首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim Late Pleistocene glacial changes had a major impact on many boreal and temperate taxa, and this impact can still be detected in the present‐day phylogeographic structure of these taxa. However, only minor effects are expected in species with generalist habitat requirements and high dispersal capability. One such species is the white‐tailed eagle, Haliaeetus albicilla, and we therefore tested for the expected weak population structure at a continental level in this species. This also allowed us to describe phylogeographic patterns, and to deduce Ice Age refugia and patterns of postglacial recolonization of Eurasia. Location Breeding populations from the easternmost Nearctic (Greenland) and across the Palaearctic (Iceland, continental Europe, central and eastern Asia, and Japan). Methods Sequencing of a 500 base‐pair fragment of the mitochondrial DNA control region in 237 samples from throughout the distribution range. Results Our analysis revealed pronounced phylogeographic structure. Overall, low genetic variability was observed across the entire range. Haplotypes clustered in two distinct haplogroups with a predominantly eastern or western distribution, and extensive overlap in Europe. These two major lineages diverged during the late Pleistocene. The eastern haplogroup showed a pattern of rapid population expansion and colonization of Eurasia around the end of the Pleistocene. The western haplogroup had lower diversity and was absent from the populations in eastern Asia. These results suggest survival during the last glaciation in two refugia, probably located in central and western Eurasia, followed by postglacial population expansion and admixture. Relatively high genetic diversity was observed in northern regions that were ice‐covered during the last glacial maximum. This, and phylogenetic relationships between haplotypes encountered in the north, indicates substantial population expansion at high latitudes. Areas of glacial meltwater runoff and proglacial lakes could have provided suitable habitats for such population growth. Main conclusions This study shows that glacial climate fluctuations had a substantial impact on white‐tailed eagles, both in terms of distribution and demography. These results suggest that even species with large dispersal capabilities and relatively broad habitat requirements were strongly affected by the Pleistocene climatic shifts.  相似文献   

2.
In response to climate changes that have occurred during Pleistocene glacial cycles, taxa associated to steppe vegetation might have followed a pattern of historical evolution in which isolation and fragmentation of populations occurred during the short interglacials and expansion events occurred during the long glacial periods, in contrast to the pattern described for temperate species. Here, we use molecular genetic data to evaluate this idea in a steppe bird with Palaearctic distribution, the little bustard (Tetrax tetrax). Overall, extremely low genetic diversity and differentiation was observed among eight little bustard populations distributed in Spain and France. Mismatch distribution analyses showed that most little bustard populations expanded during cooling periods previous to, and just after, the last interglacial period (127,000-111,000 years before present), when steppe habitats were widespread across Europe. Coalescent-based methods suggested that glacial expansions have resulted in substantial admixture in Western Europe due to the existence of different interglacial refugia. Our results are consistent with a model of evolution and genetic consequences of Pleistocene cycles with low between-population genetic differentiation as a result of short-term isolation periods during interglacials and long-term exchange during glacial periods.  相似文献   

3.
The effects of Late Quaternary climate change have been examined for many temperate New World taxa, but the impact of Pleistocene glacial cycles on Neotropical taxa is less well understood, specifically with respect to changes in population demography. Here, we examine historical demographic trends for six species of milksnake with representatives in both the temperate and tropical Americas to determine if species share responses to climate change as a taxon or by area (i.e., temperate versus tropical environments). Using a multilocus dataset, we test for the demographic signature of population expansion and decline using non-genealogical summary statistics, as well as coalescent-based methods. In addition, we determine whether range sizes are correlated with effective population sizes for milksnakes. Results indicate that there are no identifiable trends with respect to demographic response based on location, and that species responded to changing climates independently, with tropical taxa showing greater instability. There is also no correlation between range size and effective population size, with the largest population size belonging to the species with the smallest geographic distribution. Our study highlights the importance of not generalizing the demographic histories of taxa by region and further illustrates that the New World tropics may not have been a stable refuge during the Pleistocene.  相似文献   

