首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
2.
Win 49596 is an orally active antiandrogen in the rat. This report describes a series of in vitro and in vivo studies which were performed to characterize the mechanism of action of this compound. In vitro competition and Lineweaver-Burk analyses indicate that Win 49596 binds competitively to the rat ventral prostate androgen receptor with a Ki of 2.2 +/- 0.4 microM. Similar to other androgen antagonists, the relative binding affinity (RBA) of Win 49596 was greater after 1 h of incubation with androgen receptor than after an 18 h incubation (RBA of 2.2 versus 0.05, respectively). Win 49596 did not bind to rat cytosolic uterine estrogen or progesterone receptors or thymus glucocorticoid receptors. Furthermore, Win 49596 did not inhibit rat ventral prostate 5 alpha-reductase or 3 alpha-oxidoreductase, rat adrenal 3 beta-hydroxysteroid dehydrogenase or human placental aromatase activity in vitro at concentrations as high as 10 microM. A series of in vivo studies demonstrated that Win 49596 inhibited the uptake of [3H]testosterone as well as testosterone-induced nuclear accumulation of androgen receptor in the rat ventral prostate. Collectively, these results support direct androgen receptor antagonism as the mechanism for the antiandrogenic effects of Win 49596.  相似文献   

3.
An immunoglobulin (IgG) fraction from serum of a rabbit immunized with a highly purified preparation of glucocorticoid receptor from rat liver cytosol contained specific antibodies to glucocorticoid receptor. This was shown following incubation of the [3H]triamcinolone acetonide-glucocorticoid receptor (TA-GR) complex with the IgG fraction by (I) adsorption of the [3H]TA-GR-antibody complex to protein A linked to Sepharose, (II) an increased sedimentation rate of the [3H]TA-GR-antibody complex compared to that of the [3H]TA-GR complex, and (III) an increased molecular size of the [3H]TA-GR-antibody complex when compared to that of the [3H]TA-GR complex as judged from gel filtration. The antibody fraction was characterized with regard to titer, cross-reactivity and specificity. The antibodies cross-reacted with the glucocorticoid receptor from various rat tissues (liver, thymus and hippocampus), as well as with the glucocorticoid receptor from human normal lymphocytes, chronic lymphatic leukemia cells and human hippocampus. In the rat liver, the antibody bound to both the nuclear and the cytosolic glucocorticoid receptor (Stokes radius 6.1 nm). It did not cross-react with the proteolytic fragments of the glucocorticoid receptor, the 3.6 nm complex or the 1.9 nm complex. Binding of the antibodies was not seen to the androgen, estrogen or progestin receptors in rat to rat serum transcortin. With an indirect competitive ELISA (enzyme-linked immunosorbent assay) combined with various separation techniques, based on different physiocochemical principles, it was shown that the glucocorticoid receptor was the only detectable antibody binding protein from rat liver cytosol using this assay system. These findings also indicate an immunochemical similarity between glucocorticoid receptors in different tissues as well as in different species, but not between glucocorticoid receptors and other steroid hormone receptor proteins. The cytosolic and nuclear glucocorticoid receptors in rat liver were shown to be immunochemically similar.  相似文献   

4.
In an attempt to learn whether modulation of steroid hormone receptor by arachidonate is generalized or not, the arachidonate effect was examined in cytosol estrogen (ER), progestin (PR), androgen (AR) and glucocorticoid receptors (GCR) from the central and peripheral tissues of rats by sucrose density gradient centrifugation, and gel filtration on LH20 columns or dextran-coated charcoal absorption. Arachidonate and other long-chain fatty acids appear to inhibit the specific binding of estrogen ([3H]R2858), progestin ([3H]R5020), androgen ([3H]R1881) and glucocorticoid ([3H]dexamethasone) to the respective receptors in brain (neonatal cerebral cortex and hypothalamus-preoptic area, HPOA), uterus and prostate, with the exception of the potentiating effect on the brain estrogen receptors. The potency of the unsaturated fatty acids paralleled to some degree the number of cis double bonds and carbon, in that oleate (C18:1) arachidonate (C20:4) docosahexaenoate (C22:6). The arachidonate inhibition was dose-dependent in the tissue steroid hormone receptors, except for dose-dependent potentiation of the brain cortical estrogen receptors. Inhibitory potency as expressed by the concentration for 50% maximum inhibition (Ki) was in the range of 11-18 microM for the receptors other than the uterine estrogen receptors with the value of 44 microM, suggesting lower sensitivity for the estrogen receptor to the arachidonate effect in the uterus. Analysis on kinetics and Scatchard plot revealed the non-competitive type of the inhibition. In addition, arachidonate lowered dose-dependently the peak of labelled progestin or estrogen binding to the 8S receptor proteins, which were collected from fractions in the 8S region of the cytosols from intact or diethylstibestrol-primed rat uteri. These results suggest the generalized modulatory effect of arachidonate on the steroid hormone receptors in the central and peripheral tissues. Arachidonate could affect, negatively or positively, the estrogen receptors, and negatively the progestin, androgen and glucocorticoid receptors, through a possibly direct but weak binding at sites different from steroid binding sites on the receptor molecules. A potential messenger role of arachidonate itself has been implicated in the regulation or modulation of the steroid hormone receptors.  相似文献   

