首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Expression of cell adhesion molecule in endothelial cells upon activation by human immunodeficiency virus (HIV) infection is associated with the development of atherosclerotic vasculopathy. We postulated that induction of vascular cell adhesion molecule-1 (VCAM-1) by HIV-1 Tat protein in endothelial cells might represent an early event that could culminate in inflammatory cell recruitment and vascular injury. We determined the role of HIV-1 Tat protein in VCAM-1 expression in human pulmonary artery endothelial cells (HPAEC). HIV-1 Tat protein treatment significantly increased cell-surface expression of VCAM-1 in HPAEC. Consistently, mRNA expression of VCAM-1 was also increased by HIV-1 Tat protein as measured by RT-PCR. HIV-1 Tat protein-induced VCAM-1 expression was abolished by the NF-kappaB inhibitor pyrrolidine dithiocarbamate (PDTC) and the p38 MAPK inhibitor SB-203580. Furthermore, HIV-1 Tat protein enhanced DNA binding activity of NF-kappaB, facilitated nuclear translocation of NF-kappaB subunit p65, and increased production of reactive oxygen species (ROS). Similarly to VCAM-1 expression, HIV-1 Tat protein-induced NF-kappaB activation and ROS generation were abrogated by PDTC and SB-203580. These data indicate that HIV-1 Tat protein is able to induce VCAM-1 expression in HPAEC, which may represent a pivotal early molecular event in HIV-induced vascular/pulmonary injury. These data also suggest that the molecular mechanism underlying the HIV-1 Tat protein-induced VCAM-1 expression may involve ROS generation, p38 MAPK activation, and NF-kappaB translocation, which are the characteristics of pulmonary endothelial cell activation.  相似文献   

2.
3.
Vascular endothelial growth factor (VEGF) induces adhesion molecules on endothelial cells during inflammation. Here we examined the mechanisms underlying VEGF-stimulated expression of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin in human umbilical vein endothelial cells. VEGF (20 ng/ml) increased expression of ICAM-1, VCAM-1, and E-selectin mRNAs in a time-dependent manner. These effects were significantly suppressed by Flk-1/kinase-insert domain containing receptor (KDR) antagonist and by inhibitors of phospholipase C, nuclear factor (NF)-kappaB, sphingosine kinase, and protein kinase C, but they were not affected by inhibitors of mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) 1/2 or nitric-oxide synthase. Unexpectedly, the phosphatidylinositol (PI) 3'-kinase inhibitor wortmannin enhanced both basal and VEGF-stimulated adhesion molecule expression, whereas insulin, a PI 3'-kinase activator, suppressed both basal and VEGF-stimulated expression. Gel shift analysis revealed that VEGF stimulated NF-kappaB activity. This effect was inhibited by phospholipase C, NF-kappaB, or protein kinase C inhibitor. VEGF increased VCAM-1 and ICAM-1 protein levels and increased leukocyte adhesiveness in a NF-kappaB-dependent manner. These results suggest that VEGF-stimulated expression of ICAM-1, VCAM-1, and E-selectin mRNAs was mainly through NF-kappaB activation with PI 3'-kinase-mediated suppression, but was independent of nitric oxide and MEK. Thus, VEGF simultaneously activates two signal transduction pathways that have opposite functions in the induction of adhesion molecule expression. The existence of parallel inverse signaling implies that the induction of adhesion molecule expression by VEGF is very finely regulated.  相似文献   

