首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In athletic animals the spleen induces acute polycythemia by dynamic contraction that releases red blood cells into the circulation in response to increased O(2) demand and metabolic stress; when energy demand is relieved, the polycythemia is rapidly reversed by splenic relaxation. We have shown in adult foxhounds that splenectomy eliminates exercise-induced polycythemia, thereby reducing peak O(2) uptake and lung diffusing capacity for carbon monoxide (DL(CO)) as well as exaggerating preexisting DL(CO) impairment imposed by pneumonectomy (Dane DM, Hsia CC, Wu EY, Hogg RT, Hogg DC, Estrera AS, Johnson RL Jr. J Appl Physiol 101: 289-297, 2006). To examine whether the postsplenectomy reduction in DL(CO) leads to abnormalities in O(2) diffusion, ventilation-perfusion inequality, or hemodynamic function, we studied these animals via the multiple inert gas elimination technique at rest and during exercise at a constant workload equivalent to 50% or 80% of peak O(2) uptake while breathing 21% and 14% O(2) in balanced order. From rest to exercise after splenectomy, minute ventilation was significantly elevated with respect to O(2) uptake compared with exercise before splenectomy; cardiac output, O(2) delivery, and mean pulmonary and systemic arterial blood pressures were 10-20% lower, while O(2) extraction was elevated with respect to O(2) uptake. Ventilation-perfusion inequality was unchanged, but O(2) diffusing capacities of lung (DL(O2)) and peripheral tissue during exercise were lower with respect to cardiac output postsplenectomy by 32% and 25%, respectively. The relationship between DL(O2) and DL(CO) was unchanged by splenectomy. We conclude that the canine spleen regulates both convective and diffusive O(2) transport during exercise to increase maximal O(2) uptake.  相似文献   

2.
Noninvasive techniques for assessing cardiopulmonary function in small animals are limited. We previously developed a rebreathing technique for measuring lung volume, pulmonary blood flow, diffusing capacity for carbon monoxide (Dl(CO)) and its components, membrane diffusing capacity (Dm(CO)) and pulmonary capillary blood volume (Vc), and septal volume, in conscious nonsedated guinea pigs at rest. Now we have extended this technique to study guinea pigs during voluntary treadmill exercise with a sealed respiratory mask attached to a body vest and a test gas mixture containing 0.5% SF(6) or Ne, 0.3% CO, and 0.8% C(2)H(2) in 40% or 98% O(2). From rest to exercise, O(2) uptake increased from 12.7 to 25.5 ml x min(-1) x kg(-1) while pulmonary blood flow increased from 123 to 239 ml/kg. The measured Dl(CO), Dm(CO), and Vc increased linearly with respect to pulmonary blood flow as expected from alveolar microvascular recruitment; body mass-specific relationships were consistent with those in healthy human subjects and dogs studied with a similar technique. The results show that 1) cardiopulmonary interactions from rest to exercise can be measured noninvasively in guinea pigs, 2) guinea pigs exhibit patterns of exercise response and alveolar microvascular recruitment similar to those of larger species, and 3) the rebreathing technique is widely applicable to human ( approximately 70 kg), dog (20-30 kg), and guinea pig (1-1.5 kg). In theory, this technique can be extended to even smaller animals provided that species-specific technical hurdles can be overcome.  相似文献   

3.
Noninvasive diffusing capacity and cardiac output in exercising dogs   总被引:1,自引:0,他引:1  
We have developed a rebreathing procedure to determine diffusing capacity (DLCO) and pulmonary blood flow (Qc) in the awake, exercising dog. A low dead space, leak-free respiratory mask with an incorporated mouthpiece was utilized to achieve mixing between the rebreathing bag and the dog's lung. The rebreathing bag was initially filled with approximately 1.0 liter of gas containing 0.6% C2H2, 0.3% C18O, 9% He, and 35-40% O2. End-tidal gas concentrations were measured with a respiratory mass spectrometer. The disappearance of C2H2 and C18O was measured with respect to He to calculate Qc and DLCO. Values for DLCO in dogs, expressed per kilogram of body weight, were much larger than those reported in humans. However, at a given level of absolute O2 consumption, measurements of absolute DLCO in dogs were comparable to those reported in humans by both rebreathing and steady-state methods at rest and near-maximal exercise. These results suggest that DLCO is more closely matched to the metabolic capacity (i.e., maximal O2 consumption) than to body size between these two species.  相似文献   

