首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CH12.LX B cells have been used as a lymphoma model of MHC restricted, antigen-dependent B cell differentiation. These B cells express surface IgM and secrete IgM. Most recently we have demonstrated that CH12.LX is a model of cytokine driven IgA differentiation. Recently, transforming growth factor beta (TGF-beta) has been shown to be a probable switch factor for IgA in LPS-stimulated mouse lymphocytes, therefore we chose CH12.LX B cells to study the effect of IL-4, TGF-beta and LPS in IgA isotype switching. Adding TGF-beta to the monoclonal cell line CH12.LX results in induction of mIgA expression but no enhancement of IgA secretion similar to the effect of IL-4. The addition of LPS serves as a non-specific stimulus to enhance the secretion of the expressed immunoglobulin, but has no IgA specific activity of its own. IL-4 and TGF-beta together are synergistic for mIgA expression. Pretreatment studies show that TGF-beta added after IL-4 is the same as TGF-beta alone whereas the converse is the same as adding both cytokines together. TGF-beta acts by increasing the steady state levels of alpha message, whereas northern analysis indicates that IL-4 does not induce alpha message the way TGF-beta does. These data confirm that TGF-beta by itself is an isotype switch factor for IgA. In addition, IL-4 and TGF-beta cause mIgA expression through different mechanisms. CH12.LX B cells serve as a valuable model to study the role of multiple signals required for mIgA expression and IgA secretion.  相似文献   

2.
We sought to determine whether selected cytokines, known to stimulate profoundly B-cell activation and differentiation, also have as yet unrecognized effects upon the glycosylation of secreted Ig and/or membrane-associated proteins. The glycosylation of both secreted IgM and membrane-bound MHC Class-I synthesized by CH12LX cells was detected by enzyme-lectin conjugates in immunoabsorption assays. Stimulation of B cells with IL-4 plus IL-5 significantly decreases the terminal glycosylation of secreted IgM, whereas LPS has a minor effect, despite the fact that both stimuli are equipotent for IgM secretion. Neither LPS nor IL-4 plus IL-5 affect MHC Class-I expression. However, IL-4 plus IL-5 substantially increases the terminal glycosylation of MHC Class-I produced from both mIgM(+)and mIgA(+)CH12LX cells. LPS has no or a modest effect on the terminal glycosylation of MHC Class-I produced from CH12LX cells. These results suggest that Th(2)-derived cytokines differentially influence the glycosylation of secreted and membrane-associated glycoproteins of B cells. In turn, this might elucidate the basis of aberrant glycosylation reported in conditions such as IgA nephropathy, cancer and rheumatoid arthritis.  相似文献   

3.
Cholera toxin promotes B cell isotype differentiation   总被引:11,自引:0,他引:11  
Cholera toxin (CT) is a powerful oral immunogen and adjuvant that elicits strong IgG and IgA antibody responses. In our study we investigated whether this property of CT was associated with an effect on B cell isotype differentiation. Initially, we determined the effect of CT on normal LPS-induced Peyer's patch B cells and found that whereas CT is strongly inhibitory of IgM production, it increases by approximately three-fold the number and frequency of IgG- and IgA-producing cells. Subsequently, using cell sorting technology, we demonstrated that CT acts on membrane (m)IgM+, mIgG/mIgA- B cells rather than mIgG/mIgA+ B cells. In addition, we showed that CT does not cause selective inhibition of mIgM, or enhancement of mIgG/mIgA B cell proliferation. In parallel studies we determined the effect of CT on the differentiation of a clonal B cell population, CH12.LX cells, i.e., a population comprised mainly of mIgM+ cells (98%) admixed with a small subpopulation of mIgA+ cells (2%). Here we found that CT (in the absence of LPS) causes a rapid decrease (24 h) in the intensity of mIgM expression as well as a marked increase in the size of the subpopulation expressing mIgA. In addition, we found that CT (in the presence of LPS), inhibits CH12.LX IgM production while increasing the absolute number and frequency of IgA-producing cells. In contrast, CT inhibits IgA production by CH12.LX.A2 cells, a subclone of CH12.LX cells that bears only IgA. Finally, we demonstrated that CT is equally inhibitory of the proliferation of CH12.LX cells and CH12.LX.A2 cells. Taken together, these effects of CT on normal B cells and a clonal B cell line indicate that CT induces substantial numbers of mIgM+ cells to undergo isotype differentiation into mIgG+ or mIgA+ B cells. In a final series of studies we showed that the effect of CT on isotype differentiation was mimicked by the B subunit of CT, i.e., the subunit that does not activate intracellular adenylate cyclase; thus the induction of isotype differentiation by CT is not mediated by a perturbation in cAMP level.  相似文献   