4.
Adhesion and migration of leukocytes into the surrounding tissues is a crucial step in inflammation, immunity, and atherogenesis. Expression of cell adhesion molecules by endothelial cells plays a leading role in this process. Butyrate, a natural short-chain fatty acid produced by bacterial fermentation of dietary fiber, has been attributed with anti-inflammatory activity in inflammatory bowel disease. Butyrate in vitro is active in colonocytes and several other cell types. We have studied the effect of butyrate on expression of endothelial leukocyte adhesion molecules by cytokine-stimulated human umbilical vein endothelial cells (HUVEC). Pretreatment of HUVEC with butyrate-inhibited tumor necrosis factor-alpha (TNFalpha)-induced expression of vascular cell adhesion molecule-1 (VCAM-1) and intracellular cell adhesion molecule-1 (ICAM-1) in a time and concentration-dependent manner. Butyrate at 10 mM/L inhibited interleukin-1 (IL-1)-stimulated VCAM-1 and ICAM-1 expression. The effect of butyrate on cytokine-stimulated VCAM-1 expression was more pronounced than in the case of ICAM-1. Butyrate decreased TNFalpha-induced expression of mRNA for VCAM-1 and ICAM-1. Suppressed expression of VCAM-1 and ICAM-1 was associated with reduced adherence of monocytes and lymphocytes to cytokine-stimulated HUVEC. Butyrate inhibited TNFalpha-induced activation of nuclear factor-kappaB (NF-kappaB) in HUVEC. Finally, butyrate enhanced peroxisome proliferator-activated receptor-alpha (PPARalpha) expression in HUVEC. These results demonstrate that butyrate may have anti-inflammatory properties not only in colonocytes but also in endothelial cells. The anti-inflammatory and (perhaps) antiatherogenic properties of butyrate may partly be attributed to an effect on activation of NF-kappaB and PPARalpha and to the associated expression of VCAM-1 and ICAM-1. The present findings support further investigations on the therapeutic benefits of butyrate in several pathological events involving leukocyte recruitment.  相似文献   

5.
Adhesion and transendothelial migration of leukocytes into the vascular wall is a crucial step in atherogenesis. Expression of cell adhesion molecules by endothelial cells plays a leading role in this process. We investigated the effect of simvastatin, an inhibitor of HMG-CoA reductase administered to reduce plasma levels of LDL-cholesterol, on the expression of vascular cell adhesion molecule-1 (VCAM-1) and intracellular cell adhesion molecule-1 (ICAM-1) by human umbilical vein endothelial cells (HUVEC) stimulated with tumor necrosis factor alpha (TNFalpha). We found the expression to be significantly inhibited by the drug in a time and concentration-dependent manner and to a greater extent in the case of VCAM-1 as compared with ICAM-1. In TNFalpha-stimulated HUVEC, simvastatin decreased VCAM-1 and ICAM-1 mRNA levels, inhibited TNFalpha-induced activation of nuclear factor kappaB (NF-kappaB) and enhanced expression of peroxisome proliferator-activated receptor alpha (PPARalpha). These effects were associated with reduction of adherence of monocytes and lymphocytes to HUVEC. The present findings suggest that the benefits of statins in vascular disease may include the inhibition of expression of VCAM-1 and ICAM-1 through effects on NF-kappaB.  相似文献   

6.
7.
Cell adhesion molecules expressed on endothelial cells in inflamed skin appear to be controlled by the actions of cytokines and reactive oxygen species. However, molecular mechanisms of the expression of adhesion molecules during skin inflammation are currently not well understood. To evaluate the role of antioxidants and nitric oxide in modulating inflammatory processes in the skin, we examined the effects of pyrrolidine dithiocarbamate (PDTC, 0.1 mM) and spermine NONOate (Sper-NO, 1 mM) on adhesion molecule expression and nuclear factor kappa B (NF-kappaB) activation induced by TNF-alpha (10 ng/ml) in cultured human dermal microvascular endothelial cells (HDMEC). Treatment of cells with TNF-alpha for 4 h significantly induced the surface expression of E-selectin and intercellular adhesion molecule-1 (ICAM-1). Treatment with TNF-alpha for 8 h significantly induced the surface expression of E-selectin, ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1). The up-regulation of these adhesion molecules was suppressed significantly by pretreatment with PDTC or Sper-NO for 1 h. The mRNA expression of E-selectin, ICAM-1 and VCAM-1, and activation of NF-kappaB induced by TNF-alpha for 2 h were significantly decreased by the above two pretreatments. N-acetylcysteine (10 mM) and S-nitroso-N-acetylpenicillamine (1 mM) had no significant inhibitory effects on the cell surface and mRNA expression of these adhesion molecules stimulated by TNF-alpha. These findings indicate that both cell surface and mRNA expression of adhesion molecules in HDMEC induced by TNF-alpha are inhibited significantly by pretreatment with PDTC or Sper-NO, possibly in part through blocking the activation of NF-kappaB. These results suggest a potential therapeutic approach using antioxidant agents or nitric oxide pathway modulators in the treatment of inflammatory skin diseases.  相似文献   