4.
The spleen acts as an erythrocyte reservoir in highly aerobic species such as the dog and horse. Sympathetic-mediated splenic contraction during exercise reversibly enhances convective O2 transport by increasing hematocrit, blood volume, and O2-carrying capacity. Based on theoretical interactions between erythrocytes and capillary membrane (Hsia CCW, Johnson RL Jr, and Shah D. J Appl Physiol 86: 1460-1467, 1999) and experimental findings in horses of a postsplenectomy reduction in peripheral O2-diffusing capacity (Wagner PD, Erickson BK, Kubo K, Hiraga A, Kai M, Yamaya Y, Richardson R, and Seaman J. Equine Vet J 18, Suppl: 82-89, 1995), we hypothesized that splenic contraction also augments diffusive O2 transport in the lung. Therefore, we have measured lung diffusing capacity (DL(CO)) and its components during exercise by a rebreathing technique in six adult foxhounds before and after splenectomy. Splenectomy eliminated exercise-induced polycythemia, associated with a 30% reduction in maximal O2 uptake. At any given pulmonary blood flow, DL(CO) was significantly lower after splenectomy owing to a lower membrane diffusing capacity, whereas pulmonary capillary blood volume changed variably; microvascular recruitment, indicated by the slope of the increase in DL(CO) with respect to pulmonary blood flow, was also reduced. We conclude that splenic contraction enhances both convective and diffusive O2 transport and provides another compensatory mechanism for maintaining alveolar O2 transport in the presence of restrictive lung disease or ambient hypoxia.  相似文献   

5.
To determine the role of mediastinal shift after pneumonectomy (PNX) on compensatory responses, we performed right PNX in adult dogs and replaced the resected lung with a custom-shaped inflatable silicone prosthesis. Prosthesis was inflated (Inf) to prevent mediastinal shift, or deflated (Def), allowing mediastinal shift to occur. Thoracic, lung air, and tissue volumes were measured by computerized tomography scan. Lung diffusing capacities for carbon monoxide (DL(CO)) and its components, membrane diffusing capacity for carbon monoxide (Dm(CO)) and capillary blood volume (Vc), were measured at rest and during exercise by a rebreathing technique. In the Inf group, lung air volume was significantly smaller than in Def group; however, the lung became elongated and expanded by 20% via caudal displacement of the left hemidiaphragm. Consequently, rib cage volume was similar, but total thoracic volume was higher in the Inf group. Extravascular septal tissue volume was not different between groups. At a given pulmonary blood flow, DL(CO) and Dm(CO) were significantly lower in the Inf group, but Vc was similar. In one dog, delayed mediastinal shift occurred 9 mo after PNX; both lung volume and DL(CO) progressively increased over the subsequent 3 mo. We conclude that preventing mediastinal shift after PNX impairs recruitment of diffusing capacity but does not abolish expansion of the remaining lung or the compensatory increase in extravascular septal tissue volume.  相似文献   

6.
Using in vivo microscopy, we made direct measurements of pulmonary capillary transit time by determining the time required for fluorescent dye to pass from an arteriole to a venule on the dependent surface of the dog lung. Concurrently, in the same animals, pulmonary capillary transit time was measured indirectly in the entire lung using the diffusing capacity method (capillary blood volume divided by cardiac output). Transit times by each method were the same in a group of five dogs [direct: 1.75 +/- 0.27 (SE) s; indirect: 1.85 +/- 0.33 s; P = 0.7]. The similarity of these transit times is important, because the widely used indirect determinations based on diffusing capacity are now shown to coincide with direct measurements and also because it demonstrates that measurements of capillary transit times on the surface of the dependent lung bear a useful relationship to measurements on the capillaries in the rest of the lung.  相似文献   

