首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
慢性心衰作为发病率和死亡率很高的一种疾病,其主要表现为心脏供血功能下降,无法满足身体需求。β 肾上腺素受体信号通路对 于维持心脏正常生理功能有重要意义,心衰时,β 肾上腺素受体信号通路也发生很大改变。基于对 β 肾上腺素受体信号通路的机制研究, 目前 β1 肾上腺素受体拮抗剂被广泛应用于心衰治疗,但 β2 肾上腺素受体的功能还有争议。综述 β2 肾上腺素受体在心衰过程中作用的研究 进展,提出 β2 肾上腺素受体激动剂联合 β1 肾上腺素受体拮抗剂治疗心衰的策略,旨在为心衰治疗药物的开发提供参考。  相似文献   

2.
随着受体的研究的蓬勃发展,对在心脏活动调节中起重要作用的肾上腺素受体的了解也更加深入。近年来的许多研究表明β2-肾上腺素受体不同亚型之间的信号转导及其介质的心脏反应有着很大的差异。本文扼要介绍了心脏β2-肾上腺素受体的最新研究进展,主要包括β2-肾上腺素受体中的混杂G蛋白偶联、信号转导局域化、固有活性及其与充血性心力衰竭的关系。  相似文献   

3.
肾上腺素受体研究进展   总被引:9,自引:0,他引:9  
按照药理学特性及分子克隆情况,肾上腺素受体可分成α1、α2与β亚型,每型又至少可分成三种亚型。肾上腺素受体的分子结构符合G蛋白耦联膜表面受体的一般特征。采用分子突变技术,已基本明确受体各部分结构的功能。决定与配基结合特性的部位在跨膜区域内,而决定与G蛋白耦联进引起信号传递的部位主要存在于第三细胞内环。各种亚型受体之间存在着广泛的交互作用,按发生的环节可大致分成四种类型。  相似文献   

4.
精神和情绪对于肿瘤的发生、发展具有重要作用.通常,在急性或慢性应激状态下,由交感神经系统介导的正常生理应激机制导致神经递质肾上腺素和去甲肾上腺素释放增多.对于恶性肿瘤患者,大量研究证实交感神经系统主要通过β-肾上腺素能受体途径介导的信号传导通路对肿瘤的进展和转移产生影响.乳腺癌患者多伴有焦虑预后不良而引起肾上腺素及去甲...  相似文献   

5.
目的:克隆β2-肾上腺素能受体(β2-AR)全长基因片段.方法:根据GenBank中收录的猪β2-AR cDNA序列设计一对引物,以猪肝脏组织总RNA为模板,利用RT-PCR技术扩增目的基因,将其与pUC18载体体外连接,转化感受态大肠杆菌E.coil DH5α,筛选阳性克隆.结果:扩增出一条1257 bp的目的基因片段,该片段编码418个氨基酸.与CenBank中收录的猪β2-AR序列比对,其同源性为99.52%,编码的氨基酸有99.04%相同.结论:成功获得了β2-AR全长基因片段,为该基因的表达和受体筛药模型的建立奠定基础.  相似文献   

6.
随着受体研究的蓬勃发展 ,对在心脏活动调节中起重要作用的肾上腺素受体的了解也更加深入。近年来的许多研究表明 β 肾上腺素受体不同亚型之间的信号转导及其介导的心脏反应有着很大的差异。本文扼要介绍了心脏 β2 肾上腺素受体的最新研究进展 ,主要包括 β2 肾上腺素受体的混杂G蛋白偶联、信号转导局域化、固有活性及其与充血性心力衰竭的关系。  相似文献   