4.
The role of IL-5 in IgA B cell differentiation   总被引:20,自引:0,他引:20  
IL-5 enhances secretion of IgA by B cells. The stage of B cell differentiation at which IL-5 enhances IgA secretion and the mechanism by which it exerts this effect are unknown. We examined these issues by separating Peyer's patch (PP) B cells into membrane IgA (mIgA)-positive and mIgA-negative cells with panning or cell sorting. When LPS was used to activate these cells, mIgA-positive PP B cells were induced by IL-5 (either as crude T cell supernatant or rIL-5 to secrete large amounts of IgA. In contrast mIgA-negative PP B cells showed no significant amount of IgA secretion with IL-5. In addition, rIL-5 did not cause expression of mIgA by mIgM-bearing B cells. The mechanism involved in enhancement of IgA secretion was evaluated by utilizing an ELISPOT assay to quantitate IgA secreting cells. Both unsorted PP B cells and mIgA-positive PP B cells, when incubated with IL-5, showed an increase in the number of IgA-secreting cells that was proportional to the increase in total secreted IgA. However, LPS-activated PP mIgA-positive B cells, when incubated with rIL-5, showed no increase in proliferation, as measured by [3H]thymidine incorporation indicating that the increase in IgA-secreting cells after incubation with IL-5 occurred not as a result of proliferation but rather through promotion of terminal differentiation. Thus, IL-5 acts as a differentiation factor on B cells which have already undergone isotype switch to IgA B cells, promoting differentiation into IgA-secreting cells with resultant increased IgA secretion.  相似文献   

5.
The CH12LX cell line was used as a clonal model to assess the direct effects of vomitoxin on IgM and IgA secretion in B cells. When vomitoxin was included in LPS-driven CH12LX B cell cultures, it had multiple effects on Ig secretion. Whereas vomitoxin doses of 115 and 120 ng/ml caused 50% inhibition(ID50) of IgA and IgM production, respectively, toxin concentrations in the 5 to 50 ng/ml range slightly stimulated IgA production. However, low vomitoxin doses did not induce switching of membrane IgM+ CH12LX B cells to membrane IgA+. Total cell number was unaffected at vomitoxin concentrations up to 100 ng/ml but dropped markedly at 200 ng/ml (ID50=170 ng/ml). Using the MTT reduction assay as another measure of viability and cell function, vomitoxin was also inhibitory (ID50=130 ng/ml). Both thymidine incorporation and leucine incorporation were also inhibited by the toxin with estimated ID50s being 120 and 110 ng/ml, respectively. The results indicate that although at high doses, vomitoxin inhibits proliferation, Ig secretion and DNA/protein synthesis in the clonal B cell model, the toxin marginally stimulated IgA secretion at lower doses.  相似文献   

