首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ligands for natural killer (NK) cell activating receptors can be released from tumor cells and are believed to promote tumor growth by acting as decoys for effector lymphocytes. In a recent paper published in Science, Deng et al. report another scenario in which a shed form of the MULT1 mouse NKG2D ligand boosts NK cell functions.Natural killer (NK) cells are cytolytic and cytokine-producing lymphocytes of the innate immune system that participate in the control of tumor growth and microbial infections1. NK cell effector activities are tightly controlled by a fine balance of inhibitory and activating signals delivered by surface receptors. Activating receptors can recognize two types of ligands, self-molecules encoded by the host''s own genome whose expression is upregulated upon cellular stress, or exogenous molecules produced by microbes during infection. NKG2D, one of the best characterized activating receptor expressed by NK and T cells, binds to several different ligands in human and mouse2. NKG2D ligands are poorly expressed on the vast majority of normal cell surfaces, but are upregulated on tumor and virus-infected cells. In addition, NKG2D ligands can be released by both surface cleavage and exosome excretion. It has been reported that shed ligands can block tumor cell recognition by effector cells by preventing NKG2D interaction with its ligands3. However, several reports do not correlate the presence of soluble ligands with decreased NKG2D expression nor functional activities.Deng et al.4 focused their analysis on the NKG2D mouse ligand MULT1, which is commonly overexpressed on primary tumor cells. They first showed that MULT1-transduced fibroblast can cleave MULT1 from the plasma membrane, resulting in a released shed form in the supernatant. Shed MULT1 is of high affinity to NKG2D (∼13 nM) similar to recombinant MULT1. They further reveal the presence of shed MULT1 in the serum of mice developing spontaneous MULT1+ tumors. Interestingly, the authors detected a very high concentration of shed MULT1 in the sera of Apoe−/− mice exhibiting severe atherosclerosis and liver inflammation. Given that these autoimmune injuries observed in this mouse model depend on NKG2D activity5, it was unlikely that shed MULT1 exert an inhibitory effect on immunity.Surprisingly, the authors further showed that mouse tumor cells engineered to release a secreted form of MULT1 (secMULT1) similar to the shed MULT1 were rejected when injected into syngenic mice. Tumor rejection is dependent on NK cells as cells grow in NK but not in CD8+ T cell-depleted host and requires NKG2D. Importantly, the controlled release of secMULT1 from tumors harboring inducible secMULT1 promotes tumor rejection. To rule out the possibility that tumor cell rejection was due to intrinsic modifications of tumor cells, the author monitored the rejection of a mixture of 9:1 secMULT1: secMULT1+ tumor cells and showed an improved antitumoral effect on both secMULT1+ and, importantly, secMULT1 tumors. In addition, direct intratumoral injection of recombinant MULT1 promotes tumor rejection. These results suggested that soluble MULT1 mobilizes or activates anti-tumor effector cells. Deng et al. further reported increased frequencies of cytotoxic and IFN-γ-secreting NK cells associated with secMULT1+ tumors as compared to control tumor cells. Altogether, these data suggest that a shed NKG2D ligand can promote tumor rejection by boosting NK cell effector functions.Shed MULT1 could crosslink NKG2D and thus activate NK cells. However, shed and secMULT1 are monomeric molecules similar to the recombinant MULT1 which fails to activate NK cells in vitro. Formation of multivalent structures in vivo was not detected. In addition, whereas the transmembrane form of MULT1 can activate NK cells by crosslinking NKG2D and induces NKG2D downregulation, soluble MULT1 upregulates NKG2D on the NK cell surface. This upregulation is probably due do a decreased downregulation of NKG2D surface expression because no increase in NKG2D mRNA or protein was observed. Based on these findings, the authors hypothesized that NKG2D ligands expressed on non-tumor host cell membrane continuously engage NKG2D on NK cells, leading to NKG2D downregulation and NK cell desensitization, whereas soluble MULT1 blocks these interactions to increase NK cell responsiveness (Figure 1). Along this line, NK cells from mutant mice genetically deficient for the NKG2D ligand expressed by tumor-associated myeloid cells are not desensitized.Open in a separate windowFigure 1Tumor-associated cells express NKG2DL which can desensitize NK cells. Tumor shedding of MULT1 delivers soluble MULT1 that outcompetes for NKG2D binding and prevents NK cell desensitization. Boosted NK cell functions lead to improved tumor cell rejection by other activating receptors.The induction of cell desensitization by a frequent or even constant stimulation is a very common mechanism across living objects. Regarding NK cells, another example of tuning via desensitization resides in the impact of the long lasting absence of MHC class I molecules in their environment. Indeed, NK cells are hyporesponsive in a MHC-I-deficient host6. There are accumulating data indicating that in the absence of engagement of inhibitory receptors for MHC class I molecules, NK cells get desensitized due to their chronic interaction with endogenous stimulating ligands7. Indeed, in the absence of engagement of this inhibitory pathway, NK cell activation would be unleashed8. This scenario is supported by a series of in vitro and in vivo experiments in which NK cells are desensitized following chronic exposure to stimulatory molecules expressed at the surface of interacting cells9,10. Thus, the induction of MHC class I downregulation or NKG2D ligand upregulation boosts NK cell function, whereas the sustained lack of MHC class I or expression of NKG2D ligands impairs NK cell reactivity. This tuning of immune response as a function of the speed of change of the stimuli detected by lymphocytes is at the center of the recently proposed Discontinuity Theory11.Finally, consistent with their findings with secMULT1 but somewhat counter-intuitively, Deng et al. also show that NKG2D receptor deficiency or blockade using anti-NKG2D monoclonal antibodies mimics the effect of soluble MULT1. Indeed, in both conditions, NK cell effector functions are boosted, resulting in improved tumor rejection. Similarly, blocking other NK activating receptors, such as NKp46, may also lead to NK cell desensitization12. Checkpoint inhibitory receptors are revolutionizing the treatment of cancers by inhibiting the inhibitory receptors. The findings reported by Deng et al. together with earlier results propose alternative strategies of cancer treatment using antibodies that are directed against activating receptors. In the case of NKG2D, the chronic engagement of NK cells with membrane-bound NKG2D ligand affects not only NKG2D-dependent but also NKG2D-independent signaling pathways9. The blockade of NKG2D desensitization by antibodies directed against NKG2D should thus also boost NK cell activation via other pathways, such as antibody-dependent cell cytotoxicity. However, the precise identification of the ligand-receptor pair involved in the control of tumors by NK cells will be a limiting factor to these innovative therapeutic approaches. Indeed, antibodies against activating receptors should be designed to boost NK cell reactivity but should not block the recognition of the tumors by NK cells. Finally, as the tuning of NK cell reactivity by soluble NKG2D ligands depends on their affinity for NKG2D, the pre-clinical development of this new class of drug candidates might reveal novel pharmacokinetics and the pharmacodynamics guidelines.  相似文献   