5.
We studied the pharmacological effects of novel nonsteroidal progesterone receptor antagonists CP8661 and CP8754, which were synthesized from the fungal metabolite PF1092C. CP8661 possess a tetrahydrobenzindolone skeleton and CP8754 possess a tetrahydronaphthofuranone skeleton. In binding assays for steroid receptors, CP8661 and CP8754 inhibited [(3)H]-progesterone binding to human progesterone receptors (hPR), though they are less potent than RU486. CP8661 also showed moderate affinity to rat androgen receptors (rAR), although CP8754 did not. Neither compound showed affinity to human glucocorticoid receptors (hGR) or human estrogen receptors (hER). In exogeneous and endogeneous PR-dependent enzyme expression assays using human mammary carcinoma T47D, CP8661 and CP8754 showed pure antagonistic activity. In a rabbit endometrial transformation test, CP8661 and CP8754 showed anti-progestational activity by s.c. administration in a dose-dependent manner; meanwhile, these compounds showed no progestational activity at the same dose. These results suggested that CP8661 and CP8754 are in vivo effective pure progesterone receptor antagonists and presented the possibility of synthesizing pure progesterone receptor antagonists from both tetrahydronaphthofuranone and tetrahydrobenzindolone skeletons.  相似文献   

6.
The relative competitive activity of some androstane derivatives was determined by 50% inhibition of [3H]estradiol binding to an unusual estrogen-binding protein (UEBP) of male rat liver. It was shown that: i) the bulk of energy of the steroid-protein complex is derived from hydrophobic interactions; ii) the authentic ability to form specific complexes with UEBP at androgene concentrations close to physiological ones, is determined by 17 beta-hydroxyl and is enhanced by the 3 alpha- or 2 alpha-oxy-group; iii) 3- and 17-keto groups inhibit androgene interaction with UEBP; iiii) the cis-conjunction of rings A and B in the androgen molecule does not block steroid binding to the protein. These data specify significantly the mechanism of androgene interaction with UEBP and shed additional light on the physiological role of this protein.  相似文献   

7.
We have recently reported that the anti-androgen hydroxyflutamide causes delayed implantation and exhibits antideciduogenic activity in the rat. The present experiments were conducted to examine whether hydroxyflutamide binds to the uterine progesterone receptors and/or alters the progesterone binding sites in the uterus. Cytosol and nuclear fractions from decidualized rat uterus were incubated with [3H]-R5020 without or with increasing concentrations of radioinert R5020, RU486, dihydrotestosterone, or hydroxyflutamide. From the log-dose inhibition curves, the relative binding affinity of both hydroxyflutamide and dihydrotestosterone was less than 0.1% and 2%, compared with R5020 (100%) for displacing [3H]-R5020 bound to uterine cytosol and nuclear fractions, respectively. Injection of estradiol-17 beta (1 microgram/rat) to ovariectomized prepubertal rats induced a 1.85-fold increase in uterine weight by 24 h. Hydroxyflutamide at 2.5 or 5.0 mg did not significantly alter the estrogen-induced increase in uterine weight. Compared to vehicle alone, estrogen induced an approximately 5-fold increase in uterine cytosolic progesterone binding sites. Hydroxyflutamide at both 2.5- and 5.0-mg doses significantly attenuated the estrogen-induced elevation in uterine progesterone binding sites. These studies demonstrate that hydroxyflutamide does not bind with high affinity to progesterone receptors, but suppresses the estrogen-induced elevation in progesterone receptor levels in the uterus.  相似文献   

