首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
A functional homologue (ung1) of the human uracil-DNA-glycosylase (UNG) gene was characterized from fission yeast (Schizosaccharomyces pombe). The ung1 gene is highly conserved and encodes a protein with uracil-DNA-glycosylase activity similar to human UNG. The Ung1 protein localizes predominantly to the nucleus, suggesting that it is more similar to the nuclear form (UNG2) than the mitochondrial form (UNG1) of human UNG. Even though deletion of ung1 does not cause any obvious defects, overexpression of ung1 increases the mutation frequency. Overexpression of ung1 or human UNG2 induces a DNA checkpoint-dependent cell cycle delay and causes cell death which is enhanced when the checkpoints are inactive. In addition, the steady-state level of AP (apurinic/apyrimidinic) sites increases after ung1 overexpression, indicating that AP sites are likely to be the DNA damage caused by overexpression. Analysis of mutant ung indicates that catalytic activity is not required for the effects of overexpression, but that binding of Ung1 or UNG2 to AP sites may be important.  相似文献   

2.
Correction of heteroduplex DNA obtained by hybridization of uracil-containing single-stranded M13mp18 phage DNA and "mutant" synthetic oligonucleotide with deletion of cytosine in SalGI site was studied in ung+ and ung- E. coli strains. Uracil-containing DNA was prepared after growth of phage in an E. coli strain dut- ung-. The DNA was hybridized with "mutant" oligonucleotide then complementary DNA chain was synthesized by T4 DNA polymerase. Ung+ and ung- E. coli cells were transformed by DNA. In all experiments mutation frequency in ung+ was higher than in ung- cells (approximately 6-fold) and reached 11-50%. Absolute number of mutants was higher in ung+ cells. The results indicate that high level of mutagenesis depends on uracil repair system polarizing the correction of heteroduplex DNA.  相似文献   

3.
The structural gene for the Saccharomyces cerevisiae repair enzyme uracil-DNA-glycosylase (UNG1) was selected from a yeast genomic library in the multicopy vector YEp24 by complementation of the ung1-1 mutant in in vitro enzyme assays. The sequenced gene has an open reading frame which codes for a protein with molecular weight of 40,471. The measured size of the mRNA of 1.25 kb is in agreement with the predicted molecular weight of the protein. The gene product was overproduced about 100-fold in strains carrying an UNG1 gene containing plasmid at 100-200 copies/cell. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of cleared lysates from such an overproducing strain, followed by renaturation of enzyme activity from individual gel slices showed the presence of two enzymatic activities in comparable quantities with Mr values of 39,500 and 33,000, indicating that the full size protein is either readily degraded in vivo or is very sensitive to proteolytic digestion in vitro. The carboxyl-terminal two-thirds of the yeast uracil-DNA-glycosylase is highly homologous to the entire Escherichia coli enzyme (50% amino acid identity). Genetic mapping experiments have localized the UNG1 gene on the left arm of chromosome XIII at 17 cM from the GAL80 locus proximal to the centromer. Deletions of the UNG1 gene are viable.  相似文献   

4.
Uracil-DNA glycosylase, which acts specifically on uracil-containing DNA, was purified 250-fold from an extract of Escherichia coli 1100. The enzyme releases free uracil from DNA, producing alkali-labile apyrimidinic sites in the DNA. The enzyme is active on both native and heat-denatured DNA of phage PBS1, which contains uracil in place of thymine. piX174 DNA which had been treated with bisulfite and then at alkaline pH was susceptible to the action of uracil-DNA glycosylase. Since DNA treated with bisulfite alone was less susceptible to the enzyme, it is likely that the enzyme recognizes deaminated cytosine, namely uracil, but not bisulfite adducts of uracil and cytosine in the treated DNA. DNA treated with nitrite or hydroxylamine was not attacked by the enzyme. Enzyme activity acting on bisulfite-treated DNA was absent from an extract of E. coli mutant BD10 (ung). The mutant exhibited higher sensitivity to bisulfite than did the wild-type strain and was unable to reactivate phage T1 pre-exposed to bisulfite and weak alkali.  相似文献   