6.
Recent studies have shown that purified IL-5 from T cell lines and clones enhances IgA synthesis in LPS-triggered splenic B cell cultures, and that this effect is augmented by IL-4. In this study we have examined the ability of rIL-5 and rIL-4 to support spontaneous Ig synthesis in normal Peyer's patch (PP) B cell cultures. The rIL-4 supported proliferation of the HT-2 and in vivo adapted BCL-1 cell lines, increased Ia expression on normal spleen B cells, co-stimulated splenic B cell proliferation in the presence of anti-mu and enhanced IgG1 synthesis in LPS triggered splenic B cell cultures. The rIL-5 supported BCL-1 proliferation, co-stimulated splenic B cell proliferation in the presence of dextran sulfate, and increased IgA synthesis in LPS-stimulated splenic B cell cultures. Markedly enhanced IgA responses occurred in PP B cell, but not splenic B cell cultures supplemented with rIL-5 in the absence of an added B cell trigger. However, rIL-4 alone did not enhance IgA synthesis or increase the IgA synthesis of PP B cell cultures stimulated with rIL-5. The rIL-5 receptive PP B cells were present in the blast cell subpopulation, inasmuch as a low density fraction isolated on Percoll gradients accounted for the enhanced IgA synthesis. Further, cell cycle analysis of whole PP B cells using propidium iodide in conjunction with staining for surface B220, demonstrated that approximately 12 to 16% of the B cells were in the S and G2/M stages of cell cycle, the remainder being in Go + G1. The surface IgM+ B cells were predominantly in Go + G1, whereas the sIgA+ B cell subpopulation was enriched for cells in the S and G2/M compartments. The PP B cell subset responsible for enhanced IgA synthesis in the presence of rIL-5 was sIgA-positive because FACS-depletion of the sIgA+ B cells resulted in the total loss of rIL-5 enhanced IgA synthesis. Further, when PP B cells were enriched for sIgA+ B cells by cell sorting, these cells responded to rIL-5 with increased IgA synthesis in a dose-dependent manner. When the actual numbers of IgA secreting cells were assessed in PP B cell cultures with supplemental rIL-5, no significant increase in total IgA-producing cells was noted when compared with B cells cultured without rIL-5.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Transforming growth factor-beta 1 is a costimulator for IgA production   总被引:9,自引:0,他引:9  
Transforming growth factor-beta 1 (TGF-beta 1) belongs to a family of polypeptides involved in the regulation of cell growth and differentiation. We have examined the ability of TGF-beta 1 to regulate isotype specific Ig secretion by murine spleen B cells. TGF-beta 1, in the presence of rIL-2, induced a synergistic 10-fold or greater increase in IgA secretion by LPS-stimulated spleen B cells. TGF-beta 1 alone had little to no effect on IgA secretion. In contrast, TGF-beta 1, with or without rIL-2, markedly inhibited IgG1 and IgM secretion under the same conditions. The costimulatory activity of TGF-beta 1 and rIL-2 on IgA secretion was seen in cultures of surface IgA negative B cells and was inhibited by anti-TGF-beta 1 antibody in a dose dependent manner. Vicia villosa agglutinin non-adherent Peyer's patch T cells, which secrete IL-2, also synergized with TGF-beta 1 and could substitute for the activity of LPS and rIL-2 on the IgA response. Finally, IL-5 added after 2 days of culture, but not at the beginning of culture, synergized with TGF-beta 1 on the IgA response. These studies indicate that TGF-beta 1 can interact with other lymphokines and selectively modulate the IgA response.  相似文献   