8.
9.
Migita H  Satozawa N  Lin JH  Morser J  Kawai K 《FEBS letters》2004,557(1-3):269-274
Retinoic acid receptor-related orphan receptor-alpha (RORalpha) is a nuclear orphan receptor. Adenovirus-mediated overexpression of RORalpha1 and RORalpha4 suppressed tumor necrosis factor-alpha (TNF-alpha)-induced expression of vascular cell adhesion molecule-1 (VCAM-1) and intracellular adhesion molecule-1 (ICAM-1) in human umbilical vein endothelial cells. Overexpression of RORalpha1 and RORalpha4 also suppressed TNF-alpha-stimulated translocation of p50 and p65 to the nucleus. In contrast, dominant-negative deletion mutants of RORalpha1 and RORalpha4 failed to suppress the induction of VCAM-1 and ICAM-1 and translocations of p50 and p65. These results suggest that RORalpha1 and RORalpha4 regulate the inflammatory responses via inhibition of the nuclear factor-kappaB signaling pathway in endothelial cells.  相似文献   

10.
11.
The signaling pathways that couple adiponectin receptors to functional, particularly inflammatory, responses have remained elusive. We report here that globular adiponectin induces endothelial cell activation, as measured by the expression of adhesion proteins such as vascular adhesion molecule-1 (VCAM-1), intracellular adhesion molecule-1 (ICAM-1), E-selectin and MCP-1, through the sphingosine kinase (SKase) signaling pathway. Treatment of human umbilical vein endothelial cells with globular adiponectin resulted in NF-kappaB activation and increased mRNA levels of VCAM-1, ICAM-1, E-selectin and MCP-1. Sphingosine 1-phosphate (S1P), but not ceramide or sphingosine, was a potent stimulator of adhesion protein expression. As S1P is generated from sphingosine by SKase, we treated cells with siRNA for SKase to silence the effects of S1P in the endothelial cells. Treatment with SKase siRNA inhibited globular adiponectin-induced NF-kappaB activation and markedly decreased the globular adiponectin-induced mRNA levels of adhesion protein. Thus, we demonstrated that the SKase pathway, through the generation of S1P, is critically involved in mediating globular adiponectin-induced endothelial cell activation.  相似文献   

12.
13.
Orai1-dependent Ca2+ entry plays an essential role in inflammatory response through regulating T cell and macrophage activation and neutrophil infiltration. However, whether Orai1 Ca2+ entry contributes to endothelial activation, one of the early steps of vascular inflammation, remains elusive. In the present study, we observed that knockdown of Orai1 reduced, whereas overexpression of Orai1 potentiated, TNFα-induced expression of adhesion molecules such as ICAM-1 and VCAM-1 in HUVECs, and subsequently blocked adhesion of monocyte to HUVECs. In vivo, Orai1 downregulation attenuated TNFα-induced ICAM-1 and VCAM-1 expression in mouse aorta and the levels of pro-inflammatory cytokines in the serum. In addition, Orai1 knockdown also dramatically decreased the expression of pro-inflammatory cytokines and neutrophil infiltration in the lung after TNFα treatment, and thus protected lung tissue injury. Notably, among all isoforms of nuclear factor of activated T cells (NFATs), TNFα only triggered NFATc4 nuclear accumulation in HUVECs. Knockdown of Orai1 or inhibition of calcineurin prevented TNFα-induced NFATc4 nuclear translocation and reduced ICAM-1 and VCAM-1 expression in HUVECs. Overexpression of NFATc4 further enhanced ICAM-1 and VCAM-1 expression induced by TNFα. Our study demonstrates that Orai1-Ca2+-calcineurin-NFATc4 signaling is an essential inflammatory pathway required for TNFα-induced endothelial cell activation and vascular inflammation. Therefore, Orai1 may be a potential therapeutic target for treatment of inflammatory diseases.  相似文献   