4.
Climatic changes associated with Pleistocene glacial cycles profoundly affected species distributions, patterns of interpopulation gene flow, and demography. In species restricted to montane habitats, ranges may expand and contract along an elevational gradients in response to environmental fluctuations and create high levels of genetic variation among populations on different mountains. The salamander Plethodon fourchensis is restricted to high-elevation, mesic forest on five montane isolates in the Ouachita Mountains. We used DNA sequence data along with ecological niche modelling and coalescent simulations to test several hypotheses related to the effects of Pleistocene climatic fluctuations on species in montane habitats. Our results revealed that P. fourchensis is composed of four well-supported, geographically structured lineages. Geographic breaks between lineages occurred in the vicinity of major valleys and a narrow high-elevation pass. Ecological niche modelling predicted that environmental conditions in valleys separating most mountains are suitable; however, interglacial periods like the present are predicted to be times of range expansion in P. fourchensis . Divergence dating and coalescent simulations indicated that lineage diversification occurred during the Middle Pleistocene via the fragmentation of a wide-ranging ancestor. Bayesian skyline plots showed gradual decreases in population size in three of four lineages over the most recent glacial period and a slight to moderate amount of population growth during the Holocene. Our results not only demonstrate that climatic changes during the Pleistocene had profound effects on species restricted to montane habitats, but comparison of our results for P. fourchensis with its parapatric, sister taxon, P. ouachitae , also emphasizes how responses can vary substantially even among closely related, similarly distributed taxa.  相似文献   

5.
In Europe, southern peninsulas served as major refugia during Pleistocene cold periods. However, growing evidence has revealed complex patterns of glacial survival within these southern regions, with multiple glacial refugia within each larger refugial area. We investigated the extent to which patterns of endemism and phylogeographic are concordant across animal species in the Iberian Peninsula, one of the most important unglaciated areas in Europe during the Pleistocene, can be explained in terms of climatic stability. We found that historical climatic stability (notably climate velocity measures integrating macroclimatic shifts with local spatial topoclimate gradients) was often among the most important predictors of endemic species richness for different taxonomic groups using models that also incorporated measures of modern climate. Furthermore, for some taxonomic groups, climatic stability was also correlated with patterns of spatial concordance in interpopulation genetic divergence across multiple taxa, and private haplotypes were more frequently found in relatively stable areas. Overall, our results suggest that both endemism patterns and cross‐taxa concordant phylogeographic patterns across the Iberian Peninsula to some extent are linked to spatial variation in Late Quaternary climate stability, in agreement with the proposed ‘refugia‐within‐refugia’ scenario. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 13–28.  相似文献   

6.
The climatic and geological changes that occurred during the Quaternary, particularly the fluctuations during the glacial and interglacial periods of the Pleistocene, shaped the population demography and geographic distribution of many species. These processes have been studied in several groups of organisms in the Northern Hemisphere, but their influence on the evolution of Neotropical montane species and ecosystems remains unclear. This study contributes to the understanding of the effect of climatic fluctuations during the late Pleistocene on the evolution of Andean mountain forests. First, we describe the nuclear and plastidic DNA patterns of genetic diversity, structure, historical demography, and landscape connectivity of Quercus humboldtii, which is a typical species in northern Andean montane forests. Then, these patterns were compared with the palynological and evolutionary hypotheses postulated for montane forests of the Colombian Andes under climatic fluctuation scenarios during the Quaternary. Our results indicated that populations of Q. humboldtii have high genetic diversity and a lack of genetic structure and that they have experienced a historical increase in connectivity from the last glacial maximum (LGM) to the present. Furthermore, our results showed a dramatic reduction in the effective population size followed by an expansion before the LGM, which is consistent with the results found by palynological studies, suggesting a change in dominance in Andean forests that may be related to ecological factors rather than climate change.  相似文献   