8.
The IgA producing murine B lymphoma, CH12.LX.C4.4F10 (4F10) and the IgM producing murine lymphoma, CH12.LX.C4.5F5 (5F5) were found to express substantial numbers of substance P (SP) receptors having dissociation constants equal to 0.69 nM. Binding of SP by these B lymphoma cells was via the tachykinin-specific C-terminus sequence, Phe-X-Gly-Leu-Met-NH2, because SP, SP antagonist (D-Pro2-D-Phe7-D-Trp9-SP), eledoisin, and substance K could effectively inhibit radiolabeled SP binding, whereas the SP N-terminus fragment, SP (1-4), could not. The functionality of these receptors could be demonstrated by the ability of subnanomolar concentrations of SP to induce Ig secretion in a dose-dependent fashion. However, the presence of a second stimulus in these cultures was required to obtain maximal increases. IgA secretion by 4F10 cells was elevated only 25 to 37%, and IgM secretion by 5F5 cells was not significantly increased in cultures in which nanomolar concentrations of SP were present. Conversely, coculturing 5F5 cells with a suboptimal concentration of LPS (50 ng/ml) and 10(-10)M SP resulted in an approximate threefold increase in supernatant IgM when compared to control cultures stimulated with LPS alone. While not as dramatic, 10(-10) M SP also enhanced IgA secretion of LPS-stimulated 4F10 cells by approximately 45%. This enhancement of Ig secretion was SP-specific, as evidenced by the ability of 1000-fold excess of SP antagonist to block SP-induced, but not LPS-induced, Ig production. Clearly, SP could act synergistically with LPS to enhance Ig secretion; therefore, we questioned whether this augmentation was also reflected at the level of H chain mRNA expression. 10(-9)M SP induced modest increases (50 to 60%) in mu-chain mRNA expression by LPS-stimulated 5F5 cells when compared with cells stimulated with LPS alone. The 4F10 cells did not display this magnitude of difference for alpha-chain mRNA expression. Thus, although SP-induced increases of mu-chain mRNA by 5F5 cells may contribute to the increased Ig secretion observed by these LPS-activated lymphocytes, it is unlikely that increased mRNA expression can totally account for the threefold increases in secretion that were observed.  相似文献   

9.
In these studies we determined the capacity of IL-6 to act as a differentiation cofactor for murine Peyer's patch B cells producing different Ig classes and subclasses. In preliminary studies we determined that sufficient endogenous IL-6 was produced in LPS-induced cell systems to obscure responses to exogenous IL-6. We therefore studied IL-6 effects on Peyer's patch B cells (T cell-depleted cell populations) in the absence of LPS, relying on responses of in vivo-activated cells. rIL-1 alpha or purified IL-6 only slightly enhanced synthesis of IgM over minimal baseline levels in Peyer's patch T cell-depleted cell cultures; however, when IL-6 was added to cultures also containing rIL-1, IgM synthesis was very substantially increased. In addition, rIL-5 alone gave rise to a modest increase in IgM synthesis and its effect was not enhanced by either rIL-1 or IL-6. IgG production (mainly IgG3) followed a similar pattern. In contrast, IgA production was only modestly increased above baseline by rIL-1, rIL-5, or IL-6 alone or by rIL-1 and IL-6 in combination, but was greatly increased by rIL-5 and IL-6 in combination. The effect of IL-6 on Ig synthesis in the above studies was not due to an effect on cell proliferation. In summary, these data indicate that B cells differ in respect to the cytokines supporting maximal terminal differentiation and thus the class of Ig produced may depend on the presence of a particular combination of cytokines and lymphokines.  相似文献   

10.
The murine B cell line CH12.LX.C4.5F5 (CH12 (5F5) expresses adrenocorticotropin (ACTH) receptors, which can modulate IgM secretion by these cells. Interestingly, the response to ACTH was concentration dependent, inducing IgM secretion at subnanomolar amounts and suppressing secretion at micromolar amounts. With the use of an enzyme-linking immunospot assay it was possible to demonstrate that the ACTH-induced increase in IgM secretion by CH12 (5F5) cells was caused at least in part by an increase in the number of cells secreting IgM. CH12 (5F5) cells activated with suboptimal concentrations of LPS demonstrated a similar biphasic response. ACTH at concentrations of 10(-13) to 10(-9) M augmented IgM secretion in LPS-activated cells as much as sixfold, whereas 10(-6) M ACTH slightly decreased LPS-induced IgM secretion. At the mRNA level, subnanomolar concentrations of ACTH increased microH chain mRNA expression up to twofold in unstimulated or LPS-stimulated CH12 (5F5) cells. Taken together, these studies show that physiologically relevant concentrations of ACTH can interact directly with receptors on these B lymphocytes to enhance IgM secretion and microH chain mRNA expression. Although ACTH does increase intracellular cAMP levels in CH12 (5F5) B cells, it is unlikely that the induction of this second messenger pathway is by itself responsible for the ACTH induced B cell differentiation. The concentration of ACTH necessary to stimulate significant intracellular cAMP increases was 10- to 100-fold higher than that required to increase IgM secretion. Furthermore, CH12 (5F5) cells treated with varying concentrations of 8-bromo cAMP or cholera toxin were inhibited in their ability to secrete IgM. These results strongly suggest that the enhancing effects of ACTH on CH12 (5F5) IgM secretion are via mechanisms independent of those mediated by cAMP.  相似文献   