8.
The binding of medroxyprogesterone acetate (MPA) with cytosol androgen receptors from rat pituitary and hypothalamus was studied. The pituitary and hypothalamic cytosol androgen receptors from adult castrated female rats were in vitro labeled using 3H natural (testosterone (T) and 5 alpha-dihydrotestosterone (DHT] and [3H]synthetic (methyltrienolone) androgens as radioligands. The [3H]androgen-receptor complexes sedimented with a coefficient of 8S in linear sucrose gradients. When incubated with an excess of radioinert MPA, specific binding was abolished indicating interaction of MPA with androgen receptors. Furthermore specific [3H]MPA-androgen cytosol receptor complexes could be identified in these neuroendocrine tissues when a post-gradient receptor labeling technique was used in the absence or presence of radioinert MPA, DHT, and triamcinolone acetonide. A study of binding kinetics disclosed that the equilibrium dissociation constant and saturation binding capacity for the MPA binder, were similar to those exhibited by DHT binding to androgen receptors in both studied tissues under identical experimental conditions. The overall results were interpreted as demonstrating that MPA interacts with cytosol steroid receptors other than those of progesterone in the rat hypothalamus and anterior pituitary. The data are consistent with MPA binding to androgen receptors.  相似文献   

9.
The accumulation of [3H]estradiol-receptor complexes by liver nuclei after preliminary incubation of the hormone with rat liver cytosol was studied. It was demonstrated that addition to female rat liver cytosol of a purified preparation of the unusual estrogen-binding protein (UEBP) from male rat liver causes a dose-dependent inhibition of subsequent accumulation of specifically bound [3H]estradiol in the nuclei. Addition to male rat liver cytosol of 1.5 microM 2 alpha-hydroxytestosterone, testosterone, 1-dehydrotestosterone, 5 alpha-androstane-3 alpha, 17 beta-diol and 5 alpha-dihydrotestosterone, i. e. compounds possessing marked affinity for UEBP, resulted in a 2-5-fold increase of the subsequent nuclear accumulation of estrogen-receptor complexes. The use of UEBP-deficient female rat liver cytosol revealed that the afore-mentioned steroids are ineffective with respect to estrogen reception. It is concluded that UEBP of male rat liver is capable of modulating estrogen reception.  相似文献   

10.
We have determined binding sites for estrogen, progestin, androgen and glucocorticoid in anterior pituitaries from Sprague-Dawley rats, a strain with low estrogen sensitivity, and in diethylstilbestrol-induced pituitary tumors in Fischer 344 rats, a strain with high estrogen sensitivity. Binding sites differ in their quantity and subcellular distribution. Cytosolic sites for [3H]estradiol in normal pituitaries from untreated rats were high prevailing over sites for other hormones, but they were depleted in the tumors due to their retention in nuclei under the influence of estrogen. Unoccupied nuclear sites for estrogen in normal glands also prevailed over sites for other steroids, and were similar to those in tumors. Second, the progestin site labeled with [3H]R 5020 was concentrated 5.7-fold in cytosol and 8.5-fold in nuclei of the tumors over the values found in glands from normal males estrogenized for 3 days. Third, glucocorticoid receptors labeled with [3H]dexamethasone were predominantly cytosolic in normal glands, but very low in cytosol and more evident in nuclear extracts from the tumors, the reverse of the profile found in normal pituitaries. Last, limited and comparable amounts of androgen receptors were measured in the subcellular fractions of both tissues. It is suggested that the subcellular distribution of some steroid receptors may be controlled in part by the cell population of the tissue and its degree of genetic activity.  相似文献   