7.
To avoid limitations associated with the use of single-breath and rebreathe methods for assessing the lung diffusing capacity for carbon monoxide (D(L)CO) during exercise, we developed an open-circuit technique. This method does not require rebreathing or alterations in breathing pattern and can be performed with little cognition on the part of the patient. To determine how this technique compared with the traditional rebreathe (D(L)CO,RB) method, we performed both the open-circuit (D(L)CO,OC) and the D(L)CO,RB methods at rest and during exercise (25, 50, and 75% of peak work) in 11 healthy subjects [mean age = 34 yr (SD 11)]. Both D(L)CO,OC and D(L)CO,RB increased linearly with cardiac output and external work. There was a good correlation between D(L)CO,OC and D(L)CO,RB for rest and exercise (mean of individual r2 = 0.88, overall r2 = 0.69, slope = 0.97). D(L)CO,OC and D(L)CO,RB were similar at rest and during exercise [e.g., rest = 27.2 (SD 5.8) vs. 29.3 (SD 5.2), and 75% peak work = 44.0 (SD 7.0) vs. 41.2 ml.min(-1).mmHg(-1) (SD 6.7) for D(L)CO,OC vs. D(L)CO,RB]. The coefficient of variation for repeat measurements of D(L)CO,OC was 7.9% at rest and averaged 3.9% during exercise. These data suggest that the D(L)CO,OC method is a reproducible, well-tolerated alternative for determining D(L)CO, particularly during exercise. The method is linearly associated with cardiac output, suggesting increased alveolar-capillary recruitment, and values were similar to the traditional rebreathe method.  相似文献   

8.
After pneumonectomy (Pnx), mechanical strain on the remaining lung is an important signal for adaptation. To examine how mechanical lung strain alters gas exchange adaptation after Pnx, we replaced the right lung of adult dogs with a custom-shaped inflatable silicone prosthesis. The prosthesis was kept 1) inflated (Inf) to reduce mechanical strain of the remaining lung and maintain the mediastinum in the midline, or 2) deflated (Def) to allow lung strain and mediastinal shift. Gas exchange was studied 4-7 mo later at rest and during treadmill exercise by the multiple inert gas elimination technique while animals breathed 21 and 14% O2 in balanced order. In the Inf group compared with Def group during hypoxic exercise, arterial O2 saturation was lower and alveolar-arterial O2 tension difference higher, whereas O2 diffusing capacity was lower at any given cardiac output. Dispersion of the perfusion distribution was similar between groups at rest and during exercise. Dispersion of the ventilation distribution was lower in the Inf group at rest, associated with a much higher respiratory rate, but rose to similar levels in both groups during hypoxic exercise. Mean pulmonary arterial pressure at a given cardiac output was higher in the Inf group, whereas peak cardiac output was similar between groups. Thus creating lung strain by post-Pnx mediastinal shift primarily enhances diffusive gas exchange with only minor effects on ventilation-perfusion matching, consistent with the generation of additional alveolar-capillary surfaces but not conducting airways and blood vessels.  相似文献   