14.
In response to inflammation stimuli, tumor necrosis factor-alpha (TNF-alpha) induces expression of cell adhesion molecules (CAMs) in endothelial cells (ECs). Studies have suggested that the nuclear factor-kappaB (NF-kappaB) and the p38 MAP kinase (p38) signaling pathways play central roles in this process, but conflicting results have been reported. The objective of this study is to determine the relative contributions of the two pathways to the effect of TNF-alpha. Our initial data indicated that blockade of p38 activity by chemical inhibitor SB203580 (SB) at 10 microM moderately inhibited TNF-alpha-induced expression of three types of CAMs; ICAM-1, VCAM-1 and E-selectin, indicating that p38 may be involved in the process. However, subsequent analysis revealed that neither 1 microM SB that could completely inhibit p38 nor specific knockdown of p38alpha and p38beta with small interference RNA (siRNA) had an apparent effect, indicating that p38 activity is not essential for TNF-alpha-induced CAMs. The most definitive evidence to support this conclusion was from the experiments using cells differentiated from p38alpha knockout embryonic stem cells. We could show that deletion of p38alpha gene did not affect TNF-alpha-induced ICAM-1 and VCAM-1 expression when compared with wild-type cells. We further demonstrated that inhibition of NF-kappaB completely blocked TNF-alpha-induced expression of ICAM-1, VCAM-1 and E-selectin. Taken together, our results clearly demonstrate that NF-kappaB, but not p38, is critical for TNF-alpha-induced CAM expression. The inhibition of SB at 10 microM on TNF-alpha-induced ICAM-1, VCAM-1 and E-selectin is likely due to the nonspecific effect of SB.  相似文献   

15.
16.
17.
Cancer metastasis is a multistep process involving cell-cell interactions, but little is known about the adhesive interactions and signaling events during extravasation of tumor cells (TCs). In this study, cell adhesion molecule (CAM) expression was investigated using an in vitro assay, in which TCs were seeded onto an endothelial cell (ECs) monolayer and cocultured during 5 h. Flow cytometry, confocal microscopy as well as western blot analysis indicated that endothelial ICAM-1 (Inter Cellular Adhesion Molecule-1), VCAM-1 (Vascular Adhesion Molecule-1) and E-selectin were up-regulated after TC-EC coculture, whereas no change was observed for CAMs expression in tumor cells. This increased CAMs expression required tight contact between TCs and ECs. Incubation of ECs with the pyrrolidine-dithiocarbamate NFκB inhibitor prior to coculture, fully prevented coculture-induced expression of endothelial CAMs. Using specific blocking antibodies we showed an implication of ICAM-1 and VCAM-1 for TCs extravasation and VCAM-1 for adhesion. Moreover, fluid flow experiments revealed that high shear stress totally abolished coculture-induced as well as TNFα-induced CAMs over-expression. This study suggests that TCs could act as a potent inflammatory stimulus on ECs by inducing CAMs expression via NFκB activation, and that this action can be modulated by shear stress.  相似文献   