5.
An enzyme catalyzing homologous pairing of DNA chains has been extensively purified from mitotic yeast. The most highly purified fractions are enriched for a polypeptide with a molecular mass of approximately 120 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Protein-dependent pairing of single-stranded DNAs requires a divalent cation (Mg2+ or Ca2+) but proceeds rapidly in the absence of any nucleoside triphosphates. The kinetics of reassociation are extremely rapid, with more than 60% of the single-stranded DNA becoming resistant to S1 nuclease within 1 min at a ratio of 1 protein monomer/50 nucleotides. The results of enzyme titration and DNA challenge experiments suggest that this protein does not act catalytically during renaturation but is required stoichiometrically. The protein promotes formation of joint molecules between linear M13 replicative form DNA (form III) containing short single-stranded tails and homologous single-stranded M13 viral DNA. Removal of approximately 50 nucleotides from the ends of the linear duplex using either exonuclease III (5' ends) or T7 gene 6 exonuclease (3' ends) activates the duplex for extensive strand exchange. Electron microscopic analysis of product molecules suggests that the homologous circular DNA initially associates with the single-stranded tails of the duplexes, and the heteroduplex region is extended with displacement of the noncomplementary strand. The ability of this protein to pair and to promote strand transfer using either exonuclease III or T7 gene 6 exonuclease-treated duplex substrates suggests that this activity promotes heteroduplex extension in a nonpolar fashion. The biochemical properties of the transferase are consistent with a role for this protein in heteroduplex joint formation during mitotic recombination in Saccharomyces cerevisiae.  相似文献   

6.
Human uracil-DNA glycosylase complements E. coli ung mutants.   总被引:3,自引:2,他引:1       下载免费PDF全文
We have previously isolated a cDNA encoding a human uracil-DNA glycosylase which is closely related to the bacterial and yeast enzymes. In vitro expression of this cDNA produced a protein with an apparent molecular weight of 34 K in agreement with the size predicted from the sequence data. The in vitro expressed protein exhibited uracil-DNA glycosylase activity. The close resemblance between the human and the bacterial enzyme raised the possibility that the human enzyme may be able to complement E. coli ung mutants. In order to test this hypothesis, the human uracil-DNA glycosylase cDNA was established in a bacterial expression vector. Expression of the human enzyme as a LacZ alpha-humUNG fusion protein was then studied in E. coli ung mutants. E. coli cells lacking uracil-DNA glycosylase activity exhibit a weak mutator phenotype and they are permissive for growth of phages with uracil-containing DNA. Here we show that the expression of human uracil-DNA glycosylase in E. coli can restore the wild type phenotype of ung mutants. These results demonstrate that the evolutionary conservation of the uracil-DNA glycosylase structure is also reflected in the conservation of the mechanism for removal of uracil from DNA.  相似文献   

7.
A Staphylococcus aureus plasmid derivative, pFB9, coding for erythromycin and chloramphenicol resistance was cloned into the filamentous Escherichia coli phage f1. Recombinant phage-plasmid hybrids, designated plasmids, were isolated from E. coli and purified by transformation into Streptococcus pneumoniae. Single-stranded DNA was prepared from E. coli cells infected with two different plasmids, fBB101 and fBB103. Introduction of fully or partially single-stranded DNA into Streptococcus pneumoniae was studied, using a recipient strain containing an inducible resident plasmid. Such a strain could rescue the donor DNA marker. Under these marker rescue conditions, single-stranded fBB101 DNA gave a 1% transformation frequency, whereas the double-stranded form gave about a 31% frequency. Transformation of single-stranded fBB101 DNA was inhibited by competing double-stranded DNA and vice versa, indicating that single-stranded DNA interacts with the pneumococcus via the same binding site as used by double-stranded DNA. Heteroduplexed DNA containing the marker within a 70- or 800-base single-stranded region showed only slightly greater transforming activity than pure single-stranded DNA. In the absence of marker rescue, both strands of such imperfectly heteroduplexed DNA demonstrated transforming activity. Pure single-stranded DNA demonstrated low but significant transforming activity into a plasmid-free recipient pneumococcus.  相似文献   