2.
ULBP4 is a novel ligand for human NKG2D   总被引:21,自引:0,他引:21  
The ULBPs are a family of MHC class I-related molecules. We have previously shown that ULBPs 1, 2, and 3 are functional ligands of the NKG2D/DAP10 receptor complex on human natural killer (NK) cells. Here, we describe a new member of the ULBP family, ULBP4, which contains predicted transmembrane and cytoplasmic domains, unlike the other ULBPs, which are GPI-linked proteins. Transduction of ULBP4 into EL4 cells confers the ability to bind recombinant NKG2D and mediates increased cytotoxic activity by human NK cells, consistent with the role of ULBPs as ligands for the NKG2D/DAP10 activating receptors. Tissue expression of ULBP4 differs from other members of the family, in that it is expressed predominantly in the skin.  相似文献   

3.
Human CMV infection results in MHC class I down-regulation and induction of NKG2D ligand expression favoring NK recognition of infected cells. However, human CMV-encoded UL16 counteracts surface expression of several NKG2D ligands by intracellular retention. Interestingly, UL16 interacts with MICB, but not with the closely related MICA, and with UL16-binding proteins (ULBP) ULBP1 and ULBP2, which are only distantly related to MICB, but not with ULPB3 or ULBP4, although all constitute ligands for NKG2D. Here, we dissected the molecular basis of MICA-MICB discrimination by UL16 to elucidate its puzzling binding behavior. We report that the UL16-MICB interaction is independent of glycosylation and demonstrate that selective MICB recognition by UL16 is governed by helical structures of the MICB alpha2 domain. Transplantation of the MICB alpha2 domain confers UL16 binding capacity to MICA, and thus, diversification of the MICA alpha2 domain may have been driven by the selective pressure exerted by UL16.  相似文献   