7.
2012年度诺贝尔化学奖授予了美国科学家罗伯特.莱夫科维茨(Robert J.Lefkowitz)和布莱恩.克比尔卡(Brian K.Kobilka),以表彰他们在G蛋白偶联受体研究中的贡献。从Robert J.Lefkowitz最初研究β-肾上腺素受体(β-adrenergic receptor,β-AR)减敏机制时发现β-arrestin1至今已有20多年,随着对β-arrestin在细胞信号转导中作用研究的逐渐深入,发现β-arrestin参与β-AR的减敏、内化和降解;近年来又发现,依赖β-arrestin的β-AR信号转导通路具有"偏向激活"现象,并提示这种依赖β-arrestin的"偏向激活"信号转导通路具有心脏保护作用。β-肾上腺素受体阻滞剂的发现和临床应用被视为20世纪药物治疗学上里程碑式的进展,是药物防治心脏疾病的最伟大突破,很多心血管药物都以β-AR为靶点。但是,由于目前受体药物均是针对受体本身的调控,这样在阻断了受体介导的病理性信号通路和功能的同时,也阻断了受体介导的正常生理性信号通路和功能,造成了严重的毒副作用。所以,研发能选择性阻滞β-AR过度激活介导的病理性信号通路和功能的同时,保留受体介导的正常生理性信号通路和功能(如β-arrestin信号通路)的药物,对治疗心血管疾病有重要意义,受体功能选择性的配体药物将成为未来药物的研究方向。该文将回顾β-arrestin的发现过程,综述其与β-AR的相互作用,期望能为心脏疾病的药物治疗提供参考。  相似文献   

8.
9.
目的:观察增加β2-肾上腺素受体(β2-AR)的表达对心衰大鼠心肌细胞收缩功能的影响并对其机制进行初步探讨:方法:用大剂量异丙肾上腺素制作大鼠心衰模型,分离培养心衰大鼠心肌细胞,在其上增加β2-AR的表达,westem blot检测心肌细胞β2-AR的表达。测定异丙肾上腺素刺激引起的细胞收缩幅度的改变:结果:心衰组心肌细胞收缩幅度较正常对照组降低(P〈0.01),增加β2-AR表达可增加心衰组心肌细胞的收缩幅度(P〈0.01,心衰+Adv.β2组vs心衰组);选择性β2-AR拮抗剂ICI118,551可部分反转这种效应(P〈0.5,心衰+Adv,β2+ICI组讲心衰+Adv.β2组),但不能使收缩幅度降到心衰组水平(P〈0.05,心衰+Adv.β2+ICI组vs心衰组).选择性β1—AR桔抗剂CGP20712A可完全阻断β2-AR表达增加的效应结论:增加β2-AR表达,可使心衰的心肌细胞的收缩功能得到改善,这种作用可能与β1-AR有关.  相似文献   

10.
肥胖症是一种由于机体能量过剩所导致的慢性代谢性疾病.β3肾上腺素能受体是β肾上腺素能受体的一种亚型,主要存在于棕色脂肪及白色脂肪组织中,参与棕色脂肪组织的产热和白色脂肪组织的脂质分解以及白色脂肪棕色化的过程,在脂肪代谢中起到减脂作用.β3肾上腺素能受体激动剂能与β3肾上腺素能受体结合,从而参与脂肪代谢的过程.本文对近年...  相似文献   

11.
Beta(1)- and beta(2)-adrenergic receptors (beta(1)AR and beta(2)AR) are co-expressed in numerous tissues where they play a central role in the responses of various organs to sympathetic stimulation. Although the two receptor subtypes share some signaling pathways, each has been shown to have specific signaling and regulatory properties. Given the recent recognition that many G protein-coupled receptors can form homo- and heterodimers, the present study was undertaken to determine whether the beta(1)AR and beta(2)AR can form dimers in cells and, if so, to investigate the potential functional consequences of such heterodimerization. Using co-immunoprecipitation and bioluminescence resonance energy transfer, we show that beta(1)AR and beta(2)AR can form heterodimers in HEK 293 cells co-expressing the two receptors. Functionally, beta-adrenergic stimulated adenylyl cyclase activity was found to be identical in cells expressing beta(1)AR, beta(2)AR, or both receptors at similar levels, indicating that heterodimerization did not affect this signaling pathway. When considering ERK1/2 MAPK activity, a significant agonist-promoted activation was detected in beta(2)AR- but not beta(1)AR-expressing cells. Similarly to what was observed in cells expressing the beta(1)AR alone, no beta-adrenergic stimulated ERK1/2 phosphorylation was observed in cells co-expressing the two receptors. A similar inhibition of agonist-promoted internalization of the beta(2)AR was observed upon co-expression of the beta(1)AR, which by itself internalized to a lesser extent. Taken together, our data suggest that heterodimerization between beta(1)AR and beta(2)AR inhibits the agonist-promoted internalization of the beta(2)AR and its ability to activate the ERK1/2 MAPK signaling pathway.  相似文献   