8.
Endonuclease V (deoxyinosine 3′ endonuclease), the product of the nfi gene, has a specificity that encompasses DNAs containing dIMP, abasic sites, base mismatches, uracil, and even untreated single-stranded DNA. To determine its importance in DNA repair pathways, nfi insertion mutants and overproducers (strains bearing nfi plasmids) were constructed. The mutants displayed a twofold increase in spontaneous mutations for several markers and an increased sensitivity to killing by bleomycin and nitrofurantoin. An nfi mutation increased both cellular resistance to and mutability by nitrous acid. This agent should generate potential cleavage sites for the enzyme by deaminating dAMP and dCMP in DNA to dIMP and dUMP, respectively. Relative to that of a wild-type strain, an nfi mutant displayed a 12- to 1,000-fold increase in the frequency of nitrite-induced mutations to streptomycin resistance, which are known to occur in A · T base pairs. An nfi mutation also enhanced the lethality caused by a combined deficiency of exonuclease III and dUTPase, which has been attributed to unrepaired abasic sites. However, neither the deficiency nor the overproduction of endonuclease V affected the growth of the single-stranded DNA phages M13 or X174 nor of Uracil-containing bacteriophage λ. These results suggest that endonuclease V has a significant role in the repair of deaminated deoxyadenosine (deoxyinosine) and abasic sites in DNA, but there was no evidence for its cleavage in vivo of single-stranded or uracil-containing DNA.  相似文献   

9.
The DNA2 gene of Saccharomyces cerevisiae is essential for growth and appears to be required for a late stage of chromosomal DNA replication. S. cerevisiae Dna2p (ScDna2p) is a DNA helicase and also a nuclease. We have cloned and sequenced the homologous gene from Xenopus (Xenopus Dna2). Xenopus Dna2p (XDna2p) is 32% identical to ScDna2p, and the similarity extends over the entire length, including but not limited to the five conserved helicase motifs. XDna2p is even more closely related (60% identical) to a partial human cDNA. The Xenopus Dna2 (XDna2) gene was able to complement an S. cerevisiae dna2-1 mutant strain for growth at the nonpermissive temperature, suggesting that XDna2p is a functional as well as a structural homolog of the yeast protein. Recombinant XDna2p was expressed in insect cells and purified. Like the ScDna2p purified from yeast, it is a single-stranded DNA endonuclease and a DNA-dependent ATPase, suggesting that both of these activities are part of the essential function of Dna2p. However, unlike ScDna2p from yeast, recombinant XDna2p showed no DNA helicase activity. When XDna2 was immunodepleted from interphase egg extracts, chromosomal DNA replication was almost completely inhibited. From the size of the residually synthesized DNA from the XDna2-depleted egg extracts, it seems that initiation of DNA replication may be impaired. This interpretation is also supported by the normal DNA replication of M13 single-stranded DNA in the XDna2-depleted egg extracts.  相似文献   

10.
A problem that has hindered the study of the biological properties of certain DNA adducts, such as those that form at the N7 atoms of purines, is their extreme chemical lability. Conditions are described for the construction of a single-stranded genome containing the chemically and thermally labile 8,9-dihydro-8- (N7-guanyl)-9-hydroxyaflatoxin B1 (AFB1-N7-Gua) adduct, the major DNA adduct of the potent liver carcinogen aflatoxin B1 (AFB1). A 13mer oligonucleotide, d(CCTCTTCGAACTC), was allowed to react with the exo-8,9-epoxide of AFB1 to form an oligonucleotide containing a single AFB1-N7-Gua (at the underlined guanine). This modified 13mer was 5'-phosphorylated and ligated into a gap in an M13 bacteriophage genome generated by annealing a 53mer uracil-containing scaffold to M13mp7L2 linearized by EcoRI. Following ligation, the scaffold was enzymatically removed with uracil DNA glycosylase and exonuclease III. The entire genome construction was complete within 3 h and was carried out at 16 degrees C, pH 6.6, conditions determined to be optimal for AFB1-N7-Gua stability. Characterization procedures indicated that the AFB1-N7-Gua genome was approximately 95% pure with a small (5%) contamination by unmodified genome. This construction scheme should be applicable to other chemically or thermally unstable DNA adducts.  相似文献   