4.
The activating immunoreceptor NKG2D promotes elimination of infected or malignant cells by cytotoxic lymphocytes through engagement of stress-induced MHC class I-related ligands. The human cytomegalovirus (HCMV)-encoded immunoevasin UL16 subverts NKG2D-mediated immune responses by retaining a select group of diverse NKG2D ligands inside the cell. We report here the crystal structure of UL16 in complex with the NKG2D ligand MICB at 1.8 Å resolution, revealing the molecular basis for the promiscuous, but highly selective, binding of UL16 to unrelated NKG2D ligands. The immunoglobulin-like UL16 protein utilizes a three-stranded β-sheet to engage the α-helical surface of the MHC class I-like MICB platform domain. Intriguingly, residues at the center of this β-sheet mimic a central binding motif employed by the structurally unrelated C-type lectin-like NKG2D to facilitate engagement of diverse NKG2D ligands. Using surface plasmon resonance, we find that UL16 binds MICB, ULBP1, and ULBP2 with similar affinities that lie in the nanomolar range (12–66 nM). The ability of UL16 to bind its ligands depends critically on the presence of a glutamine (MICB) or closely related glutamate (ULBP1 and ULBP2) at position 169. An arginine residue at this position however, as found for example in MICA or ULBP3, would cause steric clashes with UL16 residues. The inability of UL16 to bind MICA and ULBP3 can therefore be attributed to single substitutions at key NKG2D ligand locations. This indicates that selective pressure exerted by viral immunoevasins such as UL16 contributed to the diversification of NKG2D ligands.  相似文献   

5.
The MHC class I-chain-related proteins (MICs) and the UL16-binding proteins (ULBPs) are inducible stress response molecules that work as activators of a specific receptor, NKG2D, which is expressed on effector cells, such as NK cells and subsets of T cells. In this study, we sought to explore the biological significance of NKG2D ligands in human neoplasms by comprehensively examining the immunohistochemical expression profile of NKG2D ligands in a variety of human epithelial neoplasms. Following careful validation of the immunohistochemical specificity and availability of anti-human ULBP antibodies for formalin-fixed paraffin-embedded (FFPE) materials, the expression of NKG2D ligands was analyzed in FFPE tissue microarrays comprising 22 types of epithelial neoplastic tissue with their non-neoplastic counterpart from various organs. Hierarchical cluster analysis demonstrated a positive relationship among ULBP2/6, ULBP3, ULBP1, and ULBP5, whose expression patterns were similar across all of the neoplastic tissues examined. In contrast, MICA/B, as well as ULBP4, did not appear to be related to any other ligand. These expression profiles of NKG2D ligands in human neoplasms based on well-validated specific antibodies, followed by hierarchical cluster analysis, should help to clarify some functional aspects of these molecules in cancer biology, and also provide a path to the development of novel tumor-type-specific treatment strategies.  相似文献   

6.
7.
8.
We studied the role of NK cell-activating receptors and their ligands in the lysis of mononuclear phagocytes infected with the intracellular pathogen Mycobacterium tuberculosis. Expression of the activating receptors NKp30, NKp46, and NKG2D were enhanced on NK cells by exposure to M. tuberculosis-infected monocytes, whereas expression of DNAX accessory molecule-1 and 2B4 was not. Anti-NKG2D and anti-NKp46 inhibited NK cell lysis of M. tuberculosis-infected monocytes, but Abs to NKp30, DNAX accessory molecule-1, and 2B4 had no effect. Infection of monocytes up-regulated expression of the NKG2D ligand, UL-16 binding protein (ULBP)1, but not expression of ULBP2, ULBP3, or MHC class I-related chain A or chain B. Up-regulation of ULBP1 on infected monocytes was dependent on TLR2, and anti-ULBP1 abrogated NK cell lysis of infected monocytes. The dominant roles of NKp46, NKG2D, and ULBP1 were confirmed for NK cell lysis of M. tuberculosis-infected alveolar macrophages. We conclude that NKp46 and NKG2D are the principal receptors involved in lysis of M. tuberculosis-infected mononuclear phagocytes, and that ULBP1 on infected cells is the major ligand for NKG2D. Furthermore, TLR2 contributes to up-regulation of ULBP1 expression.  相似文献   