11.
In this study, we investigated the binding characteristics of [3H]Delta(5)-androstene-3beta,17beta-diol to rabbit vaginal cytosolic and nuclear extracts and in freshly excised intact tissue strips. [3H]delta(5)-Androstene-3beta,17beta-diol bound to a protein(s) in the vaginal nuclear extract with high affinity (K(d)=3-5 nM) and limited capacity (50-100 fmol/mg protein). No specific binding was detected in the cytoplasmic extracts. Competitive binding studies showed that binding of [3H]delta(5)-androstene-3beta,17beta-diol was effectively displaced with unlabeled delta(5)-androstene-3beta,17beta-diol but not with dehydroepiandrosterone, testosterone, dihydrotestosterone, triamcinolone acetonide, or progesterone. However, estradiol at high concentrations partially displaced bound [3H]delta(5)-androstene-3beta,17beta-diol. Incubation of freshly excised vaginal tissue strips with [3H]delta(5)-androstene-3beta,17beta-diol in the absence or presence of excess unlabeled delta(5)-androstene-3beta,17beta-diol for 1h at 37 degrees C resulted in specific binding to a soluble macromolecule in the nuclear KCl extracts. In addition, quantitative measurement of estrogen receptor, androgen receptor and delta(5)-androstene-3beta,17beta-diol binding protein was performed by equilibrium ligand binding assays using extracts of distal vaginal tissue from intact animals or ovariectomized animals treated for 2 weeks with vehicle, estradiol, testosterone, or estradiol plus testosterone. These changes in steroid hormone levels resulted in opposing trends between the estrogen receptor and delta(5)-androstene-3beta,17beta-diol binding protein, suggesting that delta(5)-androstene-3beta,17beta-diol binding protein is regulated differently by the hormonal milieu than the estrogen receptor. These data suggest that rabbit vaginal tissue expresses a novel binding protein which specifically binds delta(5)-androstene-3beta,17beta-diol and is distinct from the androgen and estrogen receptors.  相似文献   

12.
Estradiol has previously been shown to suppress the response of the cellular immune system of the rat while enhancing the production of IgM antibodies. Analysis of the cytosol from rat splenocytes showed saturation of specific binding sites at concentrations of between 80 and 160 nM [3H]-estradiol with an approximate Kd of 12 nM. Competitive binding studies showed a dose-dependent decrease in the binding of [3H]-estradiol to the receptor in the presence of increasing concentrations of unlabeled estradiol. Dexamethasone, progesterone and R1881 (synthetic androgen) had no effect on the binding of [3H]-estradiol. The in vivo administration of estradiol resulted in increased nuclear binding of [3H]-estradiol as compared to vehicle treated controls. These results indicate that rat splenocytes possess specific, translocatable estrogen receptors which may be responsible for the observed modulation of the immune system.  相似文献   

13.
The present study was undertaken to determine cytosol binding properties of [3H]methyltrienolone, a synthetic androgen, in comparison with [3H]dexamethasone, a synthetic glucocorticoid, under conditions of glucocorticoid excess in skeletal muscle. Male hypophysectomized rats received either seven daily subcutaneous injections of cortisone acetate (CA) (100 mg X kg-1 body wt) or the vehicle, 1% carboxymethyl cellulose. Following treatment, both [3H]dexamethasone and [3H]methyltrienolone-receptor concentrations were decreased from those in vehicle-treated rats by more than 90 and 80%, respectively, in CA-treated animals. Scatchard analysis of [3H]methyltrienolone binding in muscles of vehicle-treated animals became nonlinear at high concentrations of labeled ligand and were reanalyzed by a two-component binding model. The lower affinity, higher capacity component, which was attributed to binding of methyltrienolone to a "dexamethasone" component, disappeared in muscles of CA-treated rats and Scatchard plots were linear. Receptor concentrations of the higher affinity lower capacity "methyltrienolone" component were similar in muscles of vehicle-treated and CA-treated groups. From competition studies, the high relative specificities of glucocorticoids for [3H]methyltrienolone binding in muscles of vehicle-treated animals were markedly reduced by CA treatment. In addition, the binding specificity data also showed strong competition by progesterone and methyltrienolone for [3H]dexamethasone binding and estradiol-17 beta for [3H]methyltrienolone binding. These results demonstrate that most of the [3H]methyltrienolone binding is eliminated under in vivo conditions of glucocorticoid excess. Furthermore, the competitiveness of various steroids for receptor binding suggests that rat muscle may not contain classic (ligand-specific) glucocorticoid and androgen receptors.  相似文献   