11.
R Y Walder  J A Walder 《Gene》1986,42(2):133-139
In this report we describe a highly efficient method for site-specific mutagenesis using the yeast transformation system. The method is based on the observation that Saccharomyces cerevisiae can be transformed at high frequency with single-stranded circular DNA vectors [Singh et al., Gene 20 (1982) 441-449]. The model system studied was the TRP1 gene of S. cerevisiae cloned into a derivative of the phage M13mp9 vector containing the yeast URA3 gene. ARS1, located adjacent to the TRP1 gene, allows the plasmid to replicate autonomously in yeast. Synthetic 5'P-oligodeoxynucleotides, 19 and 35 nucleotides (nt) in length, designed to produce an A----T transversion mutation within the TRP1 gene, were annealed to ss DNA of the M13 vector at a molar ratio of 30:1 and directly transformed into yeast. The intended single nt mutation was obtained at frequencies of 24 and 43%, respectively. The latter approaches the theoretical limit of 50%. In the absence of the 5'-terminal phosphate, both the transformation frequency and the efficiency of mutagenesis by the synthetic oligodeoxynucleotide (oligo) were decreased by 2-4 fold. This procedure completely obviates the need for any enzymatic manipulations in vitro after forming the heteroduplex with the oligo primer containing the desired mutation. For yeast genes, direct phenotypic selection is possible in the recipient strain.  相似文献   

12.
13.
F Li  S L Liu  J I Mullins 《BioTechniques》1999,27(4):734-738
DpnI can cleave fully methylated parental DNA while leaving hemi-methylated DNA intact. Based on this observation, we developed a rapid site-directed mutagenesis method using uracil-containing, double-stranded (ds)DNA templates and DpnI digestion. A 38% mutation efficiency was achieved by DpnI treatment of the mutagenic strand-extension reaction, and it increased to 70%-91% when uracil-containing dsDNA templates were used. This method compares favorably to the most efficient current methods, but is simpler and does not require the use of single-stranded templates or phage vectors.  相似文献   

14.
To investigate the role of Arginine 276 in the conserved leucine-loop of human uracil-DNA glycosylase (UNG), the effects of six R276 amino acid substitutions (C, E, H, L, W, and Y) on nucleotide flipping and enzyme conformational change were determined using transient and steady state, fluorescence-based, kinetic analysis. Relative to UNG, the mutant proteins exhibited a 2.6- to 7.7-fold reduction in affinity for a doubled-stranded oligonucleotide containing a pseudouracil residue opposite 2-aminopurine, as judged by steady-state DNA binding-base flipping assays. An anisotropy binding assay was utilized to determine the K(d) of UNG and the R276 mutants for carboxyfluorescein-labeled uracil-containing single- and double-stranded oligonucleotides; the binding affinities varied 11-fold for single-stranded uracil-DNA, and 43-fold for double-stranded uracil-DNA. Productive uracil-DNA binding was monitored by rapid quenching of UNG intrinsic protein fluorescence. Relative to UNG, the rate of intrinsic fluorescence quenching of five mutant proteins for binding double-stranded uracil-DNA was reduced approximately 50%; the R276E mutant exhibited 1% of the rate of fluorescence quenching of UNG. When reacted with single-stranded uracil-DNA, the rate of UNG fluorescence quenching increased. Moreover, the rate of fluorescence quenching for all the mutant proteins, except R276E, was slightly faster than UNG. The k(cat) of the R276 mutants was comparable to UNG on single-stranded DNA and differentially affected by NaCl; however, k(cat) on double-stranded DNA substrate was reduced 4-12-fold and decreased sharply at NaCl concentrations as low as 20 mM. Taken together, these results indicate that the effects of mutations at Arg276 were largely limited to enzyme interactions with double-stranded uracil-containing DNA, and suggested that mutations at Arg276 effectively transformed UNG into a single-stranded DNA-specific uracil-DNA glycosylase.  相似文献   