9.
Cellular rejection mechanisms, including NK cells, remain a hurdle for successful pig-to-human xenotransplantation. Human anti-pig NK cytotoxicity depends on the activating receptor NKG2D. Porcine UL16-binding protein 1 (pULBP1) and porcine MHC class I chain-related protein 2 (pMIC2) are homologues of the human NKG2D ligands ULBP 1-4 and MICA and B, respectively. Although transcribed in porcine endothelial cells (pEC), it is not known whether pULBP1 and pMIC2 act as functional ligands for human NKG2D. In this study, surface protein expression of pULBP1 was demonstrated by flow cytometry using a novel pULBP1-specific polyclonal Ab and by cellular ELISA using NKG2D-Fc fusion protein. Reciprocally, pULBP1-Fc bound to primary human NK cells, whereas pMIC2-Fc did not. Transient and stable down-regulation of pULBP1 mRNA in pEC using short-interfering RNA oligonucleotide duplexes and short hairpin RNA, respectively, resulted in a partial inhibition of xenogeneic NK cytotoxicity through NKG2D in (51)Cr release assays. In contrast, down-regulation of pMIC2 mRNA did not inhibit NK cytotoxicity. Human NK cytotoxicity against pEC mediated by freshly isolated or IL-2-activated NK cells through NKG2D was completely blocked using anti-pULBP1 polyclonal Ab. In conclusion, this study suggests that pULBP1 is the predominant, if not only, functional porcine ligand for human NKG2D. Thus, the elimination of pULBP1 on porcine tissues represents an attractive target to protect porcine xenografts from human NK cytotoxicity.  相似文献   

10.
Bae DS  Hwang YK  Lee JK 《Cellular immunology》2012,276(1-2):122-127
In this study, we investigate the relationship between natural killer (NK) cell susceptibility and the surface markers of cancer cells. Through phenotypic analysis, we found evidence that more susceptible cancer cell lines (K562 and Jurkat) express more NKG2D ligands. Major histocompatibility complex (MHC) class I chain-related A/B (MIC-A/B) and UL16 binding protein (ULBP) 1-5 molecules are typical ligands of NKG2D. The high killing activity of NK cells against K562 was abolished through the addition of a NKG2D blocking antibody. Upon in vitro stimulation with quercetin, low susceptible cancer cells increased NKG2D ligand expression, leading to enhancement of NK cell cytolytic activity. These results suggested that the anti-cancer activity of NK cells is not dependent on the origin and growth style of the target cells, but is dependent on the surface markers of the target cells.  相似文献   

11.
NKG2D is a costimulatory receptor for human naive CD8+ T cells   总被引:12,自引:0,他引:12  
In humans, all alpha beta CD8+ T cells express NKG2D, but in mouse, it is only expressed by activated and memory CD8+ T cells. We purified human naive CD8+ T cells to show that NKG2D serves as a costimulatory receptor for TCR induced Ca2+ mobilization and proliferation. The resulting effector cells are skewed toward a type 1 phenotype and produce high levels of IFN-gamma and TNF-alpha. NKG2D ligands, MHC class I chain-related (MIC)A, MICB, and UL16-binding proteins are expressed on the proliferating cells and NKG2D is down-regulated. The addition of the homeostatic cytokines IL-7 and IL-15 to the culture medium not only enhances proliferation but also counteracts the down-regulation of NKG2D, more so than the addition of IL-2. These results indicate that NKG2D can regulate the priming of human naive CD8+ T cells, which may provide an alternative mechanism for potentiating and channeling the immune response.  相似文献   

12.
13.
The UL16-binding proteins (ULBPs) are a novel family of MHC class I-related molecules that were identified as targets of the human CMV glycoprotein, UL16. We have previously shown that ULBP expression renders a relatively resistant target cell sensitive to NK cytotoxicity, presumably by engaging NKG2D, an activating receptor expressed by NK and other immune effector cells. In this study we show that NKG2D is the ULBP counterstructure on primary NK cells and that its expression is up-regulated by IL-15 stimulation. Soluble forms of ULBPs induce marked protein tyrosine phosphorylation, and activation of the Janus kinase 2, STAT5, extracellular signal-regulated kinase, mitogen-activated protein kinase, and phosphatidylinositol 3-kinase (PI 3-kinase)/Akt signal transduction pathways. ULBP-induced activation of Akt and extracellular signal-regulated kinase and ULBP-induced IFN-gamma production are blocked by inhibitors of PI 3-kinase, consistent with the known binding of PI 3-kinase to DAP10, the membrane-bound signal-transducing subunit of the NKG2D receptor. While all three ULBPs activate the same signaling pathways, ULBP3 was found to bind weakly and to induce the weakest signal. In summary, we have shown that NKG2D is the ULBP counterstructure on primary NK cells and for the first time have identified signaling pathways that are activated by NKG2D ligands. These results increase our understanding of the mechanisms by which NKG2D activates immune effector cells and may have implications for immune surveillance against pathogens and tumors.  相似文献   