7.
During Pleistocene glacial‐interglacial cycles, the geographic range is often assumed to have shifted as a species tracks its climatic niche. Alternatively, the geographic range would not necessarily shift if a species can adapt in situ to a changing environment. The potential for a species to persist in place might increase with the diversity of habitat types that a species exploits. We evaluate evidence for either range shift or range stability between the last glacial maximum (LGM) and present time in the chisel‐toothed kangaroo rat (Dipodomys microps), an endemic of the Great Basin and Mojave deserts. We modeled how the species’ range would have changed if the climatic niche of the species remained conserved between the LGM and present time. The climatic models imply that if D. microps inhabited the same climatic niche during the LGM as it does today, the species would have persisted primarily within the warm Mojave Desert and expanded northwards into the cold Great Basin only after the LGM. Contrary to the climatic models, the mitochondrial DNA assessment revealed signals of population persistence within the current distribution of the species throughout at least the latest glacial‐interglacial cycle. We concluded that D. microps did not track its climatic niche during late Pleistocene oscillations, but rather met the challenge of a changing environment by shifting its niche and retaining large portions of its distribution. We speculate that this kind of response to fluctuating climate was possible because of ‘niche drifting’, an alteration of the species’ realized niche due to plasticity in various biological characters. Our study provides an example of an approach to reconstruct species’ responses to past climatic changes that can be used to evaluate whether and to what extent taxa have capacity to shift their niches in response to the changing environment – information becoming increasingly important to predicting biotic responses to future environmental changes.  相似文献   

8.
Aim We examine the range expansion/contraction dynamics during the last glacial cycle of the late‐successional tropical rain forest conifer Podocarpus elatus using a combination of modelling and molecular marker analyses. Specifically, we test whether distributional changes predicted by environmental niche modelling are in agreement with (1) the glacial maximum contractions inferred from the southern fossil record, and (2) population genetic‐based estimates of range disjunctions and demographic dynamics. In addition, we test whether northern and southern ranges are likely to have experienced similar expansion/contraction dynamics. Location Eastern Australian tropical and subtropical rain forests. Methods Environmental niche modelling was completed for three time periods during the last glacial cycle and was interpreted in light of the known palynology. We collected 109 samples from 32 populations across the entire range of P. elatus. Six microsatellite loci and Bayesian coalescence analysis were used to infer population expansion/contraction dynamics, and five sequenced loci (one plastid and four nuclear) were used to quantify genetic structure/diversity. Results Environmental niche modelling suggested that the northern and southern ranges of P. elatus experienced different expansion/contraction dynamics. In the northern range, the habitat suitable for P. elatus persisted in a small refugial area during the Last Glacial Maximum (LGM, 21 ka) and then expanded during the post‐glacial period. Conversely, in the south suitable habitat was widespread during the LGM but subsequently contracted. These differential dynamics were supported by Bayesian analyses of the population genetic data (northern dispersal) and are consistent with the greater genetic diversity in the south compared with the north. A contact zone between the two genetically divergent groups (corresponding to the Macleay Overlap Zone) was supported by environmental niche modelling and molecular analyses. Main conclusions The climatic fluctuations of the Quaternary have differentially impacted the northern and southern ranges of a broadly distributed rain forest tree in Australia. Recurrent contraction/expansion cycles contributed to the genetic distinction between northern and southern distributions of P. elatus. By combining molecular and environmental niche modelling evidence, this unique study undermines the general assumption that broadly distributed species respond in a uniform way to climate change.  相似文献   