14.
The binding of [3H]progesterone and [3H] 16 alpha,17 alpha-cycloalkanoprogesterones to proteins from rat, rabbit, and human uteri and other organs was studied. We found that 16 alpha,17 alpha-cycloalkanoprogesterone derivatives display affinities for the uterine progesterone receptors comparable with that of the natural hormone and no substantial species differences in the affinity. Rabbit uterus was found to have no proteins distinct from the progesterone receptor that specifically bind [3H] 16 alpha,17 alpha-cycloalkanoprogesterones. At the same time, in the human uterus, we found another protein that binds some of these progesterone derivatives; it turned out to be similar to the protein from rat uterus. A similar protein with the same selectivity and affinity for steroids was also found in rat and human kidneys. Blood serum, liver, lung, and a number of other tissues were found to contain a protein of the third type that binds the same 16 alpha,17 alpha-cycloalkanoprogesterones and exhibits submicromolar Kd values for these steroids and a very low affinity for progesterone. We speculated that the introduction of a bulky substituent adjacently to the 17 beta-side chain of progesterone could result in a change in the general biodynamics of the derivative including its transport, uptake, and accumulation in tissues, which may determine the selectivity of its effect.  相似文献   

15.
Steroid ligands are known to affect the interactions of their respective receptors with DNA. In the present study, the possibility of DNA interference in progesterone receptor-ligand interactions was investigated. An oligonucleotide containing a hormone response element (HRE) was shown to decrease the dissociation rate of complexes of [3H]progesterone or [3H]16alpha,17alpha-cycloalkanoprogesterones with PRs from rabbit and rat uterine cytosol. The extent to which the oligonucleotide affected the dissociation constant varied from about 4- to 1.5-fold depending on the ligand structure and was ranked in the following order: progesterone>16alpha,17alpha-cyclopropanoprogesterone approximately 16alpha,17alpha-cyclopentanoprogesterone>/=16alpha,17alpha-cyclohex-2'-enoprogesterone approximately 6alpha-methyl-16alpha,17alpha-cyclohexanoprogesterone>/=16alpha,17alpha-cyclohexanoprogesterone. The control oligonucleotide lacking HRE had a weak effect, if any, on the dissociation kinetics. No influence of the HRE-containing oligonucleotide on the equilibrium binding of ligands to PR was observed. The results suggest that the DNA partner affects binding of PR to its ligand.  相似文献   

16.
The synthetic androgen methyltrienolone is superior to testosterone and androstenedione for the measurement of androgen receptor in tissues where the native ligands are metabolized into inactive derivatives. [3H]Methyltrienolone binds with a high affinity to androgen receptor in cytosol prepared from male rat livers, as the Scatchard analysis revealed that the Kd value was 3.3 X 10(-8) M and the number of binding sites was 35.5 fmol/mg protein. Since methyltrienolone also binds glucocorticoid receptor which exists in rat liver, the apparent binding of androgen receptor is faulty when measured in the presence of glucocorticoid receptor. The binding of methyltrienolone to glucocorticoid receptor can be blocked by the presence of a 100-fold molar excess of unlabeled synthetic glucocorticoid, triamcinolone acetonide, without interfering in its binding to androgen receptor, because triamcinolone does not bind to androgen receptor. Triamcinolone-blocked cytosol exhibited that the Kd value was 2.5 X 10(-8) M and the number of binding sites was 26.3 fmol/mg protein, indicating a reduction to 3/4 of that in the untreated cytosol. The profile of glycerol gradient centrifugation indicated that [3H]methyltrienolone-bound receptor migrated in the 8-9 S region in both untreated and triamcinolone-blocked cytosols, but the 8-9 S peak in triamcinolone-blocked cytosol was reduced to about 3/4 of that of untreated cytosol.  相似文献   

17.
MPA (medroxyprogeste)rone acetate) has been shown to be te)ratogenic in rabbits but not in rats or mice (Andrew and Staples 1977). Since normal steroid action appears to be mediated, in large part, through interaction with specific steroid receptors, it was postulated that the species difference in teratogenicity might be due to a difference in the interaction of MPA with target cells. A primary event in steroid-cell interaction is the binding of a steroid to intracellular receptors. Studies were initiated to measure the specific nature of MPA binding to glucocorticoid and progestin receptors in appropriate rat and rabbit target tissues. The competition of MPA with 3H-dexamethasone binding in liver cytosol (glucocorticoid receptor) and with 3H-progesterone binding in uterine cytosol (progesterone receptor) was determined. In rabbit liver cytosol, MPA was as effective at competing for specific dexamethasone binding as the natural glucocorticoids and considerably more effective than the nonspecific steroids. In rat liver cytosol MPA was only 10% as effective as the natural glucocorticoids and the competition could not be distinguished from that of nonspecific steroids. A similar species difference was not seen in uterine cytosol; MPA competed with progesterone in a similar fashion in both rat and rabbit. These data demonstrate a distinct species difference in the competitive nature of MPA for the glucocorticoid receptor but not for the progestin receptor. The results suggest that MPA, or possibly a metabolite, may be teratogenic in rabbits by binding with specific glucocorticoid receptors to inhibit or alter normal steroidal function in embryo-fetal development.  相似文献   