9.
In a previous study, our laboratory showed that young dogs born at sea level (SL) and raised from 2.5 mo of age to beyond somatic maturity at a high altitude (HA) of 3,100 m show enhanced resting lung function (Johnson RL Jr, Cassidy SS, Grover RF, Schutte JE, and Epstein RH. J Appl Physiol 59: 1773-1782, 1985). To examine whether HA-induced adaptation improves pulmonary gas exchange during exercise and whether adaptation is reversible when animals return to SL before somatic maturity, we raised 2.5-mo-old foxhounds at HA (3,800 m) for 5 mo (to age 7.5 mo) before returning them to SL. Lung function was measured under anesthesia 1 mo and 2 yr after return to SL and during exercise approximately 1 yr after return. In animals exposed to HA relative to simultaneous litter-matched SL controls, resting circulating blood and erythrocyte volumes, lung volumes, septal volume estimated by a rebreathing technique, and lung tissue volume estimated by high-resolution computed tomography scan were persistently higher. Lung diffusing capacity, membrane diffusing capacity, and pulmonary capillary blood volume estimated at a given cardiac output were significantly higher in animals exposed to HA, whereas maximal oxygen uptake and hematocrit were similar between groups. We conclude that relatively short exposure to HA during somatic maturation improves long-term lung function into adulthood.  相似文献   

10.
To determine the extent and sources of adaptive response in gas-exchange to major lung resection during somatic maturation, immature male foxhounds underwent right pneumonectomy (R-Pnx, n = 5) or right thoracotomy without pneumonectomy (Sham, n = 6) at 2 mo of age. One year after surgery, exercise capacity and pulmonary gas-exchange were determined during treadmill exercise. Lung diffusing capacity (DL) and cardiac output were measured by a rebreathing technique. In animals after R-Pnx, maximal O2 uptake, lung volume, arterial blood gases, and DL during exercise were completely normal. Postmortem morphometric analysis 18 mo after R-Pnx (n = 3) showed a vigorous compensatory increase in alveolar septal tissue volume involving all cellular compartments of the septum compared with the control lung; as a result, alveolar-capillary surface areas and DL estimated by morphometry were restored to normal. In both groups, estimates of DL by the morphometric method agreed closely with estimates obtained by the physiological method during peak exercise. These data show that extensive lung resection in immature dogs stimulates a vigorous compensatory growth of alveolar tissue in excess of maturational lung growth, resulting in complete normalization of aerobic capacity and gas-exchange function at maturity.  相似文献   

11.
It has been shown that measurements of the diffusing capacity of the lung for CO made during a slow exhalation [DLCO(exhaled)] yield information about the distribution of the diffusing capacity in the lung that is not available from the commonly measured single-breath diffusing capacity [DLCO(SB)]. Current techniques of measuring DLCO(exhaled) require the use of a rapid-responding (less than 240 ms, 10-90%) CO meter to measure the CO concentration in the exhaled gas continuously during exhalation. DLCO(exhaled) is then calculated using two sample points in the CO signal. Because DLCO(exhaled) calculations are highly affected by small amounts of noise in the CO signal, filtering techniques have been used to reduce noise. However, these techniques reduce the response time of the system and may introduce other errors into the signal. We have developed an alternate technique in which DLCO(exhaled) can be calculated using the concentration of CO in large discrete samples of the exhaled gas, thus eliminating the requirement of a rapid response time in the CO analyzer. We show theoretically that this method is as accurate as other DLCO(exhaled) methods but is less affected by noise. These findings are verified in comparisons of the discrete-sample method of calculating DLCO(exhaled) to point-sample methods in normal subjects, patients with emphysema, and patients with asthma.  相似文献   

12.
Maximal exercise performance was evaluated in four adult foxhounds after right pneumonectomy (removal of 58% of lung) and compared with that in seven sham-operated control dogs 6 mo after surgery. Maximal O2 uptake (ml O2.min-1.kg-1) was 142.9 +/- 1.9 in the sham group and 123.0 +/- 3.8 in the pneumonectomy group, a reduction of 14% (P less than 0.001). Maximal stroke volume (ml/kg) was 2.59 +/- 0.10 in the sham group and 1.99 +/- 0.05 in the pneumonectomy group, a reduction of 23% (P less than 0.005). Lung diffusing capacity (DL(CO)) (ml.min-1.Torr-1.kg-1) reached 2.27 +/- 0.08 in the combined lungs of the sham group and 1.67 +/- 0.07 in the remaining lung of the pneumonectomy group (P less than 0.001). In the pneumonectomy group, DL(CO) of the left lung was 76% greater than that in the left lung of controls. Blood lactate concentration and hematocrit were significantly higher at exercise in the pneumonectomy group. We conclude that, in dogs after resection of 58% of lung, O2 uptake, cardiac output, stroke volume, and DL(CO) at maximal exercise were restricted. However, the magnitude of overall impairment was surprisingly small, indicating a remarkable ability to compensate for the loss of one lung. This compensation was achieved through the recruitment of reserves in DL(CO) in the remaining lung, the development of exercise-induced polycythemia, and the maintenance of a relatively large stroke volume in the face of an increased pulmonary vascular resistance.  相似文献   