14.
A comparative genomics approach for mining databases of expressed sequence tags (ESTs) was used to identify two members of a novel MHC class I gene family in cattle. These paralogous genes, named MHC class I-like gene family A1 ( MHCLA1) and MHCLA2, were shown by phylogenetic analysis to be related to human and mouse genes encoding NK cell stimulatory ligands, ULBP, RAET, H60 and Raet-1. Radiation hybrid mapping placed cattle MHCLA1 on BTA9, which, on the basis of existing comparative mapping data, identified the ULBP, RAET1, H60 and Raet1 genes as homologues of the cattle MHCLA genes. However, the human and mouse orthologues of MHCLA1 and MHCLA2 could not be defined due to extensive sequence divergence from all known members of the ULBP1/ RAET1/H60/Raet1 gene family. The cattle MHCLA1 molecule is predicted to be missing an alpha(3) domain, similar to the human and mouse homologues. Like the human ULBP genes, MHCLA1 was found to be transcribed constitutively in a variety of fetal and adult tissues by RT-PCR. The patterns of hybridization obtained by Southern blotting using MHCLA1 as a probe and DNA from 14 species representing five mammalian orders suggests that the MHCLA genes evolved rapidly in the Cetartiodactyla. Previous findings demonstrating that ULBPs serve as ligands for the NK cell NKG2D stimulatory receptor, and that this interaction can be blocked by a human cytomegalovirus glycoprotein that binds to ULBPs, suggests that the extensive divergence found among the cattle, human and mouse MHCLA homologues is due to selection exerted by viral pathogens.  相似文献   

15.
NK cells play a crucial role in innate immunity against tumors. In many human tumors, Ras is chronically active, and tumor cells frequently express ligands for the activating NK cell receptor NKG2D. In this study, we report that Ras activation upregulates the expression of Raet1 protein family members Rae1α and Rae1β in mouse and ULBP1-3 in human cells. In addition, Ras also induced MHC class I chain-related protein expression in some human cell lines. Overexpression of the constitutively active H-RasV12 mutant was sufficient to induce NKG2D ligand expression. H-RasV12-induced NKG2D ligand upregulation depended on Raf, MAPK/MEK, and PI3K, but not ATM or ATR, two PI3K-like kinases previously shown to induce NKG2D ligand expression. Analysis of the 5' untranslated regions of Raet1 family members suggested the presence of features known to impair translation initiation. Overexpression of the rate-limiting translation initiation factor eIF4E induced Rae1 and ULBP1 expression in a Ras- and PI3K-dependent manner. Upregulation of NKG2D ligands by H-RasV12 increased sensitivity of cells to NK cell-mediated cytotoxicity. In summary, our data suggest that chronic Ras activation is linked to innate immune responses, which may contribute to immune surveillance of H-Ras transformed cells.  相似文献   

16.
17.
Human CMV (HCMV) interferes with NK cell functions at various levels. The HCMV glycoprotein UL16 binds some of the ligands recognized by the NK-activating receptor NKG2D, namely UL16-binding proteins (ULBP) 1 and 2 and MHC class I-related chain B, possibly representing another mechanism of viral immune escape. This study addressed the expression and function of these proteins in infected cells. HCMV induced the expression of all three ULBPs, which were predominantly localized in the endoplasmic reticulum of infected fibroblasts together with UL16. However, while at a lower viral dose ULBP1 and 2 surface expression was completely inhibited compared to ULBP3, at a higher viral dose cell surface expression of ULBP1 and ULBP2 was delayed. The induction of ULBPs correlated with an increased dependency on NKG2D for recognition; however, the overall NK sensitivity did not change (suggesting that additional viral mechanisms interfere with NKG2D-independent pathways for recognition). Infection with a UL16 deletion mutant virus resulted in a different pattern compared to the wild type: all three ULBP molecules were induced with similar kinetics at the cell surface, accompanied by a pronounced, entirely NKG2D-dependent increase in NK sensitivity. Together our findings show that upon infection with HCMV, the host cell responds by expression of ULBPs and increased susceptibility to the NKG2D-mediated component of NK cell recognition, but UL16 limits these effects by interfering with the surface expression of ULBP1 and ULBP2.  相似文献   