9.
Widespread tree species cover large geographical areas and play important roles in various vegetation types. Understanding how these species responded to historical climatic changes is important for understanding community assembly mechanisms with evolutionary and conservation implications. However, the location of refugial areas and postglacial history of widespread trees in East Asia remain poorly known. We combined microsatellite data (63 populations, 1756 individuals) and ecological niche modeling to examine the range‐wide population diversity, genetic structure, and historical demography of a pioneer tree species, Asian white birch (Betula platyphylla Suk.) across East Asia. We found a north‐to‐south trend of declining genetic diversity and five clusters, corresponding to geographical regions. Different clusters were inferred to have diverged through Pleistocene climatic oscillations and have different expansion routes, leading to genetic admixture in some populations. Ecological niche models indicated that the distribution of B. platyphylla during the last glacial maximum still had a large latitude span with slight shifts toward southeast, and northern populations had more variable distribution ranges than those in the south during later climatic oscillations. Our results reflect the relatively stable distribution through the last glacial–interglacial cycles and recent multidirectional expansion of B. platyphylla, providing new hypotheses for the response pattern of widespread tree species to climate change. The gradual genetic pattern from northeast to southwest and alternative distribution dynamics possibly resulted from environmental differences caused by latitude and topographic heterogeneity.  相似文献   

10.
The glacial-interglacial cycles of the upper Pleistocene have had a major impact on the recent evolutionary history of Arctic species. To assess the effects of these large-scale climatic fluctuations to a large, migratory Arctic mammal, we assessed the phylogeography of reindeer (Rangifer tarandus) as inferred from mitochondrial DNA (mtDNA) sequence variation in the control region. Phylogenetic relationships among haplotypes seem to reflect historical patterns of fragmentation and colonization rather than clear-cut relationships among extant populations and subspecies. Three major haplogroups were detected, presumably representing three separate populations during the last glacial. The most influential one has contributed to the gene pool of all extant subspecies and seems to represent a large and continuous glacial population extending from Beringia and far into Eurasia. A smaller, more localized refugium was most likely isolated in connection with ice expansion in western Eurasia. A third glacial refugium was presumably located south of the ice sheet in North America, possibly comprising several separate refugial populations. Significant demographic population expansion was detected for the two haplogroups representing the western Eurasian and Beringian glacial populations. The former apparently expanded when the ice cap retreated by the end of the last glacial. The large continuous one, in contrast, seems to have expanded by the end of the last interglacial, indicating that the warm interglacial climate accompanied by marine transgression and forest expansion significantly confined population size on the continental mainland. Our data demonstrate that the current subspecies designation does not reflect the mtDNA phylogeography of the species, which in turn may indicate that morphological differences among subspecies have evolved as adaptive responses to postglacial environmental change.  相似文献   

11.
The theory of classical and cryptic Pleistocene refugia is based mainly on historical changes in temperature, and the refugia are usually defined within a latitudinal gradient. However, the gradient of oceanic–continental climate (i.e. longitudinal) was also significantly variable during glacial cycles with important biotic consequences. Range‐wide phylogeography of the European ground squirrel (EGS) was used to interpret the evolutionary and palaeogeographical history of the species in Europe and to shed light on its glacial–interglacial dynamic. The EGS is a steppe‐inhabiting species and the westernmost member of the genus in the Palaearctic region. We have analysed 915 specimens throughout the present natural range by employing mitochondrial DNA sequences (cytochrome b gene) and 12 nuclear microsatellite markers. The reconstructed phylogeography divides the species into two main geographical groups, with deep substructuring within both groups. Bulgaria is the centre of the ancestral area, and it also has the highest genetic diversity within the species. The northernmost group of the EGS survived in the southern part of Pannonia throughout several glacial–interglacial cycles. Animals from this population probably repeatedly colonized areas further to the north and west during the glacial periods, while in the interglacial periods, the EGS distribution contracted back to this Pannonian refugium. The EGS thus represents a species with a glacial expansion/interglacial contraction palaeogeographical dynamics, and the Pannonian and southeastern Balkanian steppes are supported as cryptic refugia of continental climate during Pleistocene interglacials.  相似文献   