15.
dUTP pyrophosphatase (dUTPase; EC 3.6.1.23) catalyses the hydrolysis of dUTP to dUMP and PPi and thereby prevents the incorporation of uracil into DNA during replication. Although it is widely believed that dUTPase is essential for cell viability because of this role, direct evidence supporting this assumption has not been presented for any eukaryotic system. We have analysed the role of dUTPase (DUT1) in the life cycle of yeast. Using gene disruption and tetrad analysis, we find that DUT1 is necessary for the viability of S. cerevisiae; however, under certain conditions dut1 null mutants survive if supplied with exogenous thymidylate (dTMP). Analyses with isogenic uracil-DNA-glycosylase (UNG1) deficient or proficient strains indicate that in the absence of dUTPase, cell death results from the incorporation of uracil into DNA and the attempted repair of this damage by UNG1-mediated excision repair. However, in dut1 ung1 double mutants, starvation for dTMP causes dividing cells to arrest and die in all phases of the cell cycle. This latter effect suggests that the extensive stable substitution of uracil for thymine in DNA leads to a general failure in macromolecular synthesis. These results are in general agreement with previous models in thymine-less death that implicate dUTP metabolism. They also suggest an alternative approach for chemotherapeutic drug design.  相似文献   

16.
Recombination of uracil-containing lambda bacteriophages.   总被引:3,自引:1,他引:2       下载免费PDF全文
Controlled incorporation of uracil into the deoxyribonucleic acid (DNA) of lambda bacteriophages was achieved by growth on dut ung thy mutants of Escherichia coli. The frequency of substitution of uracil for thymine, estimated by alkaline sucrose sedimentation of phage DNA treated in vitro with uracil DNA glycosylase, ranged from 0.17 to 1.9%. The corresponding ratio between the plating efficiencies on wild-type (Ung+) and glycosylase-deficient (Ung-) bacteria ranged from 0.70 to 0.05. If a single-hit dependence of plating efficiency on uracil content is assumed, the probability that any given uracil residue is lethal is approximately 1% (about one-fifth the probability for a pyrimidine dimer). The effect of uracil on recombination was studied in experiments with lambda tandem duplication phages (ethylenediaminetetraacetic acid [EDTA] sensitive), which are converted to single-copy phages (EDTA resistant) by general recombination. For repressed infections (of homoimmune lysogens), recombination was measured by a two-stage assay (DNA extraction, transfection of spheroplasts, and EDTA treatment). The frequencies observed for uracil-containing phages (2 to 4%) were 5 to 10 times higher than control values. However, comparisons with ultraviolet irradiated phages indicated that uracil residues promoted recombination less than 1/100 as efficiently as ultraviolet-induced lesions. Recombination of uracil-containing phages during repressed infections was negligible in recA and partially reduced in recB bacteria. Recombination was very low in ung cells, suggesting that excision repair was responsible for the stimulation. Interestingly, uracil-stimulated recombination was elevated about twofold in xth bacteria.  相似文献   

17.
The generalized mismatch repair system of Streptococcus pneumoniae (the Hex system) can eliminate base pair mismatches arising in heteroduplex DNA during transformation or by DNA polymerase errors during replication. Mismatch repair is most likely initiated at nicks or gaps. The present work was started to examine the hypothesis that strand discontinuities arising after removal of uracil by uracil DNA-glycosylase (Ung) can be utilised as strand discrimination signals. We show that mismatch repair efficiency is enhanced 3- to 6-fold when using uracil-containing DNA as donor in transformation. In order to assess the contribution of Ung to nascent strand discrimination for postreplication mismatch repair, we developed a positive selection procedure to isolate S. pneumoniae Ung- mutants. We succeeded in isolating Ung- mutants using this procedure based on chromosomal integration of uracil-containing hybrid DNA molecules. Cloning and characterization of the ung gene was achieved. Comparison of spontaneous mutation rates in strains either proficient or deficient in mismatch and/or uracil repair gave no support to the hypothesis that Ung plays a major role in targeting the Hex system to neosynthesized DNA strands. However Ung activity is responsible for the increased efficiency of mismatch repair observed in transformation with uracil-containing DNA. In addition Ung is involved in repair of bisulfite-treated transforming DNA.  相似文献   