18.
Endothelial cell adhesion molecules (CAMs) E-selectin, ICAM-1, and VCAM-1 play variably important roles in immune-mediated processes. They are induced by the proinflammatory cytokines IL-1 and TNF-alpha, and NF-kappaB is required for the regulated expression of all three genes. Regulators of this pathway could potentially be potent immune modulators. We studied the effect of a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, simvastatin, on cytokine-induced expression of CAMs in HUVEC. Unexpectedly, pretreatment with simvastatin potentiated the induction of all three endothelial CAMs by IL-1 and TNF, but not LPS or PMA, as detected by flow cytometry. Northern blot analysis demonstrated an increase in steady state IL-1-induced E-selectin mRNA levels in cells pretreated with simvastatin. This was associated with an increase in nuclear translocation of NF-kappaB, as detected by EMSA. The effect of simvastatin was reversed by mevalonate and geranylgeranyl pyrophosphate but not squalene, indicating that an inhibitory prenylated protein is involved in endothelial responses to proinflammatory cytokines. Pertussis toxin mimicked the effect of simvastatin, and the G protein activator NaF inhibited the cytokine-induced expression of endothelial CAMs, indicating that a Gialpha protein is involved. These results demonstrate that cytokine-mediated activation of the endothelium, and specifically CAM induction, can be modulated by a heterotrimeric G protein-coupled pathway. This may represent a "basal tone" of endothelial inactivation, which can either be disinhibited or amplified, depending on the stimulus.  相似文献   

19.
Glutathione peroxidase-1 (GPx-1) is a crucial antioxidant enzyme, the deficiency of which promotes atherogenesis. Accordingly, we examined the mechanisms by which GPx-1 deficiency enhances endothelial cell activation and inflammation. In human microvascular endothelial cells, we found that GPx-1 deficiency augments intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expression by redox-dependent mechanisms that involve NFκB. Suppression of GPx-1 enhanced TNF-α-induced ROS production and ICAM-1 expression, whereas overexpression of GPx-1 attenuated these TNF-α-mediated responses. GPx-1 deficiency prolonged TNF-α-induced IκBα degradation and activation of ERK1/2 and JNK. JNK or NFκB inhibition attenuated TNF-α induction of ICAM-1 and VCAM-1 expression in GPx-1-deficient and control cells, whereas ERK1/2 inhibition attenuated only VCAM-1 expression. To analyze further signaling pathways involved in GPx-1-mediated protection from TNF-α-induced ROS, we performed microarray analysis of human microvascular endothelial cells treated with TNF-α in the presence and absence of GPx-1. Among the genes whose expression changed significantly, dual specificity phosphatase 4 (DUSP4), encoding an antagonist of MAPK signaling, was down-regulated by GPx-1 suppression. Targeted DUSP4 knockdown enhanced TNF-α-mediated ERK1/2 pathway activation and resulted in increased adhesion molecule expression, indicating that GPx-1 deficiency may augment TNF-α-mediated events, in part, by regulating DUSP4.  相似文献   

20.
The objectives were to determine the effects of alacepril, an angiotensin-converting enzyme inhibitor, on the expression of adhesion molecules and monocyte adherence to endothelial cells induced by 7-ketocholesterol (7-KC) and tumor necrosis factor (TNF)-alpha. We used human aortic endothelial cells (HAECs) and U937 monocytic cells. Surface expression and mRNA levels of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) were determined by EIA and RT-PCR. Adherence of U937 to HAECs was assessed by adhesion assay. Incubation of HAEC with 7-KC increased the surface expression of protein and mRNA levels of ICAM-1 and VCAM-1 on HAECs and the production of reactive oxygen species (ROS) in HAECs. Pretreatment with alacepril reduced the enhanced expression of these molecules in a dose-dependent manner. The inhibitory effect of alacepril against 7-KC or TNF-alpha-induced CAMs expression was stronger than that of captopril or enalapril. Alacepril inhibited the production of ROS in HAECs stimulated by 7-KC or TNF-alpha. These results suggest that alacepril works as anti-atherogenic agent through inhibiting endothelial-dependent adhesive interactions with monocytes induced by 7-KC and TNF-alpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号