12.
The Pleistocene was an epoch of extreme climatic and environmental changes. How individual species responded to the repeated cycles of warm and cold stages is a major topic of debate. For the European fauna and flora, an expansion–contraction model has been suggested, whereby temperate species were restricted to southern refugia during glacial times and expanded northwards during interglacials, including the present interglacial (Holocene). Here, we test this model on the red deer (Cervus elaphus) a large and highly mobile herbivore, using both modern and ancient mitochondrial DNA from the entire European range of the species over the last c. 40 000 years. Our results indicate that this species was sensitive to the effects of climate change. Prior to the Last Glacial Maximum (LGM) haplogroups restricted today to South‐East Europe and Western Asia reached as far west as the UK. During the LGM, red deer was mainly restricted to southern refugia, in Iberia, the Balkans and possibly in Italy and South‐Western Asia. At the end of the LGM, red deer expanded from the Iberian refugium, to Central and Northern Europe, including the UK, Belgium, Scandinavia, Germany, Poland and Belarus. Ancient DNA data cannot rule out refugial survival of red deer in North‐West Europe through the LGM. Had such deer survived, though, they were replaced by deer migrating from Iberia at the end of the glacial. The Balkans served as a separate LGM refugium and were probably connected to Western Asia with genetic exchange between the two areas.  相似文献   

13.
Pleistocene climate fluctuations shaped the patterns of genetic diversity observed in extant species. In contrast to Europe and North America where the effects of recent glacial cycles on genetic diversity have been well studied, the genetic legacy of the Late Pleistocene for East Asia, a region of great topographical complexity and presumably milder historical climate, remains poorly understood. We analysed 3.86 kb of the mitochondrial genome of 186 Chinese Hwamei birds, Leucodioptron canorum canorum , and found that contrary to the conventional expectation of population decline during cold periods (stadials), the demographic history of this species shows continuous population growth since the penultimate glacial period (about 170 000 years ago). Refugia were identified in the south, coastal regions, and northern inland areas, implying that topographic complexity played a substantial role in providing suitable habitats for the Chinese Hwamei during cold periods. Intermittent gene flow between these refugia during the warmer periods (interstadials) might have resulted in a large effective population of this bird through the last glacial period.  相似文献   

14.
Increasing aridity during glacial periods produced the retraction of forests and the expansion of arid and semi‐arid environments in Africa, with consequences for birds. Cattle egret Bubulcus ibis is a dispersive species that prefers semi‐arid environments and requires proximity to bodies of water. We expected that climatic oscillations led to the expansion of the range of the cattle egret during arid periods, such as the Last Maximum Glacial (LGM) and contraction of distribution during the Last Interglacial (LIG) period, resulting in contact of populations previously isolated. We investigated this hypothesis by evaluating the genetic structure and population history of 15 cattle egret breeding colonies located in west and South Africa using the mitochondrial DNA (mtDNA) control region, mtDNA ATPase 8 and 6, and an intron of nuclear gene transforming growth factor‐beta 2. Occurrence data and bioclimatic information were used to generate ecological niche models of three periods (present, LGM and LIG). We used the genetic and paleomodelling data to assess the responses of the cattle egret from Africa to the climatic oscillations during the late Pleistocene. Genetic data revealed low levels of genetic differentiation, signs of isolation‐by‐distance, as well as recent increases in effective population size that started during the LGM. The observed low genetic structure may be explained by recent colonization events due to the demographic expansion following the last glacial period and by dispersal capacity of this species. The paleomodels corroborated the expansion during the LGM, and a more restricted potential distribution during the LIG. Our findinds supports the hypothesis that the species range of the cattle egret expanded during arid periods and contracted during wet periods.  相似文献   

