into the closely homologous peroxidase, cytochrome c peroxidase (CCP) (Bonagura, C. A. , Sundaramoorthy, M., Pappa, H. S., Patterson, W. R., and Poulos, T. L. (1996) Biochemistry 35, 6107-6115; Bonagura, C. A., Sundaramoorthy, M., Bhaskar, B., and Poulos, T. L. (1999) Biochemistry 38, 5538-5545). All other peroxidases bind Ca(2+) rather than K(+). Using the K(+)-binding CCP mutant (CCPK2) as a template protein, together with observations from structural modeling, mutants were designed that should bind Ca(2+) selectively. The crystal structure of the first generation mutant, CCPCA1, showed that a smaller cation, perhaps Na(+), is bound instead of Ca(2+). This is probably because the full eight-ligand coordination sphere did not form owing to a local disordering of one of the essential cation ligands. Based on these observations, a second mutant, CCPCA2, was designed. The crystal structure showed Ca(2+) binding in the CCPCA2 mutant and a well ordered cation-binding loop with the full complement of eight protein to cation ligands. Because cation binding to the engineered loop results in diminished CCP activity and destabilization of the essential Trp(191) radical as measured by EPR spectroscopy, these measurements can be used as sensitive methods for determining cation-binding selectivity. Both activity and EPR titration studies show that CCPCA2 binds Ca(2+) more effectively than K(+), demonstrating that an iterative protein engineering-based approach is important in switching protein cation selectivity.  相似文献   

20.
The extent to which the structural Ca(2+) ions of horseradish peroxidase (HRPC) are a determinant in defining the heme pocket architecture is investigated by electronic absorption and resonance Raman spectroscopy upon removal of one Ca(2+) ion. The Fe(III) heme states are modified upon Ca(2+) depletion, with an uncommon quantum mechanically mixed spin state becoming the dominant species. Ca(2+)-depleted HRPC forms complexes with benzohydroxamic acid and CO which display spectra very similar to those of native HRPC, indicating that any changes to the distal cavity structural properties upon Ca(2+) depletion are easily reversed. Contrary to the native protein, the Ca(2+)-depleted ferrous form displays a low-spin bis-histidyl heme state and a small proportion of high-spin heme. Furthermore, the nu(Fe-Im) stretching mode downshifts 27 cm(-1) upon Ca(2+) depletion revealing a significant structural perturbation of the proximal cavity near the histidine ligand. The specific activity of the Ca(2+)-depleted enzyme is 50% that of the native form. The effects on enzyme activity and spectral features observed upon Ca(2+) depletion are reversible upon reconstitution. Evaluation of the present and previous data firmly favors the proximal Ca(2+) ion as that which is lost upon Ca(2+) depletion and which likely plays the more critical role in regulating the heme pocket structural and catalytic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号