11.
12.
Interleukin-5 (IL-5) and IL-6 have both been reported to act as B-cell differentiation factors by stimulating activated B cells to secrete antibody. However, it has not been possible to directly compare the effects of these two lymphokines because of the lack of a suitable B-cell line capable of responding to both. We have identified a clonal, inducible B-cell lymphoma, CH12, that has this property. Both IL-5 and IL-6 can independently stimulate increases in steady-state levels of immunoglobulin and J-chain mRNA and proteins, and they both induce the differentiation of CH12 into high-rate antibody-secreting cells. Nevertheless, there are significant differences in the activities of these two lymphokines. First, while IL-6 acts only as a differentiation factor, IL-5 also augments the proliferation of CH12 cells. Second, the differentiation stimulated by IL-5 but not by IL-6 is partially inhibited by IL-4. Inhibition of IL-5-induced differentiation was not at the level of IL-5 receptor expression, since IL-4 did not inhibit IL-5-induced proliferation. Third, IL-5 but not IL-6 stimulated increased mouse mammary tumor proviral gene expression in CH12 cells. These results demonstrate that while both IL-5 and IL-6 may act as differentiation factors for B cells, they induce differentiation by using at least partially distinct molecular pathways. Our results also establish that B cells characteristic of a single stage of development can independently respond to IL-4, IL-5, and IL-6.  相似文献   

13.
IL-5 has been shown to specifically enhance IgA secretion in LPS-stimulated splenic B cell cultures. Maximum enhancement of IgA in such cultures, however, requires IL-4 in addition to IL-5. Because the Peyer's patches (PP), compared with spleen and lymph nodes, are enriched for precursors of IgA-secreting cells, we tested whether IL-4 and IL-5 would have a more profound effect on IgA secretion by polyclonally stimulated PP cells than spleen cells. The combination of IL-4 and IL-5 causes a comparable enhancement of IgA secretion in both LPS-stimulated PP and splenic B cell cultures. The majority of IgA secreted in LPS-stimulated PP cell cultures is derived from the sIgA- population. Furthermore, the binding high level of peanut agglutinin, germinal center subpopulation of PP cells is essentially nonresponsive to LPS, even in the presence of lymphokines; the majority of secreted IgA in these cultures is derived from the binding low level of peanut agglutinin population. In contrast to LPS-stimulated cultures, PP B cells secrete considerably more IgA than splenic B cells when polyclonally stimulated by a clone of autoreactive T cells in the presence of IL-4 and IL-5. The majority of IgA made by T cell-stimulated PP cell cultures is derived from the sIgA+ population. In these cultures, sIgA- PP cells and spleen cells secrete comparable levels of IgA and other non-IgM isotypes suggesting that sIgA- PP B cells are similar to splenic B cells in their potential to switch to IgA. In T cell-stimulated cultures the majority of IgA as well as of all other isotypes is also derived from the nongerminal center, binding low level of peanut agglutinin population.  相似文献   