15.
Arctic animals face dramatic habitat alteration due to ongoing climate change. Understanding how such species have responded to past glacial cycles can help us forecast their response to today's changing climate. Gray whales are among those marine species likely to be strongly affected by Arctic climate change, but a thorough analysis of past climate impacts on this species has been complicated by lack of information about an extinct population in the Atlantic. While little is known about the history of Atlantic gray whales or their relationship to the extant Pacific population, the extirpation of the Atlantic population during historical times has been attributed to whaling. We used a combination of ancient and modern DNA, radiocarbon dating and predictive habitat modelling to better understand the distribution of gray whales during the Pleistocene and Holocene. Our results reveal that dispersal between the Pacific and Atlantic was climate dependent and occurred both during the Pleistocene prior to the last glacial period and the early Holocene immediately following the opening of the Bering Strait. Genetic diversity in the Atlantic declined over an extended interval that predates the period of intensive commercial whaling, indicating this decline may have been precipitated by Holocene climate or other ecological causes. These first genetic data for Atlantic gray whales, particularly when combined with predictive habitat models for the year 2100, suggest that two recent sightings of gray whales in the Atlantic may represent the beginning of the expansion of this species' habitat beyond its currently realized range.  相似文献   

16.
Aim Although climatic fluctuations occurred world‐wide during the Pleistocene, the severity of glacial and drought events – and hence their influence on animal and plant biogeography – differed among regions. Many Holarctic species were forced to warmer‐climate refugia during glacial periods, leaving the genetic signature of recent expansion and gene flow among modern‐day populations. Montane south‐eastern Australia experienced less extreme glaciation, but the effects of drier and colder climatic conditions over this period on biotic distributions, and hence on the present‐day genetic structure of animal and plant populations, are poorly known. Location South‐eastern Australia. Methods The endangered Blue Mountains water skink (Eulamprus leuraensis) is a viviparous lizard known from fewer than 40 isolated small swamps at 560–1060 m elevation in south‐eastern Australia. We conducted molecular phylogenetic, dating and population genetics analyses using the mitochondrial NADH dehydrogenase 4 (ND4) of 224 individuals of E. leuraensis sampled across the species’ distribution. Results Ancient divergences in haplotype groups between lizards from the Blue Mountains and the Newnes Plateau, and strong genetic differences, even between swamps separated by only a few kilometres, suggest that the species has persisted as a series of relatively isolated populations within its current distribution for about a million years. Presumably, habitat patches similar to current‐day swamps persisted throughout glacial–interglacial cycles in this region, allowing the development of high levels of genetic structuring within and among present‐day populations. Main conclusions Our results suggest that less extreme glacial conditions occurred in the Southern Hemisphere compared with the Northern Hemisphere, allowing cold‐adapted species (such as E. leuraensis) to persist in montane areas. However, additional studies are needed before we can assemble a comprehensive view of the impact of Pleistocene climatic variation on the phylogeography of Southern Hemisphere taxa.  相似文献   

17.
The current phylogeographic pattern of European brown bears (Ursus arctos) has commonly been explained by postglacial recolonization out of geographically distinct refugia in southern Europe, a pattern well in accordance with the expansion/contraction model. Studies of ancient DNA from brown bear remains have questioned this pattern, but have failed to explain the glacial distribution of mitochondrial brown bear clades and their subsequent expansion across the European continent. We here present 136 new mitochondrial sequences generated from 346 remains from Europe, ranging in age between the Late Pleistocene and historical times. The genetic data show a high Late Pleistocene diversity across the continent and challenge the strict confinement of bears to traditional southern refugia during the last glacial maximum (LGM). The mitochondrial data further suggest a genetic turnover just before this time, as well as a steep demographic decline starting in the mid‐Holocene. Levels of stable nitrogen isotopes from the remains confirm a previously proposed shift toward increasing herbivory around the LGM in Europe. Overall, these results suggest that in addition to climate, anthropogenic impact and inter‐specific competition may have had more important effects on the brown bear's ecology, demography, and genetic structure than previously thought.  相似文献   