13.
We evaluated the effect of prone positioning on gas-transfer characteristics in normal human subjects. Single-breath (SB) and rebreathing (RB) maneuvers were employed to assess carbon monoxide diffusing capacity (DlCO), its components related to capillary blood volume (Vc) and membrane diffusing capacity (Dm), pulmonary tissue volume (Vti), and cardiac output (Qc). Alveolar volume (Va) was significantly greater prone than supine, irrespective of the test maneuver used. Nevertheless, Dl(CO) was consistently lower prone than supine, a difference that was enhanced when appropriately corrected for the higher Va prone. When adequately corrected for Va, diffusing capacity significantly decreased by 8% from supine to prone [SB: Dl(CO,corr) supine vs. prone: 32.6 +/- 2.3 (SE) vs. 30.0 +/- 2 ml x min(-1) x mmHg(-1) stpd; RB: Dl(CO,corr) supine vs. prone: 30.2 +/- 2.2 (SE) vs. 27.8 +/- 2.0 ml x min(-1) x mmHg(-1) stpd]. Both Vc and Dm showed a tendency to decrease from supine to prone, but neither reached significance. Finally, there were no significant differences in Vti or Qc between supine and prone. We interpret the lower diffusing capacity of the healthy lung in the prone posture based on the relatively larger space occupied by the heart in the dependent lung zones, leaving less space for zone 3 capillaries, and on the relatively lower position of the heart, leaving the zone 3 capillaries less engorged.  相似文献   

14.
Patients with obstructive lung disease are exposed to expiratory loads (ELs) and dynamic hyperinflation as a consequence of expiratory flow limitation. To understand how these alterations in lung mechanics might affect cardiac function, we examined the influence of a 10-cm H2O EL, alone and in combination with voluntary hyperinflation (ELH), on pulmonary pressures [esophageal (Pes) and gastric (Pg)] and cardiac output (CO) in seven healthy subjects. CO was determined by using an acetylene method at rest and at 40 and 70% of peak work. At rest and during exercise, EL resulted in an increase in Pes and Pg (7-18 cm H2O; P < 0.05) and a decrease in CO (from 5.3 +/- 1.8 to 4.5 +/- 1.4, 12.2 +/- 2.2 to 11.2 +/- 2.2, and 16.3 +/- 3.3 to 15.2 +/- 3.2 l/min for rest, 40% peak work, and 70% peak work, respectively; P < 0.05), which remained depressed after an additional 2 min of EL. With ELH, CO increased at rest and both exercise loads (relative to EL only) but remained below control values. The changes in CO were due to a reduction in stroke volume with a tendency for stroke volume to fall further with prolonged EL. There was a negative correlation between CO and the increase in expiratory Pes and Pg with EL (R = -0.58 and -0.60; P < 0.01), whereas the rise in CO with subsequent hyperinflation was related to a more negative Pes (R = 0.72; P < 0.01). In conclusion, EL leads to a reduction in CO, which appears to be primarily related to increases in expiratory abdominal and intrathoracic pressure, whereas ELH resulted in an improved CO, suggesting that lung inflation has little impact on cardiac function.  相似文献   