14.
15.
In the present study, we have demonstrated that both B151-T cell-replacing factor 1 and rIL-5 are responsible for the activity to partially induce CL-3 cells into IgM-synthesizing cells and also to synergize with IL-2 to augment IL-2R expression on and IgM synthesis in CL-3 cells. These actions of rIL-5 on a homogeneous cloned line (BCL1-CL-3 cells) allow us to identify and characterize the two alternated B cell developmental pathways. One is an IL-2-independent, IL-5-driven differentiation pathway without preceding up-regulated IL-2R expression, and the other is an IL-5 plus IL-2-dependent augmented differentiation pathway with preceding up-regulated IL-2R expression. We have also demonstrated the functional difference of two distinct B cell growth-promoting factors, B cell-stimulating factor 1 (rIL-4) and rIL-5. CL-3 cells are equally stimulated to grow by rIL-4 and rIL-5, whereas only rIL-5 can render CL-3 cells responsive to rIL-2, indicating that these two lymphokines affect B cells in a strikingly different manner.  相似文献   

16.
IL-4-dependent IgE switch in membrane IgA-positive human B cells   总被引:6,自引:0,他引:6  
IgE responses by human B cells, separated according to membrane Ig classes, were analyzed in a clonal assay using EL-4 thymoma cells as helper cells, T cell supernatant, and rIL-4. In cultures seeded by means of the autoclone apparatus of the FACS, IgE responses were generated frequently by either IgM (mu+/gamma-alpha-) or IgA (alpha +/mu-)-positive B cells (16 and 14% of the Ig producing wells, respectively), but rarely by IgG (gamma +/mu-)-positive B cells (1.3% of Ig producing wells). The total amounts of Ig secreted by IgM-, IgG-, or IgA-positive cells and the total proportions of responding autoclone wells (23-27%) were comparable. All IgE secretion was IL-4 dependent. When the Ig secretion patterns from alpha +/mu- vs alpha +/mu-epsilon- B cells were compared, most autoclone wells from both types of cells produced IgA only, and similar proportions of IgA producing wells (6.2 and 6.0%) also secreted IgE. In addition, IgE restricted responses occurred 6 times more frequently with alpha +/mu- than with alpha +/mu-epsilon- cells, which suggests that membrane IgA+E double-positive, IgE committed B cells occur in vivo. The isotype pattern generated by alpha +/mu-epsilon- B cells cannot be explained by a chance assortment of separate IgA and IgE precursors or by cytophilic antibody. Thus, IL-4 dependent switch to IgE occurred frequently in IgM- or IgA-positive, but rarely among total IgG-positive, B cells. This could be relevant to IgE production in mucosal tissues rich in IgA expressing B cells.  相似文献   

17.
Transforming growth factor beta (TGF-beta) and IL-5 have been shown to augment IgA production by LPS-stimulated murine B cells. We investigated the effect of TGF-beta on the expression of surface Ig-isotype and IL-5 receptor on LPS-stimulated B cells. TGF-beta increased the proportion of both surface IgA-positive (sIgA+) B cells and sIgG2b+ B cells and enhanced IgA and IgG2b production by LPS-stimulated B cells. TGF-beta synergized with IL-5 only for IgA production of the seven Ig-isotypes and in combination with IL-5 caused a significant increase in the proportion of sIgA+ B cells up to 17.4%. In contrast, IL-5 decreased the proportion of sIgG2b+ B cells and sIgG3+ B cells and inhibited the production of IgG2b and IgG3 by LPS-stimulated B cells. About 50% of sIgA+ cells induced by TGF-beta expressed IL-5 receptor. They secreted peak levels of IgA and seemed to maintain long viability in the presence of IL-5; whereas TGF-beta had the opposite effects on sIgA+ B cells and down-regulated the IL-5 receptor expression. These results indicate that TGF-beta increases the number of sIgA(+)- and IL-5 receptor-positive B cells which respond to IL-5 giving rise to IgA-secreting cells and also support the notions that TGF-beta preferentially induces switching to sIgA+ B cells and IL-5 induces the maturation of postswitch sIgA+ B cells into IgA-secreting cells in a stepwise fashion.  相似文献   