18.
The biological activity of TA*, the major photoproduct of thymidylyl-(3',5')-deoxyadenosine, has remained speculative since it was identified a decade ago. To determine the mutagenicity of TA* in Escherichia coli, we constructed the replicative form of an M13mp18-derived phage containing TA* in the (-)-strand by polymerase-catalyzed elongation of a TA*-containing 49mer opposite a uracil-containing (+)-strand of the phage. The in vitro synthesis mixture was transfected into an ung+, phr- E.coli host and the progeny were screened with a hybridization probe unique for the (-)-strand. TA* was found to block DNA replication substantially in the absence of SOS, but under SOS, TA* was bypassed more efficiently and was highly mutagenic. Among 56 analyzed (-)-strand progeny from two transfections, 46 (82%) were mutants, including six (11%) tandem mutants. The most abundant mutation was a 3'A-->T substitution (31/46, 56%). The possible biological consequences of TA* formation in the highly conserved TATA box consensus sequence on gene expression are discussed in light of the mutagenicity of TA*.  相似文献   

19.
H H el-Hajj  L Wang    B Weiss 《Journal of bacteriology》1992,174(13):4450-4456
The dut gene of Escherichia coli encodes deoxyuridine triphosphatase, an enzyme that prevents the incorporation of dUTP into DNA and that is needed in the de novo biosynthesis of thymidylate. We produced a conditionally lethal dut(Ts) mutation and isolated a phenotypic revertant that had a mutation in an unknown gene tentatively designated dus (for dut suppressor). The dus mutation restored the ability of the dut mutant to grow at 42 degrees C without restoring its enzymatic activity or thymidylate independence. A strain was constructed bearing, in addition to these mutations, ones affecting the following genes and their corresponding products: ung, which produces uracil-DNA N-glycosylase, a repair enzyme that removes uracil from DNA; deoA, which produces thymidine (deoxyuridine) phosphorylase, which would degrade exogenous deoxyuridine; and thyA, which produces thymidylate synthase. When grown at 42 degrees C in minimal medium containing deoxyuridine, the multiple mutant displayed a 93 to 96% substitution of uracil for thymine in new DNA. Growth stopped after the cellular DNA had increased 1.6- to 1.9-fold and the cell mass had increased 1.7- to 2.7-fold, suggesting a general failure of macromolecular biosynthesis. DNA hybridization confirmed that the uracil-containing DNA was chromosomal and that new rounds of initiation must have occurred during its synthesis.  相似文献   

20.
A DNA methyltransferase of Mr = 140,000 that is active on both unmethylated and hemimethylated DNA substrates has been purified from the murine plasma-cytoma cell line MPC 11. The maximal rate of methylation was obtained with maintenance methylation of hemimethylated Micrococcus luteus or M13 DNAs. At low enzyme concentrations, the highest rate of de novo methylation occurred with single-stranded DNA or relatively short duplex DNA containing single-stranded regions. Strong substrate inhibition was observed with hemimethylated but not unmethylated DNA substrates. Fully methylated single-stranded M13 phage DNA inhibited neither the de novo nor the maintenance reactions, but unmethylated single-stranded M13 DNA strongly inhibited the maintenance reaction. The kinetics observed with hemimethylated and single-stranded substrates could be explained if the enzyme were to bind irreversibly to a DNA molecule and to aggregate if present in molar excess. Such aggregates would be required for activity upon hemimethylated but not single-stranded DNA. For de novo methylation of duplex DNA, single-stranded regions or large amounts of methyltransferase appear to be required. The relative substrate preference for the enzyme is hemimethylated DNA greater than fully or partially single-stranded DNA greater than fully duplex DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号