15.
The purpose of the present study was 1) to investigate whether an increase in heart rate (HR) at the onset of voluntary static arm exercise in tetraplegic subjects was similar to that of normal subjects and 2) to identify how the cardiovascular adaptation during static exercise was disturbed by sympathetic decentralization. Mean arterial blood pressure (MAP) and HR were noninvasively recorded during static arm exercise at 35% of maximal voluntary contraction in six tetraplegic subjects who had complete cervical spinal cord injury (C(6)-C(7)). Stroke volume (SV), cardiac output (CO), and total peripheral resistance (TPR) were estimated by using a Modelflow method simulating aortic input impedance from arterial blood pressure waveform. In tetraplegic subjects, the increase in HR at the onset of static exercise was blunted compared with age-matched control subjects, whereas the peak increase in HR at the end of exercise was similar between the two groups. CO increased during exercise with no or slight decrease in SV. MAP increased approximately one-third above the control pressor response but TPR did not rise at all throughout static exercise, indicating that the slight pressor response is determined by the increase in CO. We conclude that the cardiovascular adaptation during voluntary static arm exercise in tetraplegic subjects is mainly accomplished by increasing cardiac pump output according to the tachycardia, which is controlled by cardiac vagal outflow, and that sympathetic decentralization causes both absent peripheral vasoconstriction and a decreased capacity to increase HR, especially at the onset of exercise.  相似文献   

16.
Effect of progressive exercise on lung fluid balance in sheep   总被引:3,自引:0,他引:3  
The purpose of this study is to determine the roles of cardiac output and microvascular pressure on changes in lung fluid balance during exercise in awake sheep. We studied seven sheep during progressive treadmill exercise to exhaustion (10% grade), six sheep during prolonged constant-rate exercise for 45-60 min, and five sheep during hypoxia (fraction of inspired O2 = 0.12) and hypoxic exercise. We made continuous measurements of pulmonary arterial, left atrial, and systemic arterial pressures, lung lymph flow, and cardiac output. Exercise more than doubled cardiac output and increased pulmonary arterial pressures from 19.2 +/- 1 to 34.8 +/- 3.5 (SE) cmH2O. Lung lymph flow increased rapidly fivefold during progressive exercise and returned immediately to base-line levels when exercise was stopped. Lymph-to-plasma protein concentration ratios decreased slightly but steadily. Lymph flows correlated closely with changes in cardiac output and with calculated microvascular pressures. The drop in lymph-to-plasma protein ratio during exercise suggests that microvascular pressure rises during exercise, perhaps due to increased pulmonary venous pressure. Lymph flow and protein content were unaffected by hypoxia, and hypoxia did not alter the lymph changes seen during normoxic exercise. Lung lymph flow did not immediately return to base line after prolonged exercise, suggesting hydration of the lung interstitium.  相似文献   

17.
We previously found that, following surgical resection of approximately 58% of lung units by right pneumonectomy (PNX) in adult canines, oxygen-diffusing capacity (Dl(O(2))) fell sufficiently to become a major factor limiting exercise capacity, although the decline was mitigated by recruitment, remodeling, and growth of the remaining lung units. To determine whether an upper limit of compensation is reached following the loss of even more lung units, we measured pulmonary gas exchange, hemodynamics, and ventilatory power requirements in adult canines during treadmill exercise following two-stage resection of approximately 70% of lung units in the presence or absence of mediastinal distortion. Results were compared with that in control animals following right PNX or thoracotomy without resection (Sham). Following 70% lung resection, peak O(2) uptake was 45% below normal. Ventilation-perfusion mismatch developed, and pulmonary arterial pressure and ventilatory power requirements became markedly elevated. In contrast, the relationship of Dl(O(2)) to cardiac output remained normal, indicating preservation of Dl(O(2))-to-cardiac output ratio and alveolar-capillary recruitment up to peak exercise. The impairment in airway and vascular function exceeded the impairment in gas exchange and imposed the major limitation to exercise following 70% resection. Mediastinal distortion further reduced air and blood flow conductance, resulting in CO(2) retention. Results suggest that adaptation of extra-acinar airways and blood vessels lagged behind that of acinar tissue. As more lung units were lost, functional compensation became limited by the disproportionately reduced convective conductance rather than by alveolar diffusion disequilibrium.  相似文献   