18.
A nuclear binding (NB) assay has been developed for the measurement in intact viable cells of biologically active (functional) estrogen and progesterone receptors, i.e. those capable of binding to nuclear acceptor sites [Spelsberg et al., Endocrinology 121: 631 (1987)]. This paper describes the application of this assay to analyses of androgen receptors in the guinea pig seminal vesicle and in human prostatic carcinoma. Cells from fresh animal seminal vesicles or human prostate carcinoma are isolated using collagenase and are incubated with [3H]R1881 for 1 h at 22 degrees C, after which nuclei are isolated at 4 degrees C and assayed for DNA and radioactivity. This NB assay demonstrates a saturable, temperature dependent, steroid and tissue specific nuclear binding of [3H]R1881 for the guinea pig-seminal vesicle system. The nuclear binding is of high affinity and low capacity. The NB assay reveals several important aspects of the androgen and estrogen receptors in target tissues: (1) the nuclear acceptor sites for androgen receptor (AR) are steroid receptor specific; (2) there are different concentrations of the androgen and estrogen receptors between the epithelium and the fibromuscular components of the guinea pig seminal vesicle; and finally (3) some biopsies of human prostate cancer appear to contain biologically inactive AR. This assay may be useful in the analyses of functional receptors in biopsies of human cancer cells.  相似文献   

19.
Existing techniques for androgen receptor (AR) assay are complicated by cross-reactivity of ligand binding affinities that can lead to incorrect estimation of receptor concentration. Two most frequently used ligands are [3H]dihydrotestosterone [( 3H]DHT) and [3H]methyltrienolone [( 3H]R1881), which in addition to binding to AR also bind to sex hormone binding globulin (SHBG; Kd = 1.5 nM) and progesterone receptors (PgR; Human Kd = 1 nM, rat Kd = 6 nM) respectively. Triamcinolone acetonide (TMA) is commonly used to block binding of [3H]R1881 to PgR, however at high concentrations TMA itself will bind AR (Kd = 7 microM). We have developed a hybrid ligand method for the measurement of AR in the presence of SHBG and PgR. This method used [3H]R1881 as the high specific activity labelled tracer and DHT as the unlabelled competitor of specific AR binding. Using this assay, 20% of human colorectal carcinomas were found to contain AR.  相似文献   

20.
The structural requirements for the interaction of about 80 cyclic hydrocarbons and related compounds with the androgen receptor of rat ventral prostate, the estrogen receptor of human breast tumor MCF-7 cells, and the glucocorticoid receptor of rat liver were examined by comparing their abilities to compete with radioactive hormones for binding to the respective receptors. The results indicate that the receptor-binding affinity of a compound is dependent on its electronic configuration and geometrical similarity to a portion of a natural steroid hormone which can be recognized by local ligand-binding sites in the receptor. For the estrogen receptor, beta-phenols are more active than the corresponding alpha-phenols, whereas nonphenolic compounds are totally inactive. For androgen and glucocorticoid receptors, alpha-phenols are more active than beta-phenols. The androgen receptor can interact stereospecifically with nonoxygenated and nonalkylated cyclic hydrocarbons, such as 10,11-dihydro-5H-dibenzo[a,d] cycloheptene or 9,10-dihydrophenanthrene, which can, in vivo, inhibit the androgen-dependent growth of the male accessory reproductive organs. The affinities of naphthalene, anthracene, phenanthrene, biphenyl, and adamantane toward glucocorticoid and androgen receptors can be enhanced by acetylation or ethanolization of these ligands. Our results also indicate that, while the hormonal action of a steroid may be dependent on the interaction of a functional group on the hormone with a specific group on the receptor, the presence of such a group may not be required for the antagonistic activity of a compound that can physically block hormone binding to the receptor. Thus, many small molecules that were hitherto considered to be biologically inert may interact with steroid receptors specifically and affect hormonal activities in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号