18.
Phylogeographic studies around the world have identified refugia where fauna were able to persist during unsuitable climatic periods, particularly during times of glaciation. In Australia the effects of Pleistocene climate oscillations on rainforest taxa have been well studied but less is known about the effects on mesic-habitat fauna, such as the eastern grey kangaroo (Macropus giganteus). The eastern grey kangaroo is a large mammal that is common and widespread throughout eastern Australia, preferring dry mesic habitat, rather than rainforest. As pollen evidence suggests that the central-eastern part of Australia (southeast Queensland and northern New South Wales) experienced cycles of expansion in mesic habitat with contraction in rainforests, and vice versa during glacial and interglacial periods, respectively, we hypothesise that the distribution of the eastern grey kangaroo was affected by these climate oscillations and may have contracted to mesic habitat refugia. From 375 mitochondrial DNA control region sequences from across the distribution of eastern grey kangaroos we obtained 108 unique haplotypes. Phylogenetic analysis identified two clades in Queensland, one of which is newly identified and restricted to a small coastal region in southern Queensland north of Brisbane, known as the Sunshine Coast. The relatively limited geographic range of this genetically isolated clade suggests the possibility of a mesic habitat refugium forming during rainforest expansion during wetter climate cycles. Other potential, although less likely, reasons for the genetic isolation of the highly distinct clade include geographic barriers, separate northward expansions, and strong local adaptation.  相似文献   

19.
Many temperate species experienced demographic and range contractions in response to climatic changes during Pleistocene glaciations. In this study, we investigate the evolutionary history of the Tyrrhenian tree frog Hyla sarda, a species inhabiting the Corsica-Sardinia island system (Western Mediterranean basin). We used sequence analysis of two mitochondrial (overall 1229 bp) and three nuclear (overall 1692 bp) gene fragments to assess the phylogeography and demographic history of this species, and species distribution modelling (SDM) to predict its range variation over time. Phylogeographic, historical demographic and SDM analyses consistently indicate that H. sarda does not conform to the scenario generally expected for temperate species but rather underwent demographic and range expansion mostly during the last glacial phase. Palaeogeographic data and SDM analyses suggest that such expansion was driven by the glaciation-induced increase in lowland areas during marine regression. This unusual scenario suggests that at least some temperate species may not have suffered the adverse effects of glacial climate on their population size and range extent, owing to the mitigating effects of other glaciations-induced palaeoenvironmental changes. We discuss previous clues for the occurrence of such a scenario in other species and some possible challenges with its identification. Early phylogeographic literature suggested that responses to the Pleistocene glacial-interglacial cycles were expected to vary among species and regions. Our results point out that such variation may have been greater than previously thought.  相似文献   

20.
For many species, climate oscillations drove cycles of population contraction during cool glacial periods followed by expansion during interglacials. Some groups, however, show evidence of uniform and synchronous expansion, while others display differences in the timing and extent of demographic change. We compared demographic histories inferred from genetic data across marine turtle species to identify responses to postglacial warming shared across taxa and to examine drivers of past demographic change at the global scale. Using coalescent simulations and approximate Bayesian computation (ABC), we estimated demographic parameters, including the likelihood of past population expansion, from a mitochondrial data set encompassing 23 previously identified lineages from all seven marine turtle species. For lineages with a high posterior probability of expansion, we conducted a hierarchical ABC analysis to estimate the proportion of lineages expanding synchronously and the timing of synchronous expansion. We used Bayesian model averaging to identify variables associated with expansion and genetic diversity. Approximately 60% of extant marine turtle lineages showed evidence of expansion, with the rest mainly exhibiting patterns of genetic diversity most consistent with population stability. For lineages showing expansion, there was a strong signal of synchronous expansion after the Last Glacial Maximum. Expansion and genetic diversity were best explained by ocean basin and the degree of endemism for a given lineage. Geographic differences in sensitivity to climate change have implications for prioritizing conservation actions in marine turtles as well as for identifying areas of past demographic stability and potential resilience to future climate change for broadly distributed taxa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号