12.
Structure-function studies of rhodopsin indicate that both intradiscal and transmembrane (TM) domains are required for retinal binding and subsequent light-induced structural changes in the cytoplasmic domain. Further, a hypothesis involving a common mechanism for activation of G-protein-coupled receptor (GPCR) has been proposed. To test this hypothesis, chimeric receptors were required in which the cytoplasmic domains of rhodopsin were replaced with those of the beta(2)-adrenergic receptor (beta(2)-AR). Their preparation required identification of the boundaries between the TM domain of rhodopsin and the cytoplasmic domain of the beta(2)-AR necessary for formation of the rhodopsin chromophore and its activation by light and subsequent optimal activation of beta(2)-AR signaling. Chimeric receptors were constructed in which the cytoplasmic loops of rhodopsin were replaced one at a time and in combination. In these replacements, size of the third cytoplasmic (EF) loop critically determined the extent of chromophore formation, its stability, and subsequent signal transduction specificity. All the EF loop replacements showed significant decreases in transducin activation, while only minor effects were observed by replacements of the CD and AB loops. Light-dependent activation of beta(2)-AR leading to Galphas signaling was observed only for the EF2 chimera, and its activation was further enhanced by replacements of the other loops. The results demonstrate coupling between light-induced conformational changes occurring in the transmembrane domain of rhodopsin and the cytoplasmic domain of the beta(2)-AR.  相似文献   

13.
beta-arrestin-biased agonism at the beta2-adrenergic receptor   总被引:3,自引:0,他引:3  
Classically, the beta 2-adrenergic receptor (beta 2AR) and other members of the seven-transmembrane receptor (7TMR) superfamily activate G protein-dependent signaling pathways in response to ligand stimulus. It has recently been discovered, however, that a number of 7TMRs, including beta 2AR, can signal via beta-arrestin-dependent pathways independent of G protein activation. It is currently unclear if among beta 2AR agonists there exist ligands that disproportionately signal via G proteins or beta-arrestins and are hence "biased." Using a variety of approaches that include highly sensitive fluorescence resonance energy transfer-based methodologies, including a novel assay for receptor internalization, we show that the majority of known beta 2AR agonists exhibit relative efficacies for beta-arrestin-associated activities (beta-arrestin membrane translocation and beta 2AR internalization) identical to the irrelative efficacies for G protein-dependent signaling (cyclic AMP generation). However, for three betaAR ligands there is a marked bias toward beta-arrestin signaling; these ligands stimulate beta-arrestin-dependent receptor activities to a much greater extent than would be expected given their efficacy for G protein-dependent activity. Structural comparison of these biased ligands reveals that all three are catecholamines containing an ethyl substitution on the alpha-carbon, a motif absent on all of the other, unbiased ligands tested. Thus, these studies demonstrate the potential for developing a novel class of 7TMR ligands with a distinct bias for beta-arrestin-mediated signaling.  相似文献   