18.
NKG2D is an activating receptor that is expressed on most natural killer (NK) cells, CD8 alphabeta T cells, and gammadelta T cells. Among its ligands is the distant major histocompatibility complex class I homolog MICA, which has no function in antigen presentation but is induced by cellular stress. To extend previous functional evidence, the NKG2D-MICA interaction was studied in isolation. NKG2D homodimers formed stable complexes with monomeric MICA in solution, demonstrating that no other components were required to facilitate this interaction. MICA glycosylation was not essential but enhanced complex formation. Soluble NKG2D also bound to cell surface MICB, which has structural and functional properties similar to those of MICA. Moreover, NKG2D stably interacted with surface molecules encoded by three newly identified cDNA sequences (N2DL-1, -2, and -3), which are identical to the human ULBP proteins and may represent homologs of the mouse retinoic acid-early inducible family of NKG2D ligands. Because of the substantial sequence divergence among these molecules, these results indicated promiscuous modes of receptor binding. Comparison of allelic variants of MICA revealed large differences in NKG2D binding that were associated with a single amino acid substitution at position 129 in the alpha2 domain. Varying affinities of MICA alleles for NKG2D may affect thresholds of NK-cell triggering and T-cell modulation.  相似文献   

19.
Three proteins encoded by murine cytomegalovirus (MCMV) -- gp34, encoded by m04 (m04/gp34), gp48, encoded by m06 (m06/gp48), and gp40, encoded by m152 (m152/gp40) -- act together to powerfully impact the ability of primed cytotoxic CD8 T lymphocytes (CTL) to kill virus-infected cells. Of these three, the impact of m152/gp40 on CTL lysis appears greater than would be expected based on its impact on cell surface major histocompatibility complex (MHC) class I. In addition to MHC class I, m152/gp40 also downregulates the RAE-1 family of NKG2D ligands, which can provide costimulation for CD8 T cells. We hypothesized that m152/gp40 may impact CTL lysis so profoundly because it inhibits both antigen presentation and NKG2D-mediated costimulation. We therefore tested the extent to which m152/gp40's ability to inhibit CTL lysis of MCMV-infected cells could be accounted for by its inhibition of NKG2D signaling. As was predictable from the results reported in the literature, NKG2D ligands were not detected by NKG2D tetramer staining of cells infected with wild-type MCMV, whereas those infected with MCMV lacking m152/gp40 displayed measurable levels of the NKG2D ligand. To determine whether NKG2D signaling contributed to the ability of CTL to lyse these cells, we used a blocking anti-NKG2D antibody. Blocking NKG2D signaling did affect the killing of MCMV-infected cells for some epitopes. However, for all epitopes, the impact of m152/gp40 on CTL lysis was much greater than the impact of inhibition of NKG2D signaling. We conclude that the downregulation of NKG2D ligands by MCMV makes only a small contribution to the impact of m152/gp40 on CTL lysis and only for a small subset of CTL.  相似文献   

20.
Human gamma delta T cells with the TCR variable region V(delta)1 occur mainly in epithelia and respond to stress-induced expression of the MHC class I-related chains A and B, which have no function in Ag presentation. MIC function as ligands for NKG2D-DAP10, an activating receptor complex that triggers NK cells, costimulates CD8 alpha beta and V(gamma)9V(delta)2 gamma delta T cells, and is required for stimulation of V(delta)1 gamma delta T cells. It is unresolved, however, whether triggering of V(delta)1 gamma delta TCRs is also mediated by MIC or by unidentified cell surface components. Soluble MICA tetramers were used as a binding reagent to demonstrate specific interactions with various V(delta)1 gamma delta TCRs expressed on transfectants of a T cell line selected for lack of NKG2D. Tetramer binding was restricted to TCRs derived from responder T cell clones classified as reactive against a broad range of MIC-expressing target cells and was abrogated when TCRs were composed of mismatched gamma- and delta-chains. These results and the inability of V(delta)1 gamma delta T cells to respond to target cells expressing the ULBP/N2DL ligands of NKG2D, which are highly divergent from MIC, indicate that MIC delivers both the TCR-dependent signal 1 and the NKG2D-dependent costimulatory signal 2. This dual function may serve to prevent erroneous gamma delta T cell activation by cross-reactive cell surface determinants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号