18.
Standard methods of measuring the diffusing capacity of the lung for CO are susceptible to inhomogeneity and to errors in the performance of a breathing maneuver by the subject. A mathematical model of CO uptake from a single alveolar lung is developed and used as the basis for an estimation procedure to measure both lung volume and diffusing capacity during a rebreathing maneuver. Because this estimator-model uses the exact flow generated by the subject, errors in such factors as breath-hold times or depth of inspiration do not result. The estimator-model was tested using simulated data from uniformly and nonuniformly ventilated models and was found to be insensitive to noise and inhomogeneity, in contrast to the diffusing capacity of the lungs for CO (exhaled). The estimator-model makes greater use of the available data than traditional methods by utilizing both the slope of the alveolar plateaus for CO and the relative heights of such plateaus in a rebreathing experiment.  相似文献   

19.
Experiments were performed to determine whether different methods of increasing cardiac output would have similar effects on lung lymph flow, and to assess the contribution of the microvasculature (fluid-exchanging vessels) to the total calculated pulmonary vascular resistance. Yearling unanesthetized sheep with chronic vascular catheters and lung lymph fistulas underwent intravenous infusions of isoproterenol at 0.2 micrograms X kg-1. min-1 (n = 8) or were exercised on a treadmill (n = 16). Both isoproterenol and exercise increased cardiac output, lowered calculated total pulmonary and systemic vascular resistances, and had no effect on the calculated pulmonary microvascular pressure. Isoproterenol infusions did not affect lung lymph flow, whereas exercise increased lung lymph flow in proportion to the increase in cardiac output. We conclude that 1) the sheep has a different pulmonary hemodynamic response to exercise than dogs and man, 2) the microvasculature is recruited during exercise-induced but not isoproterenol-induced increases in cardiac output, and 3) the microvasculature represents only a small proportion of the total calculated pulmonary vascular resistance.  相似文献   

20.
Regulation of end-expiratory lung volume during exercise   总被引:7,自引:0,他引:7  
We determined the effects of exercise on active expiration and end-expiratory lung volume (EELV) during steady-state exercise in 13 healthy subjects. We also addressed the questions of what affects active expiration during exercise. Exercise effects on EELV were determined by a He-dilution technique and verified by changes in end-expiratory esophageal pressure. We also used abdominal pressure-volume loops to determine active expiration. EELV was reduced with increasing exercise intensity. EELV was reduced significantly during even mild steady-state exercise and during heavy exercise decreased an average of 0.71 +/- 0.3 liter. Dynamic lung compliance was reduced 30-50%; EELV remained greater than closing volume. Changing the resistance to airflow (via SF6-O2 or He-O2 breathing) during steady-state exercise changed the peak gastric and esophageal pressure generation during expiration but did not alter EELV; breathing through the mouthpiece produced similar effects during exercise. EELV was significantly reduced in the supine position. With supine exercise active expiration was not elicited, and EELV remained the same as in supine rest. With CO2-driven hyperpnea (7-70 l/min), EELV remained unchanged from resting levels, whereas during exercise, at similar minute ventilation (VE) values EELV was consistently decreased. At the same VE, treadmill running caused an increase in tonic gastric pressure and greater reductions in EELV than either walking or cycling. We conclude that both the exercise stimulus and the resultant hyperpnea stimulate active expiration and a reduced FRC. This new EELV is preserved in the face of moderate changes in mechanical time constants of the lung. This reduced EELV during exercise aids inspiration by optimizing diaphragmatic length and permitting elastic recoil of the chest wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号