14.
Cerebral microvessels contain a beta 2-adrenergic receptor   总被引:1,自引:0,他引:1  
J A Nathanson 《Life sciences》1980,26(21):1793-1799
Cerebral microvessels isolated from cat forebrain contain a specific β-adrenergic-sensitive adenylate cyclase. Among various compounds tested, the most potent activator of enzyme activity is isoproterenol (ka = 1.4 × 10?7M), followed in order by epinephrine (ka= 1.5 × 10?6M), norepinephrine (ka= 1.4 × 10?5M) and phenylephrine (ka> 3 × 10?4M). Isoproterenol-stimulated enzyme activity is blocked by propranolol (ki= 2.4 × 10?9M, IPS 339 (ki= 4 × 10?9M), H35/25 (ki = 1.2 × 10?7M), atenolol (ki= 5.9 × 10?6M) and practolol (ki= 1.8 × 10?5M). These agonist and antagonist properties are quite similar to those demonstrated by β2-adrenergic receptors and β2-stimulated adenylate cyclase present in other tissues and indicate that the majority of adenylate cyclase-associated adrenergic receptors in cerebral microvessels are β2. The findings are relevant to physiological studies of cerebral blood flow and vascular permeability.  相似文献   

15.
The atypical beta3-adrenergic receptor (AR) agonist CGP-12177 has been used to define a novel atypical beta-AR subtype, the putative beta4-AR. Recent evaluation of recombinant beta-AR subtypes and beta-AR-deficient mice, however, has established the identity of the pharmacological beta4-AR as a novel state of the beta1-AR protein. The ability of aryloxypropanolamine ligands like CGP-12177 to independently interact with agonist and antagonist states of the beta1-AR has important implications regarding receptor classification and the potential development of tissue-specific beta-AR agonists.  相似文献   

16.
G Protein-coupled receptor dimerization/oligomerization has been well established during the last several years. Studies have demonstrated the existence of dimers/digomers both in vitro and in living cells. However, a thorough characterization of the biochemical nature of receptor dimers and oligomers as well as their occurrence at the cell surface has not been properly addressed. In this study, we show that both beta2-adrenergic receptor (beta2AR) dimers and oligomers exist at the plasma membrane and that the detection of such species, following receptor solubilization and resolution by denaturing polyacrylamide gel electrophoresis (SDS-PAGE), does not result from the formation of spurious disulfide bonds during cell lysis. Moreover, our results indicate that the biochemical nature of beta2AR dimers is different from that of the oligomers. Although both complexes are partially resistant to SDS denaturation, disulfide bonding is absolutely required for the stability of beta2AR oligomers but not dimers in SDS-PAGE. Indeed, dimeric species can be detected even in the presence of high concentrations of reducing and alkylating agents. Although the different biochemical nature of the dimers and oligomers may be indicative of distinct biological roles in cells, additional studies will be required to further elucidate the biosynthesis and function of these receptor forms.  相似文献   

17.
18.
19.
The mammalian beta 2-adrenergic receptor: purification and characterization   总被引:8,自引:0,他引:8  
The beta 2-adrenergic receptors from hamster, guinea pig, and rat lungs have been solubilized with digitonin and purified by sequential Sepharose-alprenolol affinity and high-performance steric-exclusion liquid chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography of iodinated purified receptor preparations reveal a peptide with an apparent Mr of 64 000 in all three systems that coincides with the peptide labeled by the specific beta-adrenergic photoaffinity probe (p-azido-m-[125I]iodobenzyl)carazolol. A single polypeptide was observed in all three systems, suggesting that lower molecular weight peptides identified previously by affinity labeling or purification in mammalian systems may represent proteolyzed forms of the receptor. Purification of the beta-adrenergic receptor has also been assessed by silver staining, iodinated lectin binding, and measurement of the specific activity (approximately 15 000 pmol of [3H]dihydroalprenolol bound/mg of protein). Overall yields approximate 10% of the initial crude particulate binding, with 1-3 pmol of purified receptor obtained/g of tissue. The purified receptor preparations bind agonist and antagonist ligands with the expected beta 2-adrenergic specificity and stereoselectivity. Peptide mapping and lectin binding studies of the hamster, guinea pig, and rat lung beta 2-adrenergic receptors reveal significant similarities suggestive of evolutionary homology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号