18.
We have previously demonstrated that activation of protein kinase C (PKC) by phorbol esters induces selectively IgA synthesis by mouse B cells. In this study, we investigated the effects of a number of protein kinase inhibitors on IgA secretion induced by a recombinant murine IL-5 in LPS-stimulated mouse B cells. The results show that PKC inhibitors, such as sphingosine (SPH), staurosporine (STP) and H-7, blocked IL-5-induced IgA synthesis; the protein kinase A inhibitor HA-1004 and the inhibitor of calcium/calmodulin dependent protein kinase W-7 had no effect on IgA secretion induced by IL-5. The proliferation of the IL-5 sensitive B13 cell line in response to IL-5 was also inhibited by addition of SPH or STP or H-7. The data suggest an involvement of the PKC pathway in IL-5-induced B cell differentiation into IgA secreting cells.  相似文献   

19.
Cultured murine CD4+ T cells have been shown to differentiate into IL-2 or IL-4-producing subsets. The factors responsible for the development of CD4+ T cells which produce IL-2 but not IL-4 and cells capable of producing IL-4 but not IL-2 are unknown. Here we describe a system that allows the controlled induction of IL-2- or IL-4-producing T cells after one single round of activation. Freshly isolated CD8-depleted T cells were activated with various polyclonal T cell activators for 48 h, washed, and then expanded under different conditions. IL-2 and IL-4 production were induced by restimulation of T cells and were measured with CTLL cells that respond to both cytokines and mAb to IL-2 and IL-4. T cells produced mainly IL-2 and small amounts of IL-4 when restimulated after expansion culture for 12 days with rIL-2 alone. However, after expansion for 12 days in the presence of rIL-2 plus Con A, we observed a 30- to 100-fold up-regulation of IL-4 activity and a 100-fold down-regulation of IL-2 when assessed by responses of CTLL cells incubated with the supernatant of restimulated T cells and by responses of CTLL cells cocultured with restimulated cells. An increase of IL-4 and decrease of IL-2 was also observed when the results were based on the cell numbers at the beginning of the expansion culture. The induction of IL-4 and the down-regulation of IL-2 1) were not reproduced with alpha-methyl-mannoside-treated supernatant of Con A-stimulated spleen cells, 2) were not dependent on the presence of large numbers of APC, 3) did not result from differential consumption of lymphokines after restimulation, 4) were not due to a difference in the time course of IL-2 or IL-4 release in either T cell population, and 5) were obtained regardless of the agents used to activate or to restimulate the T cells. Because Con A remained detectable on the T cell surface and because expansion of activated T cells with IL-2 plus Con A for several days was necessary, our results indicate that mainly IL-4-producing CD4+ T cells can be induced by prolonged engagement of T cell surface molecules.  相似文献   

20.
To investigate whether CD4+ T cells are predetermined to produce a given pattern of lymphokines, we have used a culture system that allows the controlled induction of either IL-2- or IL-4-producing CD4+ T cells. Single, freshly isolated murine CD4+ T cells were activated with Con A, rIL-2, and APC; the developing clones were split and then cultured for an additional 14 days with either rIL-2 alone or with rIL-2 and anti-CD3 stimulation. Subclones expanded in the presence of rIL-2 alone produced predominantly IL-2, although subclones derived from the same precursor and expanded in the presence of rIL-2 and a mitogenic antibody to CD3 released predominantly IL-4. Subclones expanded for 2 wk in the presence of rIL-2 plus a mitogenic mAb to CD3 released up to 60 times more IL-4 but only 1/90 the amount of IL-2 released by subclones derived from the same precursor cell and expanded with rIL-2. Both phenotypes can be derived from IL-2-producing precursor cells. These results demonstrate that IL-2-producing clones can be derived from the same cells as IL-4-producing clones and are most consistent with the view that the IL-2-producing Th1 or the IL-4-producing Th2 phenotype of a T cell clone is acquired during T cell differentiation and is not secondary to the expansion of distinct subpopulations that are predetermined to produce a specific cytokine pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号